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What are Wavelets ?

• Fractal functions used in data compression
and signal processing.

• This talk: Daubechies K = 2, 3 (DK)
wavelets.
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Properties of DK Wavelets ?

• Orthonormal basis functions.
• Compact support.
• Local pointwise representation of low-degree

polynomials.
• Generated from a single function by

translations and scale transforms.
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Why are Wavelets Interesting ?

• Efficient representation of information.
• Used in the FBI’s fingerprint archive.
• Used in the JPEG2000 image compression

algorithm.
• Fast reconstruction of information.
• Natural basis for functions with smooth

structures on multiple scales.
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Physics Motivation

• Sensitivity to sub-nucleon degrees of freedom requires
scattering with large energy/momentum transfers.

⇓

• Scattering with large energy/momentum transfers
requires a relativistic quantum treatment.

⇓

• Relativistic quantum models are naturally formulated in
momentum space (Fourier transforms).
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Physics Motivation

⇓
• Momentum-space few-body equations for realistic

systems have large dense matrices ( ∼ 107 × 107 ).

⇓

• Wavelet bases lead to equivalent linear equations with
sparse matrices.
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Useful Numerical Properties

• Basis functions have compact support.

• Basis functions are orthonormal.

• Basis functions never have to be computed.

• The wavelet transform automatically eliminates unimportant

basis functions.

• Basis functions can locally pointwise represent polynomials.

• Wavelets lead to efficient treatment of scattering

singularities.

• There is an efficient one-point quadrature rule.
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Interesting Properties

• Wavelets are fractals.
• Basis functions are generated from a single

“Mother” function by translations and dyadic
scale changes.

• “Mother” function constructed from solution
(“Father” function = scaling function) of a
linear renormalization-group equation.
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Elements of Wavelet Numerical
Analysis

• Dyadic scale changes:

Dξ(x) :=
1√
2
ξ(
x

2
)

• Integer translations:

Tξ(x) := ξ(x− 1)

• D and T are unitary.
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The Scaling Equation

Dφ(x) =
∑

l

hlT
lφ(x)

∫

φ(x)dx = 1

• φ(x) = scaling function = “Father” function.
• hl are numerical coefficients that determine

the type of wavelet.
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Scaling Bases

• Resolution m scaling function basis:

φmn(x) := DmT nφ(x) (φmn, φmn′) = δnn′

• Resolution m approximation space, Vm:

Vm := {f(x) =
∑

n

fnφmn(x);
∑

n

|fn|2 <∞}
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Approximation Space

∫

φ−mn(x)dx = 2−m/2

φ−mn(x) = 0 unless x ∈ [
n

2m
,
n+ 2K − 1

2m
]

• 2K = number of non zero hls.
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Approximation Space

• For large m and smooth f(x)

f(x) ≈
∑

n

fnφ−mn(x)

fn =

∫

φ−mn(x)f(x)dx ≈ 2−m/2f(
n

2m
)

• Expansion coefficients proportional to
function values on support of φ−mn.
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Multiresolution Analysis

• The scaling equation

φm+1,n = Dφmn =
∑

l

hlφm,2n+l

⇓
Vm ⊃ Vm+1

• Wavelet spaces Wm are defined by

Vm−1 = Vm ⊕Wm
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Multiresolution Analysis

• Repeated application of Vm ⊃ Vm+1

⇓

L2(R) ⊃ · · · ⊃ Vm−1 ⊃ Vm ⊃ Vm+1 ⊃ · · · ⊃ {∅}
• Repeated application of Vm = Vm−1 ⊕Wm−1

⇓

Vm = Vm+k ⊕Wm+k ⊕Wm+k−1 · · · ⊕Wm+1
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The “Mother” Wavelet ψ(x)

• The Mother wavelet ψ(x) ∈ W0 ⊂ V−1:

Dψ =
∑

l

glT
lφ; gl := (−)lhk−l k odd .

• Wavelet basis functions ψmn span Wm:

ψmn(x) := DmT nψ(x)

(ψmn, ψm′n′) = δmm′δnn′ (ψmn, φmn′) = 0
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The Scaling Coefficients

• The Daubechies’ scaling coefficients, hl are
constrained by:

∫

ψ(x)xl = 0; l = 0, 1, · · · ,K − 1

It follows that:
∫

ψmn(x)x
l = 0; l = 0, 1, · · · ,K − 1
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The Scaling Coefficients

• The hl are the solution of:

2K−1
∑

l=0

hl =
√

2
2K−1
∑

l=0

hlhl−2n = δn0

2K−1
∑

l=0

lm(−)lhk−l = 0 m = 0, · · · ,K − 1

• The solutions for K = 1, 2, 3 are:
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Daubechies Scaling Coefficients

hl K=1 K=2 K=3

h0 1/
√

2 (1 +
√

3)/4
√

2 (1 +
√

10 +
√

5 + 2
√

10)/16
√

2

h1 1/
√

2 (3 +
√

3)/4
√

2 (5 +
√

10 + 3
√

5 + 2
√

10)/16
√

2

h2 0 (3 −
√

3)/4
√

2 (10 − 2
√

10 + 2
√

5 + 2
√

10)/16
√

2

h3 0 (1 −
√

3)/4
√

2 (10 − 2
√

10 − 2
√

5 + 2
√

10)/16
√

2

h4 0 0 (5 +
√

10 − 3
√

5 + 2
√

10)/16
√

2

h5 0 0 (1 +
√

10 −
√

5 + 2
√

10)/16
√

2
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Computation of φ(x) and ψ(x)

• φ(x) at integer points can be obtained by
solving:

φ(n) =
2K−1
∑

l=0

√
2hlφ(2n− l)

∑

n

φ(n) = 1

• The support of φ(x) ∈ [0, 2K − 1].

⇓

φ(n) = 0 n ≤ 0 or n ≥ 2K − 1
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Computation of φ(x) and ψ(x)

• The scaling equation generates ψ and φ
recursively at all dyadic rationals:

φ(
n

2k
) =

2K−1
∑

l=0

√
2hlφ(

n

2k−1
− l)

ψ(
n

2k
) =

2K−1
∑

l=0

√
2glφ(

n

2k−1
− l)
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K = 3 Wavelet and Scaling
Function

0 1 2 3 4 5

Scaling Function

Wavelet Function
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Approximation Spaces

• There are two approximation spaces related
by a fast orthogonal transformation (o(N)).

Vm ⇔ Wm+1 ⊕Wm+2 ⊕ · · · ⊕Wm+k ⊕ Vm+k

with orthonormal bases

{φmn(x)}∞n=−∞

m
{φm+k n(x)}∞n=−∞ ∪ {ψln(x)}∞,m+k

n=−∞,l=m+1
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Local Polynomials

L2(R) = · · · ⊕Wm−2 ⊕Wm−1 · · · ⊕Wm ⊕ Vm
∫

ψmnx
l = 0 ∀m,n; l = 0, 1, · · · ,K − 1

⇓

∴ xl =
∑

n

cnφmn(x) pointwise
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Unit Translates

0  1  2  3  4  5  
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Daubechies−2 Scaling Functions Translated
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Constant Function

−3 −2 −1 0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

1.5

2
Summing Daubechies−2 Wavelets to Represent a Constant Function

Wavelets in Scattering Calculations – p.26/51



Linear Function
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Summing Daubechies−2 Wavelets to Represent a Linear Function
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Wavelet Numerical Analysis

• The fractal nature of wavelets makes standard
numerical techniques inefficient.

• The scaling equation replaces all numerical methods.

• The key elements of “wavelet numerical analysis” are
the compactness of the basis functions and the ability
to exactly compute moments:

〈xm〉φ := (xm, φ) =

∫

xmφ(x)dx
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Moments and Scaling

• The normalization condition gives:

〈x0〉φ = 1

• The scaling equation gives:

〈xk〉φ = (xk, φ) = (Dxk, Dφ) =
1

2k+1/2

2K−1
∑

l=0

hl(x
k, T lφ) =

2K−1
∑

l=0

k
∑

n=0

(

k

n

)

hll
k−n〈xk〉φ

• These equations recursively determine all moments.

Wavelets in Scattering Calculations – p.29/51



Moments and Scaling

• Similar methods can be used to get exact values for

(xl, φmn), (xl, ψmn)

(
dlφmn

dxl
, φm′n′), (

dlφmn

dxl
, ψm′n′), (

dlψmn

dxl
, φm′n′), (

dlψmn

dxl
, ψm′n′)

(φmn, φm′l′φm′′l′′) · · ·

{xk, wk}N
k=1;

∫

φ(x)P2N−1(x)dx =

N
∑

l=1

P2N−1(xl)wl
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One-Point Quadrature

• For the Daubechies wavelets 〈x1〉2φ = 〈x2〉φ
• This means that

∫

P (x)φ(x)dx = P (〈x1〉φ)

is exact for P (x) = a+ bx+ cx2.
• The Daubechies K = 3 wavelets provide local

pointwise representations of these
polynomials.
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Scattering Singularities

In := (
1

x± i0+
, Tnφ)

In := (D
1

x± i0+
, DTnφ)

= (D
1

x± 0+
, T 2nDφ) =

√
2

2K−1
∑

l=0

hlI2n+l

∓iπ =

∫ a

−a

1

x± i0+
=

∑

In + endpoint terms

In =
1

n

∞
∑

m=0

(−1)m

nm
(xm, φ) ≈ 1

n

mmax
∑

m=0

(−1)m

nm
〈xm〉 n large
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Scattering Singularities

• These linear equations can be solved for In;
• The partial moments needed to treat endpoint

integrals can be determined exactly.
• The method can also be applied to integrate

the logarithmic singularities, and moving
singularities.
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Integrals over the Singularity

• Example of calculated singular In’s for the
Daubechies K = 3 scaling function:

K=3 I±k

I±−1 -0.1717835441734 ∓i 4.041140804162
I±−2 -1.7516314066967 ±i 1.212142562305
I±−3 -0.3025942645356 ∓i 0.299291822651
I±−4 -0.3076858066180 ∓i 0.013302589081
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Wavelet Transform

• The Wavelet transform is the real orthogonal transformation

that relates the “scaling function” basis on Vm to the

“wavelet basis” on Wm+1 ⊕Wm+2 ⊕ · · · ⊕Wm+k ⊕ Vm+k

• The matrix representation of a smooth kernel in the “wavelet

basis” is the sum of a sparse matrix and a matrix with small

norm:

Kmn =

∫

φn(x)K(x, y)φm(y)dxdy = Smn+∆mn ‖∆‖ < ε

• The “wavelet approximation” is to ignore ∆mn.
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Wavelet Transform

• There is an algorithm for implementing the
wavelet transform that treats the coefficients
hl and gl as coefficients of a filter.

• The wavelet transform is o(N), which is faster
than a fast Fourier transform.
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Wavelet Transform

f(x) =
∑

n

cmf nφmf n(x) =
∑

n

cmcnφmcn(x) +
∑

mn

dmnψmn(x)
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Wavelet Transform
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Solving the L-S Equation

• Choose a finest resolution ∆ = 1/2j ⇒ Vj (we use K = 3).

• Transform [0,∞] to a finite interval with the singularity at zero.

• Expand the solution in the scaling basis on Vj .

• Use the one point quadrature for the regular integrals and the In for the singular
integrals.

• Use the fast-wavelet transform to transform to the equivalent wavelet basis.

• Discard terms with small matrix elements.

• Solve the resulting sparse-matrix linear equation.

• Invert the solution using the fast wavelet transform.

• Insert the solution vector back in the integral equation using the one-point
quadrature rule and the In .

• The resulting solution does NOT require the computation of the basis functions.
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Model - Malfliet-Tjon V

H =
p2

2m
+ V

V (r) = λ1
e−µ1r

r
+ λ2

e−µ2r

r

1/2m λ1 µ1 λ2 µ2

41.47 MeV fm2 -570.316 MeV fm 1.55 fm−1 1438.4812 MeV fm 3.11 fm−1

• example: s-wave half on-shell K-matrix
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Structure of equation:

f(x) = g(x) +

∫

K(x, y)

y
f(y)dy

f =
∑

fnφn(x) xn = 〈x1〉φn

fm = g(xm) +
∑

n

(

K(xm, yn) −K(xm, 0)

yn
+K(xm, 0)In

)

fn

f(x) = g(x) +
∑

n

(

K(x, yn) −K(x, 0)

yn
+K(x, 0)In

)

fn
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Transformed Kernel
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Transformed K-matrix
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Why does it work?

• Consider the expansion of f(x) in the wavelet basis

f(x) =

∞
∑

n=−∞

dnφmn(x) +

∞
∑

n=−∞

m
∑

l=m−k

clnψln(x);

cln =

∫ 2l(n+2K−1)

2ln
ψln(x)f(x)dx

• cln vanishes if f(x) can be represented by a polynomial of

degree K on [2ln, 2l(n+ 2K − 1)].
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K = 3, E = 10 MeV

-J N series on-shell interpolated on-shell

3 32 -125.051451 -125.034060

4 64 -125.007967 -125.006049

5 128 -125.005171 -125.004948

6 256 -125.004847 -125.004820

7 512 -125.004806 -125.004803
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K = 3, E = 80MeV

-J N series on-shell interpolated on shell

3 32 -6.44161445 -6.43154124

4 64 -6.42926712 -6.42868443

5 128 -6.42842366 -6.42840177

6 256 -6.42837147 -6.42837210

7 512 -6.42836848 -6.42836877
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Sparse Matrix Convergence

K=3, E=10 MeV, J=-7

ε percent on-shell value on-shell error mean-square error

0 100 -125.00480 0 0

10−9 17.78 -125.00480 1.05×10−8 2.56×10−8

10−8 11.38 -125.00480 5.14×10−8 2.44×10−7

10−7 6.6 -125.00475 4.49×10−7 1.88×10−6

10−6 3.76 -125.00269 1.69×10−5 2.08×10−5

10−5 2.14 -124.99030 .000116 .000228

10−4 1.24 -124.85112 .00123 .00217

10−3 .72 -123.82508 .00944 .0117

10−2 .38 -125.25766 .00202 .128
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Sparse Matrix Convergence

K=3, E=80, MeV J=-7

ε percent on-shell value on-shell error mean-square error

0 100 -6.4283688 0 0

10−9 19.99 -6.4283688 1.52×10−10 1.20×10−8

10−8 12.94 -6.4283690 3.44×10−8 2.06×10−7

10−7 7.42 -6.4283703 2.33×10−7 1.87×10−6

10−6 4.08 -6.4283333 5.51×10−6 4.38×10−5

10−5 2.22 -6.4278663 7.82×10−5 .000994

10−4 1.21 -6.4244211 .000614 .00845

10−3 .67 -6.4154328 .00201 .0229

10−2 .34 -6.2935398 .021 .102
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Conclusions
• Wavelet bases can be used to accurately solve the equations of scattering theory

in momentum space.

• A new type of numerical analysis, called “wavelet numerical analysis”, which is
based on scaling and support properties of the basis functions, is used for
accurate numerical calculations.

• Wavelet “numerical analysis” leads to an accurate treatment of the scattering
singularities.

• The wavelet transform leads to a sparse-matrix representation of the kernel. It
automatically identifies “irrelevant” basis functions.

• Our calculations show that a 96% reduction in the size of the matrix results in
mean square error of about 1 part in 105 .

• We have successfully extended the method for two-body scattering without partial
waves.

• We are currently applying the method to three-body problems with moving
singularities.
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2 D Basis Functions
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2 D Sparse Matrix
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