#### **Wavelets in Scattering Calculations**

Brian M. Kessler, Fatih Bulut, Gerald L. Payne, W.P.

polyzou@uiowa.edu

The University of Iowa

Wavelets in Scattering Calculations - p.1/5

#### What are Wavelets ?

- Fractal functions used in data compression and signal processing.
- This talk: Daubechies K = 2, 3 (DK) wavelets.

# Properties of DK Wavelets ?

- Orthonormal basis functions.
- Compact support.
- Local pointwise representation of low-degree polynomials.
- Generated from a single function by translations and scale transforms.

# Why are Wavelets Interesting ?

- Efficient representation of information.
- Used in the FBI's fingerprint archive.
- Used in the JPEG2000 image compression algorithm.
- Fast reconstruction of information.
- Natural basis for functions with smooth structures on multiple scales.

# **Physics Motivation**

 Sensitivity to sub-nucleon degrees of freedom requires scattering with large energy/momentum transfers.

 Scattering with large energy/momentum transfers requires a relativistic quantum treatment.

 Relativistic quantum models are naturally formulated in momentum space (Fourier transforms).

# **Physics Motivation**

• Momentum-space few-body equations for realistic systems have large dense matrices (  $\sim 10^7 \times 10^7$  ).

 Wavelet bases lead to equivalent linear equations with sparse matrices.

## **Useful Numerical Properties**

- Basis functions have compact support.
- Basis functions are orthonormal.
- Basis functions never have to be computed.
- The wavelet transform automatically eliminates unimportant basis functions.
- Basis functions can locally pointwise represent polynomials.
- Wavelets lead to effi cient treatment of scattering singularities.
- There is an effi cient one-point quadrature rule.

# **Interesting Properties**

- Wavelets are fractals.
- Basis functions are generated from a single "Mother" function by translations and dyadic scale changes.
- "Mother" function constructed from solution ("Father" function = scaling function) of a linear renormalization-group equation.

# Elements of Wavelet Numerical Analysis

• Dyadic scale changes:

$$D\xi(x) := \frac{1}{\sqrt{2}}\xi(\frac{x}{2})$$

Integer translations:

$$T\xi(x) := \xi(x-1)$$

• D and T are unitary.

# The Scaling Equation

$$D\phi(x) = \sum_{l} h_{l}T^{l}\phi(x)$$

$$\int \phi(x)dx = 1$$

- $\phi(x) =$  scaling function = "Father" function.
- *h<sub>l</sub>* are numerical coefficients that determine the type of wavelet.

# Scaling Bases

• Resolution *m* scaling function basis:

 $\phi_{mn}(x) := D^m T^n \phi(x) \qquad (\phi_{mn}, \phi_{mn'}) = \delta_{nn'}$ 

• Resolution m approximation space,  $\mathcal{V}_m$ :

$$\mathcal{V}_m := \{ f(x) = \sum_n f_n \phi_{mn}(x); \qquad \sum_n |f_n|^2 < \infty \}$$

# **Approximation Space**

 $\int \phi_{-mn}(x)dx = 2^{-m/2}$ 

 $\phi_{-mn}(x) = 0$  unless  $x \in [\frac{n}{2^m}, \frac{n+2K-1}{2^m}]$ 

• 2K = number of non zero  $h_l$ s.

## **Approximation Space**

• For large m and smooth f(x)

$$f(x) \approx \sum_{n} f_n \phi_{-mn}(x)$$

$$f_n = \int \phi_{-mn}(x) f(x) dx \approx 2^{-m/2} f(\frac{n}{2^m})$$

• Expansion coefficients proportional to function values on support of  $\phi_{-mn}$ .

### **Multiresolution Analysis**

The scaling equation

$$\phi_{m+1,n} = D\phi_{mn} = \sum_{l} h_l \phi_{m,2n+l}$$
 $\psi$ 
 $\mathcal{V}_m \supset \mathcal{V}_{m+1}$ 

• Wavelet spaces  $\mathcal{W}_m$  are defined by

 $\mathcal{V}_{m-1} = \mathcal{V}_m \oplus \mathcal{W}_m$ 

#### **Multiresolution Analysis**

• Repeated application of  $\mathcal{V}_m \supset \mathcal{V}_{m+1}$ 

 $L^2(R) \supset \cdots \supset \mathcal{V}_{m-1} \supset \mathcal{V}_m \supset \mathcal{V}_{m+1} \supset \cdots \supset \{\emptyset\}$ 

• Repeated application of  $\mathcal{V}_m = \mathcal{V}_{m-1} \oplus \mathcal{W}_{m-1}$ 

 $\mathcal{V}_m = \mathcal{V}_{m+k} \oplus \mathcal{W}_{m+k} \oplus \mathcal{W}_{m+k-1} \cdots \oplus \mathcal{W}_{m+1}$ 

# The "Mother" Wavelet $\psi(x)$

• The Mother wavelet  $\psi(x) \in \mathcal{W}_0 \subset \mathcal{V}_{-1}$ :

$$D\psi = \sum_l g_l T^l \phi; \quad g_l := (-)^l h_{k-l} \quad k ext{ odd }.$$

• Wavelet basis functions  $\psi_{mn}$  span  $\overline{\mathcal{W}}_m$ :

$$\psi_{mn}(x) := D^m T^n \psi(x)$$
$$(\psi_{mn}, \psi_{m'n'}) = \delta_{mm'} \delta_{nn'} \qquad (\psi_{mn}, \phi_{mn'}) = 0$$

# The Scaling Coefficients

• The Daubechies' scaling coefficients, *h<sub>l</sub>* are constrained by:

$$\int \psi(x)x^{l} = 0; \quad l = 0, 1, \cdots, K - 1$$

It follows that:

$$\int \psi_{mn}(x)x^{l} = 0; \quad l = 0, 1, \cdots, K - 1$$

# The Scaling Coefficients

• The  $h_l$  are the solution of:

$$\sum_{l=0}^{2K-1} h_l = \sqrt{2} \qquad \sum_{l=0}^{2K-1} h_l h_{l-2n} = \delta_{n0}$$

$$\sum_{l=0}^{2K-1} l^m (-)^l h_{k-l} = 0 \qquad m = 0, \cdots, K-1$$

• The solutions for K = 1, 2, 3 are:

# **Daubechies Scaling Coefficients**

| $h_l$ | K=1          | K=2                      | K=3                                                     |
|-------|--------------|--------------------------|---------------------------------------------------------|
| $h_0$ | $1/\sqrt{2}$ | $(1+\sqrt{3})/4\sqrt{2}$ | $(1+\sqrt{10}+\sqrt{5+2\sqrt{10}})/16\sqrt{2}$          |
| $h_1$ | $1/\sqrt{2}$ | $(3+\sqrt{3})/4\sqrt{2}$ | $(5+\sqrt{10}+3\sqrt{5+2\sqrt{10}})/16\sqrt{2}$         |
| $h_2$ | 0            | $(3-\sqrt{3})/4\sqrt{2}$ | $(10 - 2\sqrt{10} + 2\sqrt{5 + 2\sqrt{10}})/16\sqrt{2}$ |
| $h_3$ | 0            | $(1-\sqrt{3})/4\sqrt{2}$ | $(10 - 2\sqrt{10} - 2\sqrt{5 + 2\sqrt{10}})/16\sqrt{2}$ |
| $h_4$ | 0            | 0                        | $(5 + \sqrt{10} - 3\sqrt{5 + 2\sqrt{10}})/16\sqrt{2}$   |
| $h_5$ | 0            | 0                        | $(1+\sqrt{10}-\sqrt{5+2\sqrt{10}})/16\sqrt{2}$          |

# Computation of $\phi(x)$ and $\psi(x)$

•  $\phi(x)$  at integer points can be obtained by solving:

$$\phi(n) = \sum_{l=0}^{2K-1} \sqrt{2h_l}\phi(2n-l) \qquad \sum_n \phi(n) = 1$$

• The support of  $\phi(x) \in [0, 2K - 1]$ .

 $\phi(n) = 0 \qquad n \le 0 \quad \text{or} \quad n \ge 2K - 1$ 

# Computation of $\phi(x)$ and $\psi(x)$

• The scaling equation generates  $\psi$  and  $\phi$  recursively at all dyadic rationals:





## K = 3 Wavelet and Scaling Function



Wavelets in Scattering Calculations - p.22/5

## **Approximation Spaces**

• There are two approximation spaces related by a fast orthogonal transformation (o(N)).

 $\mathcal{V}_m \Leftrightarrow \mathcal{W}_{m+1} \oplus \mathcal{W}_{m+2} \oplus \cdots \oplus \mathcal{W}_{m+k} \oplus \mathcal{V}_{m+k}$ 

with orthonormal bases

# Local Polynomials

$$L^{2}(R) = \cdots \oplus \mathcal{W}_{m-2} \oplus \mathcal{W}_{m-1} \cdots \oplus \mathcal{W}_{m} \oplus \mathcal{V}_{m}$$
$$\int \psi_{mn} x^{l} = 0 \qquad \forall m, n; \quad l = 0, 1, \cdots, K-1$$
$$\Downarrow$$
$$\downarrow$$
$$\vdots \qquad x^{l} = \sum_{n} c_{n} \phi_{mn}(x) \qquad \text{pointwise}$$

Wavelets in Scattering Calculations - p.24/5

# Unit Translates



Wavelets in Scattering Calculations - p.25/5

# **Constant Function**



## Linear Function



Wavelets in Scattering Calculations - p.27/5

#### Wavelet Numerical Analysis

- The fractal nature of wavelets makes standard numerical techniques ineffi cient.
- The scaling equation replaces all numerical methods.
- The key elements of "wavelet numerical analysis" are the compactness of the basis functions and the ability to exactly compute moments:

$$\langle x^m \rangle_\phi := (x^m, \phi) = \int x^m \phi(x) dx$$

## Moments and Scaling

• The normalization condition gives:

$$\langle x^0 \rangle_\phi = 1$$

The scaling equation gives:

$$\langle x^k \rangle_{\phi} = (x^k, \phi) = (Dx^k, D\phi) = \frac{1}{2^{k+1/2}} \sum_{l=0}^{2K-1} h_l(x^k, T^l \phi) = 0$$

$$\sum_{l=0}^{2K-1} \sum_{n=0}^{k} \binom{k}{n} h_l l^{k-n} \langle x^k \rangle_{\phi}$$

These equations recursively determine all moments.

#### Moments and Scaling

Similar methods can be used to get exact values for

 $(x^{l}, \phi_{mn}), \quad (x^{l}, \psi_{mn})$   $(\frac{d^{l}\phi_{mn}}{dx^{l}}, \phi_{m'n'}), \quad (\frac{d^{l}\phi_{mn}}{dx^{l}}, \psi_{m'n'}), \quad (\frac{d^{l}\psi_{mn}}{dx^{l}}, \phi_{m'n'}), \quad (\frac{d^{l}\psi_{mn}}{dx^{l}}, \psi_{m'n'})$   $(\phi_{mn}, \phi_{m'l'}\phi_{m''l''}) \cdots$   $\{x_{k}, w_{k}\}_{k=1}^{N}; \quad \int \phi(x)P_{2N-1}(x)dx = \sum_{l=1}^{N} P_{2N-1}(x_{l})w_{l}$ 

#### **One-Point Quadrature**

- For the Daubechies wavelets  $\langle x^1 \rangle_{\phi}^2 = \langle x^2 \rangle_{\phi}$
- This means that

$$\int P(x)\phi(x)dx = P(\langle x^1 \rangle_{\phi})$$

is exact for  $P(x) = a + bx + cx^2$ .

• The Daubechies K = 3 wavelets provide local pointwise representations of these polynomials.

# **Scattering Singularities**

$$I_n := \left(\frac{1}{x \pm i0^+}, T^n \phi\right)$$

$$I_n := (D\frac{1}{x \pm i0^+}, DT^n\phi)$$

$$= (D\frac{1}{x\pm 0^+}, T^{2n}D\phi) = \sqrt{2}\sum_{l=0}^{2K-1} h_l I_{2n+l}$$

$$\mp i\pi = \int_{-a}^{a} \frac{1}{x \pm i0^{+}} = \sum I_{n} + \text{endpoint terms}$$

$$I_n = \frac{1}{n} \sum_{m=0}^{\infty} \frac{(-1)^m}{n^m} (x^m, \phi) \approx \frac{1}{n} \sum_{m=0}^{m_{max}} \frac{(-1)^m}{n^m} \langle x^m \rangle \quad \text{n large}$$

Wavelets in Scattering Calculations - p.32/5

# **Scattering Singularities**

- These linear equations can be solved for  $I_n$ ;
- The partial moments needed to treat endpoint integrals can be determined exactly.
- The method can also be applied to integrate the logarithmic singularities, and moving singularities.

# Integrals over the Singularity

• Example of calculated singular  $I_n$ 's for the Daubechies K = 3 scaling function:

K=3 
$$I_k^{\pm}$$

 $\begin{array}{ll} I^{\pm}_{-1} & -0.1717835441734 & \mp i \ 4.041140804162 \\ I^{\pm}_{-2} & -1.7516314066967 & \pm i \ 1.212142562305 \\ I^{\pm}_{-3} & -0.3025942645356 & \mp i \ 0.299291822651 \\ I^{\pm}_{-4} & -0.3076858066180 & \mp i \ 0.013302589081 \end{array}$ 

- The matrix representation of a smooth kernel in the "wavelet basis" is the sum of a sparse matrix and a matrix with small norm:

$$K_{mn} = \int \phi_n(x) K(x, y) \phi_m(y) dx dy = S_{mn} + \Delta_{mn} \qquad \|\Delta\| < \epsilon$$

• The "wavelet approximation" is to ignore  $\Delta_{mn}$ .

- There is an algorithm for implementing the wavelet transform that treats the coefficients  $h_l$  and  $g_l$  as coefficients of a filter.
- The wavelet transform is o(N), which is faster than a fast Fourier transform.

$$f(x) = \sum_{n} c_{mfn} \phi_{mfn}(x) = \sum_{n} c_{mcn} \phi_{mcn}(x) + \sum_{mn} d_{mn} \psi_{mn}(x)$$

$$\begin{pmatrix} c_{-3,1} \\ c_{-3,2} \\ c_{-3,3} \\ c_{-3,4} \\ c_{-3,5} \\ c_{-3,6} \\ c_{-3,7} \\ c_{-3,8} \end{pmatrix} \rightarrow \begin{pmatrix} c_{-2,1} \\ c_{-2,2} \\ c_{-2,3} \\ d_{-2,1} \\ d_{-1,1} \\ d_{-1,2} \\ d_{-2,1} \\ d_{-2,2} \\ d_{-2,3} \\ d_{-2,4} \end{pmatrix} \rightarrow \begin{pmatrix} c_{-1,1} \\ c_{-1,2} \\ d_{-1,1} \\ d_{-1,2} \\ d_{-2,1} \\ d_{-2,2} \\ d_{-2,3} \\ d_{-2,4} \end{pmatrix} \rightarrow \begin{pmatrix} c_{-0,1} \\ d_{-0,1} \\ d_{-1,1} \\ d_{-1,2} \\ d_{-2,1} \\ d_{-2,2} \\ d_{-2,3} \\ d_{-2,4} \end{pmatrix}$$



Vavelets in Scattering Calculations – p.38/5

# Solving the L-S Equation

- Choose a finest resolution  $\Delta = 1/2^{j} \Rightarrow \mathcal{V}_{j}$  (we use K = 3).
- Transform  $[0, \infty]$  to a finite interval with the singularity at zero.
- Expand the solution in the scaling basis on  $\mathcal{V}_j$ .
- Use the one point quadrature for the regular integrals and the  $I_n$  for the singular integrals.
- Use the fast-wavelet transform to transform to the equivalent wavelet basis.
- Discard terms with small matrix elements.
- Solve the resulting sparse-matrix linear equation.
- Invert the solution using the fast wavelet transform.
- Insert the solution vector back in the integral equation using the one-point quadrature rule and the  $I_n$ .
- The resulting solution does NOT require the computation of the basis functions.

### Model - Malfliet-Tjon V

$$H = \frac{p^2}{2m} + V$$
$$V(r) = \lambda_1 \frac{e^{-\mu_1 r}}{r} + \lambda_2 \frac{e^{-\mu_2 r}}{r}$$

 $\frac{1/2m}{41.47 \text{ MeV fm}^2} - \frac{\lambda_1}{-570.316 \text{ MeV fm}} \frac{\mu_1}{1.55 \text{ fm}^{-1}} \frac{\lambda_2}{1438.4812 \text{ MeV fm}} \frac{\mu_2}{3.11 \text{ fm}^{-1}}$ 

• example: *s*-wave half on-shell K-matrix

Wavelets in Scattering Calculations - p.40/5

# Structure of equation:

$$f(x) = g(x) + \int \frac{K(x,y)}{y} f(y) dy$$
$$f = \sum f_n \phi_n(x) \qquad x_n = \langle x^1 \rangle_{\phi_n}$$
$$f_m = g(x_m) + \sum_n \left( \frac{K(x_m, y_n) - K(x_m, 0)}{y_n} + K(x_m, 0) I_n \right) f_n$$
$$f(x) = g(x) + \sum_n \left( \frac{K(x, y_n) - K(x, 0)}{y_n} + K(x, 0) I_n \right) f_n$$

Wavelets in Scattering Calculations - p.41/5

## Transformed Kernel



#### **Transformed K-matrix**



#### Why does it work?

• Consider the expansion of f(x) in the wavelet basis

$$f(x) = \sum_{n=-\infty}^{\infty} d_n \phi_{mn}(x) + \sum_{n=-\infty}^{\infty} \sum_{l=m-k}^{m} c_{ln} \psi_{ln}(x);$$
$$c_{ln} = \int_{2^l n}^{2^l (n+2K-1)} \psi_{ln}(x) f(x) dx$$

•  $c_{ln}$  vanishes if f(x) can be represented by a polynomial of degree K on  $[2^l n, 2^l (n + 2K - 1)]$ .

# K = 3, E = 10 MeV

- -J N series on-shell interpolated on-shell
- 3 32 -125.051451 -125.034060
- 4 64 -125.007967 -125.006049
- 5 128 -125.005171 -125.004948
- 6 256 -125.004847 -125.004820
- 7 512 -125.004806 -125.004803

Wavelets in Scattering Calculations - p.45/5

## K = 3, E = 80 M eV

| -J | Ν | series on-shell | interpolated | on shell |
|----|---|-----------------|--------------|----------|
|    |   |                 |              |          |

3 32 -6.44161445 -6.43154124

4 64 -6.42926712 -6.42868443

5 128 -6.42842366 -6.42840177

6 256 -6.42837147 -6.42837210

7 512 -6.42836848 -6.42836877

# Sparse Matrix Convergence

#### K=3, E=10 MeV, J=-7

| $\epsilon$ | percent | on-shell value | on-shell error               | mean-square error            |
|------------|---------|----------------|------------------------------|------------------------------|
| 0          | 100     | -125.00480     | 0                            | 0                            |
| $10^{-9}$  | 17.78   | -125.00480     | $1.05 \times 10^{-8}$        | $2.56 \times 10^{-8}$        |
| $10^{-8}$  | 11.38   | -125.00480     | <b>5.14</b> $\times 10^{-8}$ | $2.44 \times 10^{-7}$        |
| $10^{-7}$  | 6.6     | -125.00475     | <b>4.49</b> $\times 10^{-7}$ | <b>1.88</b> $\times 10^{-6}$ |
| $10^{-6}$  | 3.76    | -125.00269     | <b>1.69</b> $\times 10^{-5}$ | $2.08 \times 10^{-5}$        |
| $10^{-5}$  | 2.14    | -124.99030     | .000116                      | .000228                      |
| $10^{-4}$  | 1.24    | -124.85112     | .00123                       | .00217                       |
| $10^{-3}$  | .72     | -123.82508     | .00944                       | .0117                        |
| $10^{-2}$  | .38     | -125.25766     | .00202                       | .128                         |

# Sparse Matrix Convergence

#### K=3, E=80, MeV J=-7

| $\epsilon$ | percent | on-shell value | on-shell error                 | mean-square error             |
|------------|---------|----------------|--------------------------------|-------------------------------|
| 0          | 100     | -6.4283688     | 0                              | 0                             |
| $10^{-9}$  | 19.99   | -6.4283688     | <b>1.52</b> ×10 <sup>-10</sup> | $1.20 \times 10^{-8}$         |
| $10^{-8}$  | 12.94   | -6.4283690     | $3.44 \times 10^{-8}$          | $2.06 \times 10^{-7}$         |
| $10^{-7}$  | 7.42    | -6.4283703     | $2.33 \times 10^{-7}$          | $1.87 \times 10^{-6}$         |
| $10^{-6}$  | 4.08    | -6.4283333     | $5.51 \times 10^{-6}$          | <b>4.38</b> ×10 <sup>-5</sup> |
| $10^{-5}$  | 2.22    | -6.4278663     | <b>7.82</b> ×10 <sup>-5</sup>  | .000994                       |
| $10^{-4}$  | 1.21    | -6.4244211     | .000614                        | .00845                        |
| $10^{-3}$  | .67     | -6.4154328     | .00201                         | .0229                         |
| $10^{-2}$  | .34     | -6.2935398     | .021                           | .102                          |

## Conclusions

- Wavelet bases can be used to accurately solve the equations of scattering theory in momentum space.
- A new type of numerical analysis, called "wavelet numerical analysis", which is based on scaling and support properties of the basis functions, is used for accurate numerical calculations.
- Wavelet "numerical analysis" leads to an accurate treatment of the scattering singularities.
- The wavelet transform leads to a sparse-matrix representation of the kernel. It automatically identifi es "irrelevant" basis functions.
- Our calculations show that a 96% reduction in the size of the matrix results in mean square error of about 1 part in  $10^5$ .
- We have successfully extended the method for two-body scattering without partial waves.
- We are currently applying the method to three-body problems with moving singularities.

# 2 D Basis Functions



# 2 D Sparse Matrix

