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What are Wavelets ?

 Fractal functions used in data compression
and signal processing.

» This talk: Daubechies K = 2,3 (DK)
wavelets.



Properties of DK Wavelets ?

e Orthonorma

« Compact sup

nasis functions.

oort.

 Local pointwise representation of low-degree

polynomials.

« Generated from a single function by
translations and scale transforms.
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Why are Wavelets Interesting ?

 Efficient representation of information.
« Used in the FBI’s fingerprint archive.

* Used in the JPEG2000 image compression
algorithm.

e Fast reconstruction of information.

e Natural basis for functions with smooth
structures on multiple scales.



Physics Motivation

* Sensitivity to sub-nucleon degrees of freedom requires
scattering with large energy/momentum transfers.

4

e Scattering with large energy/momentum transfers
requires a relativistic quantum treatment.

4

* Relativistic quantum models are naturally formulated in
momentum space (Fourier transforms).
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Physics Motivation

4

* Momentum-space few-body equations for realistic
systems have large dense matrices ( ~ 107 x 107).

4

* Wavelet bases lead to equivalent linear equations with
sparse matrices.
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Useful Numerical Properties

Basis functions have compact support.
Basis functions are orthonormal.
Basis functions never have to be computed.

The wavelet transform automatically eliminates unimportant
basis functions.

Basis functions can locally pointwise represent polynomials.

Wavelets lead to effi cient treatment of scattering
singularities.

There is an effi cient one-point quadrature rule.
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Interesting Properties

 \Wavelets are fractals.

» Basis functions are generated from a single
“Mother” function by translations and dyadic
scale changes.

» “Mother” function constructed from solution
(“Father” function = scaling function) of a
linear renormalization-group equation.
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Elements of Wavelet Numerical
Analysis

» Dyadic scale changes:

DE(x) =

* Integer translations:

T¢(x) = &z — 1)

« D and T are unitary.




The Scaling Equation

Do(z) = > mT'¢(x)

[otaria =1

« ¢(x) = scaling function = “Father” function.

« h; are numerical coefficients that determine

the type of wavelet.



Scaling Bases

« Resolution m scaling function basis:

¢mn(37) L= Dan¢(37) ((bmna Qbmn’) — 6nn’

» Resolution m approximation space, V,,.

Vi i={f(x) = an¢mn(37)a Z | fal? < 00}



Approximation Space

/gb_mn(az)da: = 2~m/2

n n+ 2K — 1]
2m’ am
« 2K = number of non zero h;s.

¢—mn(x) =0 unless  x €]



Approximation Space

 For m and f(x)

~ Z fu®—mn ()

/Qb mn dajNZ m/2f(2m)

« Expansion coefficients proportional to
function values on support of ¢_,,,..



Multiresolution Analysis

* The scaling equation

¢m+1,n — D¢mn — Z hl¢m,2n+l
[

Y
Vi O Vit
« Wavelet spaces V,, are defined by

V-1 = Vim © Wi,



Multiresolution Analysis

* Repeated application of V,,, D V,,+1

4

LZ(R) IDRCRN DVm—l DV777,DV771+1 Dot D {@}
» Repeated application of V,,, = V,,,_1 & W,—1

U
Vm — Vm+k D Wm—|—k D Wm—|—k—1 e D Wm—|—1



The “Mother” Wavelet ) (x)

» The Mother wavelet ¢)(z) € Wy C V_q:

Dwzznglqb; gr:=(—=)'hyg— kodd.
[

« Wavelet basis functions ,,,,, span W,,:
Y () := D"T™)(x)
(wmna wm’n’) — 5mm’5nn’ (wmna qun’ ) =0



The Scaling Coefficients

« The Daubechies’ scaling coefficients, h; are
constrained by:

/w(x)ajl:(); [=0,1,--- K —1
It follows that:



The Scaling Coefficients

 The h; are the solution of:

2K -1 2K -1
> =2 Y hihi—an = 6u0
(=0 =0

2K -1

Zlm hkl—() m:O,---,K—l

0 The Solutlons for K =1,2,3 are:



Daubechies Scaling Coefficients

h | K=1 | K=2 K=3
ho | 1/v2 | (14+V3)/4v2 | (1 + 10+ /5 +2V10)/16v2
hi | 1/V2 | 34+ v3)/4v2 | (54 V10 + 3V/5 + 21/10) /1612
ho | 0 (3 —/3)/4v2 | (10 — 2¢/10 + 2v/5 + 21/10)/16V/2
hs | 0 (1 —+/3)/4v2 | (10 — 2v/10 — 2v/5 + 21/10) /16V/2
ha | O 0 (54 v10 — 3v/5 + 2/10) /161/2
hs | 0 0 (1410 — V5 4 2v/10)/16v/2




Computation of ¢(x) and ¢ (x)
« ¢(x) at integer points can be obtained by
solving:

2K—1
on) =Y Vemo@2n—1) )Y ¢(n)=1
[=0 n
« The support of ¢p(z) € [0,2K — 1].

4
N n<0 or n>2K-1
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Computation of ¢(x) and ¢ (x)

» The scaling equation generates ) and ¢
recursively at all dyadic rationals:

2K—1

Ozp) = D Vehio(s — 1)

2K—1

w<§> =) \59105(2;?_1 [)




K = 3 Wavelet and Scaling
Function




Approximation Spaces

* There are two approximation spaces related
by a fast orthogonal transformation (o(V)).

Vm <~ Wm+1 D Wm+2 DD Wm+k D Vm+k

with orthonormal bases

II

{Gmern(@) 122 U b (2) o™



Local Polynomials




Unit Translates

Daubechies—2 Scaling Functions Translated
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Constant Function

Summing Daubechies—-2 Wavelets to Represent a Constant Function
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|_Inear Function

Summing Daubechies-2 Wavelets to Represent a Linear Function
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Wavelet Numerical Analysis

e The fractal nature of wavelets makes standard
numerical techniques ineffi cient.

* The replaces all numerical methods.

* The key elements of “wavelet numerical analysis” are
the compactness of the basis functions and the abillity
to compute moments:

(2™, = (7 ) — / () da
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Moments and Scaling

® The normalization condition gives:

(2%)p =1
® The scaling equation gives:

2K —1
1

(1) = (2%, ¢) = (Da", D) = iy | (e, T'9) =

[=0

Qili() T (2 g

[=0 n=0

® These equations recursively determine all moments.
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Moments and Scaling

® Similar methods can be used to get values for

(xl, Cbmn)a (xl, wmn)

(— 1 ), (s Ynvw), (=0

(¢mn7 ¢m’l/¢m//l//) ..

7¢mn) ( 7wmn)

(orwhs [ 9@ Paxoa(@)de = 3 Pano ()
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One-Point Quadrature

» For the Daubechies wavelets (z')? = (z%),,

 This means that

IS for P(z) = a + bx + cz?.

 The Daubechies K = 3 wavelets provide local
pointwise representations of these
polynomials.



Scattering Singularities

1
x +10t’

Ly = ( ")
1

1, = (D :
( x +i0t

DT"¢)

2K—-1

1
T?"D¢) = V2 Z hilop
=0

= (D
( x4+ 0+’

@ 1
T = = 1,, + endpoint terms
A /a x4+ 10t Z + P
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Scattering Singularities

* These linear equations can be solved for I,,;

* The partial moments needed to treat endpoint
Integrals can be determined exactly.

 The method can also be applied to integrate
the logarithmic singularities, and moving
singularities.



Integrals over the Singularity

« Example of calculated singular 7,,’s for the
Daubechies K = 3 scaling function:

_ +
K=3 I

[+, -0.1717835441734 =i 4.041140804162
I+, -1.7516314066967 =i 1.212142562305
I=, -0.3025942645356 i 0.299291822651
I+, -0.3076858066180 =i 0.013302589081




Wavelet Transform

* The Wavelet transform is the real orthogonal transformation
that relates the “scaling function” basis on V,, to the

“wavelet basis” on Wy,+1 & Wpio ® - B Whak S Viak

* The matrix representation of a smooth kernel in the “wavelet

basis” is the sum of a sparse matrix and a matrix with small
norm:

Ko — / On (1)K (2, )b (y)ddy = S+ A IA] < €

* The IS to AN
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Wavelet Transform

* There is an algorithm for implementing the
wavelet transform that treats the coefficients
h; and g; as coefficients of a filter.

- The wavelet transform is o( V'), which is faster
than a fast Fourier transform.



Wavelet Transform

F@) =Y Cmmbmm(®) = Cmnbmen

/ C-21 \

n

[

\

C—-1,1 \

C—1,2
d_11
d_1,2
d_2,1
d_22
d_23

d_sy )

(

\

C_o,1 \

d_o,1
d_1,1
d_1,2
d_21
d_22
d_23

d_24 )




Wavelet Transform
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Solving the L-S Equation

Choose a fi nest resolution A = 1/2 = V); (we use K = 3).
Transform [0, co] to a fi nite interval with the singularity at zero.
Expand the solution in the scaling basis on V;.

Use the one point quadrature for the regular integrals and the I,, for the singular
integrals.

Use the fast-wavelet transform to transform to the equivalent wavelet basis.
Discard terms with small matrix elements.

Solve the resulting sparse-matrix linear equation.

Invert the solution using the fast wavelet transform.

Insert the solution vector back in the integral equation using the one-point
quadrature rule and the I, .

The resulting solution does NOT require the computation of the basis functions.
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Model - Malfliet-Tjon V

2
g->r vy
2m
e_lulr €_N2T
V(T) — )\1 | )\2
T T
1/2m A1 U5 A2 H2

41.47 MeV fm?  -570.316 MeVfm 1.55fm—! 1438.4812MeVfm 3.11 fm—!

e example: s-wave half on-shell K-matrix
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Structure of equation:

v [ g ay

f= anqbn z) oz, = (z)y,

Yn

)+ Z ( e K(zc,0>1n) i

’I’L




Transformed Kernel




Transformed K-matrix
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Why does it work?
* Consider the expansion of f(x) in the wavelet basis

f($): Z dn¢mn(x)‘|' S: S: Clnwln(x)§

n=—oo n=—oo [l=m—=k

2l (n4+-2K—1)
= | in (@) (2)de

l’l’L
* ¢, vanishes if f(x) can be represented by a polynomial of
degree K on [2'n,2'(n + 2K — 1)].
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-J N

3 32
4 64
5 128
6 256
[/ 512

K =3, F =10 MeV

series on-shell
-125.051451
-125.007967
-125.005171
-125.004847
-125.004806

interpolated on-shell
-125.034060
-125.006049
-125.004948
-125.004820
-125.004803
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-J N

3 32
4 64
5 128
6 256
[/ 512

K =3 FE=80MeV

series on-shell
-6.44161445
-6.42926712
-6.42842366
-6.42837147
-6.42836848

Interpolated on shell
-6.43154124
-6.42868443
-6.42840177
-6.42837210
-6.42836877
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Sparse Matrix Convergence

K=3, E=10 MeV, J=-7

€ percent on-shell value on-shell error mean-square error
0 100 -125.00480 0 0

1072 17.78 -125.00480 1.05x10~® 2.56x107°

107 11.38  -125.00480 5.14x1078 2.44x1077

1077 6.6 -125.00475 4.49x10~7 1.88x107°
107 3.76 -125.00269 1.69%x107° 2.08x107°
10—° 2.14 -124.99030 .000116 .000228
10 1.24 -124.85112 .00123 .00217
1073 .72 -123.82508 .00944 0117

102 .38 -125.25766 .00202 128
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K=3, E=80, MeV J=-7

€

0

10~Y
108
107
10~
107°
10~4
103
102

Sparse Matrix Convergence

percent
100
19.99
12.94
7.42
4.08
2.22
1.21
.67

34

on-shell value

-6.4283688
-6.4283688
-6.4283690
-6.4283703
-6.4283333
-6.4278663
-6.4244211
-6.4154328
-6.2935398

on-shell error

0
1.52x10~10
3.44x1078
2.33x1077
5.51x107°
7.82x107°
.000614
.00201

.021

mean-sguare error
0

1.20x107%
2.06x10~7
1.87x1076
4.38x107°
.000994

.00845

.0229

102
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Conclusions

Wavelet bases can be used to accurately solve the equations of scattering theory
In momentum space.

A new type of numerical analysis, called “wavelet numerical analysis”, which is
based on scaling and support properties of the basis functions, is used for
accurate numerical calculations.

Wavelet “numerical analysis” leads to an accurate treatment of the scattering
singularities.

The wavelet transform leads to a sparse-matrix representation of the kernel. It
automatically identifi es “irrelevant” basis functions.

Our calculations show that a 96% reduction in the size of the matrix results in
mean square error of about 1 part in 10° .

We have successfully extended the method for two-body scattering without partial
waves.

We are currently applying the method to three-body problems with moving
singularities.
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2 D Basis Functions
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2 D Sparse Matrix
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