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1 Continuous Wavelets

We begin by considering the continuous wavelet transform. The continuous
wavelet transform is an alternate representation of a function, like a Fourier
transform. Both continuous and discrete wavelets are built from a single
function called a mother function. The notation, ψ(x), is used to denote
the mother function of a wavelet.

Wavelets are built from translations and scale transformations of the
mother function. Translations and scale transformations of ψ(x) are defined
by:

ψt,s(x) := |s|−pψ(
x− t
s

). (1)

The factor p is a parameter. The functions ψt,s(x) are the wavelets associ-
ated with the mother function ψ(x). The wavelet ψt,s(x) has two continuous
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parameters. We investigate conditions on the mother function that allow one
to expand any function in terms of wavelets.

To choose the parameter p note that∫ ∞
−∞

∣∣∣∣|s|−pψ(
x− t
s

)
∣∣∣∣q dx =

|s|1−qp
∫ ∞
−∞
|ψ(u)|qdu. (2)

It follows that if p = 1/q the Lq-norm of ψ

‖M‖q :=
(∫ ∞
−∞
|M(u)|qdu

)1/q

(3)

is preserved under scale transformations. Thus for p = 1/q:

‖ψ‖q = ‖ψt,s‖q for all s, t. (4)

The continuous wavelet transform of f is defined by taking the scalar
product of f with the wavelet ψts:

f̂(s, t) :=
∫ ∞
−∞

ψ∗s,t(x)f(x)dx = (ψs,t, f) (5)

where asterik ′∗′ indicates the complex conjugate for a complex mother func-
tion. In what follows a f̂ is used to indicate the wavelet transform of a
function f .

Parseval’s identity for the Fourier transform implies that the wavelet
transform can be expressed in terms of the original function and the mother
function or alternatively in terms of their Fourier transforms:

f̂(s, t) = (ψs,t, f) = (ψ̃s,t, f̃) (6)

where the ∼ indicates the Fourier transform defined by:

ψ̃s,t(k) =
1√
2π

∫ ∞
−∞

e−ikxψs,t(x)dx (7)

f̃(k) =
1√
2π

∫ ∞
−∞

e−ikxf(x)dx. (8)
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Note that Parseval’s identity states (f, f) = (f̃ , f̃), however using this
with f = g + h and f = g + ih gives

(g, g) + (h, h) + (g, h) + (h, g) = (g̃, g̃) + (h̃, h̃) + (g̃, h̃) + (h̃, g̃) (9)

and

(g, g) + (h, h) + i(g, h)− i(h, g) = (g̃, g̃) + (h̃, h̃) + i(g̃, h̃)− i(h̃, g̃) (10)

which, using the identities (g, g) = (g̃, g̃) and (h, h) = (h̃, h̃), gives the solu-
tion to (9) and (10):

(g, h) = (g̃, h̃) (11)

which is the form of Parseval’s identity used in (6).
The Fourier transform of ψs,t(x) can be expressed in terms of the Fourier

transform of the mother function:

ψ̃s,t(k) :=
1√
2π

∫ ∞
−∞

e−ikx|s|−pψ(
x− t
s

)dx =

1√
2π

∫ ∞
−∞

e−iksue−ikt|s|−p+1ψ(u)du =

|s|1−pe−iktψ̃(sk). (12)

The inner product of the Fourier transforms gives

f̂(s, t) = (ψ̃s,t, f̃) =∫ ∞
−∞

ψ̃∗s,t(k)f̃(k)dk∫ ∞
−∞
|s|1−peiktψ̃∗(sk)f̃(k)dk. (13)

Multiply both sides of (13) by e−ik
′t and integrate over t to get

1

2π

∫ ∞
−∞

e−ik
′t(ψ̃s,t, f̃)dt =

|s|1−pψ̃∗(sk′)f̃(k′). (14)
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The representation of the delta function:

1

2π

∫ ∞
−∞

e−i(k
′−k)tdt = δ(k′ − k). (15)

was used to get (14).
The right had side of (14) is a product of the Fourier transform of the

original function with another function. We can’t divide by the function
ψ̃∗(sk′) because it might be zero for some values of k′. Instead, the trick is
to eliminate it using the variable s.

Multiply both sides of this equation by ψ̃(sk′) and a yet to be determined
weight function w(s) and integrate over s. This gives

1

2π

∫ ∞
−∞

w(s)ds
∫ ∞
−∞

dte−ik
′tψ̃(sk′)f̂(s, t) =

f̃(k′)
∫ ∞
−∞

w(s)ds|s|1−pψ̃∗(sk′)ψ̃(sk′) = f̃(k′)Y (k′) (16)

where
Y (k′) =

∫ ∞
−∞

dsw(s)|s|1−p|ψ̃(sk′)|2. (17)

In order to be able to extract the Fourier transform of the original func-
tion, it is sufficient that Y (k′) satisfies 0 < A ≤ Y (k′) ≤ B < ∞ for some
numbers A and B. In this case

f̃(k) =
1

2πY (k)

∫ ∞
0

w(s)ds
∫ ∞
−∞

dte−iktψ̃(sk)f̂(s, t). (18)

It is convenient to rewrite this in terms of the wavelet basis:

f̃(k) =
1

2πY (k)

∫ ∞
−∞

w(s)|s|p−1ds
∫ ∞
−∞

dtψ̃s,t(k)f̂(s, t). (19)

We define the dual wavelet by

ψ̃s,t(k) =
1

2πY (k)
ψ̃s,t(k). (20)

The dual wavelet is distinguished from the ordinary wavelet by having the
parameters s, t appearing as superscripts rather than subscripts.
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The inversion formula can be expressed in terms of the dual wavelet by

f̃(k) =
∫ ∞
−∞

w(s)|s|p−1ds
∫ ∞
−∞

dtψ̃s,t(k)f̂(s, t). (21)

In order to recover the original function, take the inverse Fourier trans-
form of this expressions:

f(x) =
1√
2π

∫ ∞
−∞

dkeikxf̃(k) =

∫ ∞
−∞

w(s)|s|p−1ds
∫ ∞
−∞

dtψs,t(x)f̂(s, t) (22)

where

ψs,t(x) =
1√
2π

∫ ∞
−∞

dkeikxψ̃s,t(k). (23)

In general this is a tedious procedure because the dual wavelet ψs,t(x) must
be computed using (20) and (23) for each value of s and t. If the dual
wavelet also had a mother function, then it would only be necessary to Fourier
transform the “dual mother” and then all of the other Fourier transforms
could be expressed in terms of the transform of the “dual mother”.

The first step in constructing a “dual mother” is to investigate the struc-
ture of the dual wavelets in x-space:

ψs,t(x) =
1√
2π

∫ ∞
−∞

dkeikxψ̃s,t(k) =

1√
2π

∫ ∞
−∞

dkeikx
1

2πY (k)
|s|1−pe−iktψ̃(sk) =

ψs,0(x− t)
where

ψs,0(x) =
1√
2π

∫ ∞
−∞

dkeikx
1

2πY (k)
|s|1−pψ̃(sk).

This shows for a single scale the dual wavelet and its translation can be
expressed in terms of a single function. This is not necessarily true for the
dual wavelet and the scaled quantity.

ψs,0(x) =
1√
2π

∫ ∞
−∞

dkeikx
1

2πY (k)
|s|1−pψ̃(sk) =
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ψs,0(x) =
1√
2π

∫ ∞
−∞

dueiu
x
s

1

2πY (u/s)
|s|−pψ̃(u).

This fails to be a rescaling of a single function because of the s dependence
in the quantity Y (u). It follows that if a weight function w(s) is chosen so
Y (u/s) = Y (u), the dual wavelet will satisfy

ψs,0(x) =
1√
2π

∫ ∞
−∞

dueiu
x
s

1

2πY (u/s)
|s|−pψ̃(u) = |s|−pψ1,0(x/s). (24)

Note that in this case Y (u) is a constant which we denote by Y . The function
ψ1,0(x) serves as the dual mother wavelet.

To determine w(s) note that

Y (sk) =
∫ ∞
−∞

dtw(t)|t|1−p|ψ̃(tsk)|2.

Let t′ = st to get

Y (sk) =
∫ ∞
−∞

dtw(t)|t|1−p|ψ̃(tsk)|2 =

|s|p−2
∫ ∞
−∞

dt′w(t′/s)|t|′1−p|ψ̃(t′k)|2.

This will equal Y (k) provided

w(t′) = |s|p−2w(t′/s) w(s) = |s|p−2w(1).

With this choice

Y (k) = Y = w(1)
∫ ∞
−∞

dt

|t|
|ψ̃(t)|2.

Assuming this choice of weight the admissibility condition becomes

0 < A ≤ Y ≤ B <∞.

Having computed the constant Y it is now possible to write down an
explicit expression for the dual mother wavelet:

ψs,0(x− t) =
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|s|−p√
2π

∫ ∞
−∞

dueiu
(x−t)

s
1

2πY
ψ̃(u)

Letting k = u/s

1√
2π

∫ ∞
−∞

dk
1

2πY
|s|1−peik(x−t)ψ̃(ks)

1√
2π

∫ ∞
−∞

dk
1

2πY
eikxψ̃s,t(k).

This has the form

ψs,t(x) =
1

2π

1

Y
ψs,t(x). (25)

Thus the inversion procedure can be summarized by the formulas:

f(x) =
∫ ∞
−∞
|s|2p−3ds

∫ ∞
−∞

dtψs,t(x)f̂(s, t) (26)

Y =
∫ ∞
−∞

dt

|t|
|ψ̃(t)|2 (27)

ψs,t(x) =
ψs,t(x)

2πY
(28)

ψs,t = |s|−pψ(
x− t
s

). (29)

The mother function must satisfy 0 < Y < ∞. This requires that the
Fourier transform of the mother function vanishes at the origin. This is
equivalent to saying that the integral of the mother function is zero. Using
the representation for the wavelet transform gives a representation of a delta
function:

δ(x− y) =∫ ∞
−∞
|s|2p−3ds

∫ ∞
−∞

dtψs,t(x)ψ∗s,t(y) =

1

2πY

∫ ∞
−∞
|s|2p−3ds

∫ ∞
−∞

dtψs,t(x)ψ∗s,t(y).

We can also use this to formulate a Parseval’s identity for wavelets

(f, f) =
1

2πY

∫ ∞
−∞
|s|2p−3ds

∫ ∞
−∞

dt|f̂(s, t)|2. (30)
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Consider the example of the Mexican hat wavelet. The mother function
is

ψ(x) =
1√
2π

(x2 − 1)e−x
2/2.

To work with the Mexican hat mother function it is useful to derive
general properties of Gaussian integrals:∫ ∞

−∞
e−ax

2+bx+cdx =

∫ ∞
−∞

e−a(x− b
2a

)2+ b2

4a
+cdx.

Change variables to y =
√
a(x− b

2a
) to obtain:

e
b2

4a
+c

√
a

∫ ∞
−∞

e−y
2

dy =

√
π

a
e

b2

4a
+c.

This can be used to compute the Fourier transform of the Mexican hat
mother function:

ψ̃(k) =
1√
2π

∫ ∞
−∞

e−ikxψ(x)dx =

1

2π

∫ ∞
−∞

(x2 − 1)e−x
2/2−ikxdx

To do the integral insert a parameter a which will be set to 1 at the end of
the calculation:

(−2
d

da
− 1)

1

2π

∫ ∞
−∞

e−x
2a/2−ikxdx =

(−2
d

da
− 1)

1

2π

√
2π

a
e−

k2

2a =

(
1

a
− k2

a2
− 1)

√
1

2πa
e−

k2

2a .

In the limit that a→ 1 this becomes

−
√

1

2π
k2e−

k2

2 .
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Using this expression it is possible to calculate the coefficient Y

Y =
∫ ∞
−∞

dk

|k|
|ψ̃(k)|2 =

∫ ∞
−∞

dk

|k|
|ψ̃(k)|2 =

1

2π

∫ ∞
−∞
|k|3dke−k2 =

1

π

∫ ∞
0

k3dke−k
2

.

Inserting a parameter a which will eventually be set to 1 gives

1

2π
(− d

da
)
∫ ∞

0
2kdke−ak

2

=

1

2π
(− d

da
)
1

a

∫ ∞
0

dve−v =

1

2π
.

This satisfies the essential inequality 0 < Y <∞ which ensures the admissi-
bility of the Mexican hat mother function.

The expression for the wavelet transform and its inverse can be written
as:

f̂(s, t) = |s|−p
∫ ∞
−∞

dx
1√
2π

((
x− t
s

)2 − 1)e−(x−t
s

)2/2f(x) =

|s|1−p
∫ ∞
−∞

du
1√
2π

(u2 − 1)e−u
2/2f(su+ t).

where x = su+ t
The inverse is formally given by

f(x) =
∫ ∞
−∞
|s|2p−3ds

∫ ∞
−∞

dt
ψst(x)

2πY
f̂(s, t) =

∫ ∞
−∞
|s|2p−3ds

∫ ∞
−∞

dt
1√
2π
|s|−p((x− t

s
)2 − 1)e−(x−t

s
)2/2f̂(s, t)
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1√
2π

∫ ∞
−∞
|s|p−3ds

∫ ∞
−∞

dt((
x− t
s

)2 − 1)e−(x−t
s

)2/2f̂(s, t)

1√
2π

∫ ∞
−∞
|s|p−3ds

∫ ∞
−∞

du(u2 − 1)e−u
2/2f̂(s, su+ x)

where t = su+ x.
Initially we were concerned because we were representing an arbitrary

function by a linear superposition of functions that all had zero integral. We
could not understand how wavelets could be used to represent a function
with non-zero integral.

We tested this by computing the wavelet transform and its inverse for
a Gaussian function with the Mexican hat wavelet. The original Gaussian
function was recovered.

The resolution of this paradox has to do with the difference between L1

and L2 convergence. The wavelet transform has a vanishing L1 norm, but
the L2 norm is non-zero.

2 Scaling Functions and Wavelets

The concept of scaling functions is most easily understood using Haar wavelets
(these are made out of simple box functions).

The Haar scaling function is defined by

φ(x) =


0 x ≤ 0
1 0 < x ≤ 1
0 x > 1

. (31)

Note that it is normalized so

(φ, φ) :=
∫ ∞
−∞

φ∗(x)φ(x)dx =
∫ 1

0
φ∗(x)dx = 1. (32)

The operations of translation and dilatation are used extensively in the
study of wavelets. Define the unit translation operator T by

(Tχ)(x) = χ(x− 1). (33)

This operator moves χ(x) to the right by 1 unit. The translation operator
has the following properties:

(Tψ, Tχ) =
∫ ∞
−∞

ψ∗(x− 1)χ(x− 1)dx = (34)
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changing variables y = x− 1 gives:∫ ∞
−∞

ψ∗(y)χ(y)dy = (ψ, χ) (35)

or
(Tψ, Tχ) = (ψ, χ). (36)

If A is a linear operator its adjoint A† is defined by the relation

(ψ,A†χ) = (Aψ, χ). (37)

It follows that

(ψ, T †χ) = (Tψ, χ) =
∫ ∞
−∞

ψ∗(x− 1)χ(x)dx. (38)

Changing variables to y = x− 1 gives

(ψ, T †χ) =
∫ ∞
−∞

ψ∗(y)χ(y + 1)dy (39)

or
(T †χ)(x) = χ(x+ 1). (40)

Since
(ψ, χ) = (Tψ, Tχ) = (ψ, T †Tχ) (41)

it follows that T † = T−1. An operator whose adjoint is its inverse is called
unitary. Unitary operators preserve inner products.

It follows from the definition of the Haar scaling function φ(x) that

(Tmφ, T nφ) = (φ, T n−mφ) =
∫ ∞
−∞

φ∗(x)φ(x− n+m)dx =

∫ 1

0
φ(x− n+m)dx = δnm (42)

This means the functions

φm(x) := (T nφ)(x) = φ(x− n) (43)

are orthonormal. There are an infinite number of these functions as n :
−∞→∞ in integer s.pdf.
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Define V0 to be the subspace of the space of square integrable functions
of the form

f(x) =
∞∑

n=−∞
fnφn(x) =

∞∑
n=−∞

fn(T nφ)(x) (44)

where the square integrability requires that the coefficients satisfy

∞∑
n=−∞

|fn|2 <∞. (45)

For the Haar scaling functions V0 is the space of square integrable func-
tions that are piecewise constant on each unit interval. Note that while there
are an infinite number of functions in V0, it is a small subspace of the space
of square integrable functions.

In addition to translations, define the linear operator D corresponding to
scale transformations:

(Dχ)(x) =
1√
2
χ(x/2). (46)

When this is applied to the Haar scaling function it gives

(Dφ)(x) =


0 x ≤ 0

1√
2

0 < x ≤ 2

0 x > 2

(47)

This function has the same box structure, except it is twice as wide as
the original scaling function and shorter by a factor of

√
2. Note that the

normalization ensures

(Dψ,Dχ) =
∫ ∞
−∞

1

2
ψ∗(x/2)χ(x/2)dx = (48)

setting y = x/2, ∫ ∞
−∞

2

2
ψ∗(y)χ(y)dy = (ψ, χ) (49)

or
(Dψ,Dχ) = (ψ, χ). (50)

To compute the adjoint of D note that

(ψ,D†χ) = (Dψ, χ) =
∫ ∞
−∞

1√
2
ψ∗(x/2)χ(x)dx. (51)
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Setting y = x/2 ∫ ∞
−∞

ψ∗(y)
√

2χ(2y)dy (52)

implies that
(D†χ)(x) =

√
2χ(2x). (53)

This shows that D† = D−1 with D also unitary.
Define the functions

φmn(x) = (Dmφn)(x) = 2−m/2φ(2−mx− n) = 2−m/2φ(2−m(x− 2mn)). (54)

where the left index indicates the scale and the right index indicates the
number of integer translations. It follows that for fixed m

(φmn, φmk) = (Dmφn, D
mφk) = (φn, D

m−mφk) = (φn, φk) = δnk (55)

This shows that the functions φmn(x) for fixed m are orthonormal. We define
the subspace Vm of the square integrable functions to be those functions of
the form:

f(x) =
∞∑

n=−∞
fnφmn(x) =

∞∑
n=−∞

fn(DmT nφ)(x) (56)

where the square integrability requires that the coefficients satisfy

∞∑
n=−∞

|fn|2 <∞. (57)

In general the scaling function φ(x) is defined as the solution of a scaling
equation subject to a normalization condition. The scaling equation relates
the scaled scaling function, (Dφ)(x), to translates of the original scaling
function. The general form of this relation is

(Dφ)(x) =
∑

hlT
lφ(x) (58)

where hl are fixed constants, and the sum may be finite or infinite.
In general this equation cannot be solved analytically. In the Haar case

we can write down the solution realizing that the scaled box is stretched over
two adjacent boxes with a suitable reduction in height. It follows that:

Dφ(x) =
1√
2
φ(x/2) =

1√
2
φ(x) +

1√
2
Tφ(x) =
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1√
2
φ(x) +

1√
2
φ(x− 1). (59)

Here h0 = h1 = 1/
√

2. These coefficients are special to the Haar scaling
function. The best way to think of this is that the scaling function φ(x) is
the solution of the scaling equation up to normalization. The normalization
is fixed by ∫

φ(x)dx = 1.

To proceed a few additional relations are useful for future computations.
First note

DTψ(x) = Dψ(x− 1) =
1√
2
ψ(x/2− 1) =

1√
2
ψ(
x− 2

2
) = T 2Dψ(x) (60)

which leads to the operator relation

DT = T 2D. (61)

It follows from this equation that

Dφn(x) = DT nφ(x) = T 2nDφ(x) = T 2n(h0φ(x) + h1Tφ(x)) (62)

This shows that all of the basis elements in V1 can be expressed in terms of
basis elements in V0.

Specifically if ψ(x) ∈ V1 then

ψ(x) =
∞∑
−∞

dnφ1n(x) = (63)

∞∑
−∞

dnDφn(x) =
∞∑
−∞

(dnh0φ2n(x) + dnh1φ2n+1(x)) = (64)

∞∑
−∞

cnφn(x) (65)

where
c2n = dnh0 c2n+1 = dnh1. (66)
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It is easy to show that
∞∑
−∞
|cn|2 =

∞∑
−∞
|dn|2. (67)

What we have shown, as a consequence of the scaling equation, is the
inclusion

V0 ⊃ V1. (68)

Similarly, it is not difficult to show the inclusions

· · · V−k ⊃ V−k+1 ⊃ · · · ⊃ V0 ⊃ · · · Vk ⊃ Vk+1 · · · (69)

In this example these are all spaces of piecewise constant, square integrable
functions that are constant on segments that differ by powers of 2.

First note that as k → −∞ the approximation to f(x) given by

fk(x) =
∞∑

n=−∞
fknφkn(x) (70)

with
fkn =

∫ ∞
−∞

φ∗kn(x)f(x)dx (71)

is bounded by the upper and lower Riemann sums for s.pdf of width 2−k.
This is because the coefficients fkn are just average values of the function on
the appropriate sub-interval (to deal with the infinite interval it is best to
first consider functions that vanish outside of finite intervals and take limits).
Since the upper and lower Riemann sums converge to the same integral (when
the function is integrable) it follows that∫ ∞

−∞
|fk(x)− f(x)|dx < .pdfilon (72)

for sufficiently large −k. A related argument can be extended to get L2

convergence .
Similarly, as k → +∞, the width of φkn(x) grows like 2k while the height

falls off like 2−k/2. Again, if the function vanishes outside of a bounded
interval then for sufficiently large k there is only one (or two) φkn(x) that
are non-vanishing where the function is non-vanishing. In the case that only
one φkl overlaps the support of f(x)

fk(x) ∼ 2−k/2φkn0(x)
∫ ∞
−∞

f(x)dx (73)
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The integral of the square of this function ∼ 2−k → 0 as k →∞.
Note that ∫ ∞

−∞
fk(x)dx→

∫ ∞
−∞

f(x)dx (74)

as k →∞. This shows that this integral is finite in L1 but 0 in L2.
Define the projection operators

Pkf(x) =
∞∑

n=−∞
fknφkn(x) (75)

where
fkn =

∫ ∞
−∞

φ∗kn(x)f(x)dx. (76)

The above conditions can be stated in terms of these projectors:

lim
k→−∞

Pk = I (77)

lim
k→+∞

Pk = 0. (78)

We are now ready to construct wavelets. First recall the condition

V0 ⊃ V1. (79)

Let W1 be the space of vectors in the space V0 that are orthogonal to the
vectors in V1. We can write

V0 = V1 ⊕W1 (80)

This notation means that any vector in V0 can be expressed as a sum of two
vectors - one that is in V1 and one that is orthogonal to every vector in V1.

Note that the scaling equation implies that every vector in V1 can be
expressed as a linear combination of vectors in V0 using

Dφn(x) = h0φ2n(x) + h1φ2n+1(x) (81)

Clearly the functions that are orthogonal to these in V1 on the same interval
can be expressed in terms of the functions

ψ1n(x) := Dψn(x) = h0φ2n(x)− h1φ2n+1(x) =
1√
2

(φ2n(x)− φ2n+1(x)) (82)
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These are also the elements of V0 that satisfy

(Dψ1n, Dφl) = 0. (83)

Thus we have thatW1 is that space of square integrable functions of the form

f(x) =
∞∑

n=−∞
fnψ1n(x) (84)

with

f(x) =
∞∑

n=−∞
|fn|2 (85)

where we have used
(ψ1n, ψ1k) = δnk (86)

which follows from the definitions.
Similarly we can express Vl = Vl+1 ⊕ Wl+1 for all values of l. For the

special case l = −1 we define the mother wavelet as

ψ(x) = D−1(h0φ(x)− h1Tφ(x)) = (87)

h0

√
2φ(2t)− h1

√
2φ(2(t− 1) = (φ(2t)− φ(2(t− 1)) (88)

which is manifestly orthogonal to the scaling function. Translates of this
function define a basis for W0

ψn(x) = T nψ(x) = T nD−1(h0φ(x)− h1Tφ(x)) = (89)

D−1(h0φ2n(x)− h1φ2n+1(x)) (90)

It is simple to show that
(ψn, ψk) = δnk (91)

If we decompose every space we have for any k

V−k =W−k+1 ⊕ V−k+1 = (92)

W−k+1 ⊕W−k+2 ⊕ V−k+2 = (93)

W−k+1 ⊕W−k+2 ⊕ · · · ⊕Wl ⊕ Vl (94)

Note that unlike the V spaces, the Wk spaces are all mutually orthogonal,
since if k > l→Wk ⊂ Vl which is orthogonal to Wl by definition.
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If f(x) is any square integrable function the conditions

lim
k→−∞

Pk = I (95)

lim
k→+∞

Pk = 0 (96)

mean that for sufficiently large k and l that f(x) can be well approximated
by a function in

W−k+1 ⊕W−k+2 ⊕ · · · ⊕Wl (97)

This means that the function can be approximated by a linear combina-
tion of basis functions (wavelets) from each of the spaces Wr .

Basis functions for Wm are given by

ψmn(x) = DmT nψ(x) = Dm−1(h0φ2n(x)− h1φ2n+1(x)) (98)

That these are a basis with the required properties is easily shown by showing
that these functions are orthogonal to Vm and can be used to recover the
remaining vectors in Vm−1.

The functions ψnl(x) satisfy

(ψnl, ψn′l′) = δnn′δll′ (99)

where the δnn′ follows from the orthogonality of the spaces Wn and Wn′ for
n 6= n′.

The δll′ follows from the unitarity of D and

(ψ, T nψ) = δn0. (100)

To summarize the important s.pdf one starts with a scaling equation of
the form:

Dφ(x) =
∑

hlT
lφ(x) (101)

where one is normally given only the coefficients hl. This equation is solved to
find the scaling function φ(x). This, along with translations and dilitations is
used to construct the spaces Vl. The scaling equation ensures the existence of
space Wk that can be used to build discrete orthonormal basis. The mother
wavelet is expressed in terms of the scaling function and the coefficients as

ψ(x) = D−1(h0φ(x)− h1Tφ(x)) (102)

which is more complicated for a general scaling equation.
In general the coefficients hl must satisfy constraints for the solution to

the scaling equation to exist.
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3 Scaling Functions II

In this section we introduce a more general treatment of scaling equations.
In general the scaling function is the solution of the scaling equation

Dφ(x) =
∑
l

hlT
lφ(x). (103)

In addition to the scaling equations we demand that integer translates of the
scaling functions are orthonormal

(φn, φm) = (T nφ, Tmφ) = (φ, Tm−nφ) = δmn (104)

and the initial scale is fixed by the normalization condition∫
φ(x)dx = 1 (105)

We investigate the consequences of these equations.
Using the definitions of the operators D and T the scaling equation be-

comes:
1√
2
φ(
x

2
) =

∑
hlφ(x− l). (106)

It can be put in the form

φ(x) =
∑
l

√
2hlφ(2x− l). (107)

The sums are assumed to be from −∞ → ∞. Finite sums are treated by
assuming that only a finite number of the hl’s are non zero.

The claim is that if this equation has a solution, it is unique up to an over-
all normalization factor. To investigate this claim take the Fourier transform
of both sides of equation (107) to get

1√
2π

∫ ∞
−∞

e−ikxφ(x)dx =
∑
l

√
2hl

1√
2π

∫ ∞
−∞

e−ikxφ(2x− l)dx. (108)

Changing variables x→ 2x− l gives

1√
2π

∫ ∞
−∞

e−ikxφ(x)dx =
∑
l

1√
2
hl

1√
2π

∫ ∞
−∞

e−i(k/2)(x+l)φ(x)dx. (109)
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or

φ̃(k) = φ̃(
k

2
)h̃(

k

2
) (110)

where

h̃(k) =
∑
l

hl√
2
e−ikl. (111)

This form of the scaling equation can be iterated n times to get:

φ̃(k) = φ̃(
k

2n
)

n∏
m=1

h̃(
k

2m
) (112)

This equation holds for any n provided the Fourier transforms exist. For
a finite n, an approximation can be made by a finite number of iterations of
the form

φ̃n(k) = φ̃n−1(
k

2
)h̃(

k

2
) (113)

for any starting function φ̃0(k). In the limit of large n the function φ̃m(k)
should converge to the scaling function. It is clear that this result is approx-
imately independent of the choice of starting function; it really depends on
the coefficients hl.

If the limit exists as n → ∞, and the scaling function is continuous in a
neighborhood of zero, then

φ̃(k) = lim
n→∞

φ̃(
k

2n
)
n∏
l=1

h̃(
k

2l
) =

φ̃(0)
∞∏
l=1

h̃(
k

2l
). (114)

If the infinite product converges, then we have an expression for the scal-
ing function, up to normalization, which is fixed by assigning a value to
φ̃(0).

The coefficients hl are not arbitrary. First note that setting k = 0 gives

1 =
∞∏
l=0

h̃(0) (115)

or

h̃(0) = 1 =
∑
l

hl√
2

(116)
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or ∑
l

hl =
√

2. (117)

This condition is clearly satisfied by the Haar wavelets. This is a necessary
condition on the scaling coefficients in order to have a solution to the scaling
equation.

Another condition is that is needed to make a multi-resolution analysis
is the orthogonality of the unit translates, (φn, φm) = δnm. This requires

2
∑
lk

h∗l hk

∫ ∞
−∞

φ∗(2x− 2n− l)φ(2x− 2m− k)dx =

2
∑
lk

h∗l hk

∫ ∞
−∞

φ∗(2x)φ(2x− 2(m− n)− (k − l))dx =

∑
lk

h∗l hk

∫ ∞
−∞

φ∗(x)φ(x− 2(m− n)− (k − l))dx

∑
l

h∗l hl−2(m−n) = δmn (118)

or equivalently ∑
l

h∗l−2mhl = δm0. (119)

This is trivially satisfied for the Haar wavelets.
Note that the assumption that h0 and h1 are the only non-zero coefficients

in the scaling equation uniquely give the Haar wavelets. To see this first note
conditions on the coefficients are

h0 + h1 =
√

2 (120)

h0h
∗
0 + h1h

∗
1 = 1. (121)

These equations have the unique real solution h0 = h1 = 1√
2

To see this write
hk = hkr + ihki for real hkr and hki. Inserting these in the equations gives

h0r + h1r =
√

2 (122)

h0i + h1i = 0 (123)

h0rh0r + h0ih0i + h1rh1r + h1ih1i = 1. (124)
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Note that since ∑
m

hn+2m =
∑
m

hn+2m+2k (125)

the m sum has two values according to whether n is even or odd:

he :=
∑
m

h2m ho :=
∑
m

h2m+1. (126)

This means that ∑
m,n

h∗nhn+2m =
∑
m

δm0 = 1 =

he
∑
n

h∗2n + ho
∑
n

h∗2n+1 = 1 (127)

or
h∗ehe + h∗oho = 1 (128)

We also have
he + ho =

√
2 (129)

Assuming that the coefficients hl are real these can be solved to get

he = ho =
1√
2
. (130)

These condition are useful checks and uniquely determine the Haar coeffi-
cients; but the essential equations are (117) and (119).

The other conditions that require some study are the ones relating the
scaling function to the mother function. The mother function satisfies

ψ(x) =
∑
n

√
2gnφ(2x− n). (131)

This and all of its translates should be orthogonal to the scaling function. In
terms of the coefficients:

(ψm, φ) =
∑
n,l

hlg
∗
n(φn−2m, φl)

∑
n,l

hlg
∗
nδn−2m,l

∑
n

hn−2mg
∗
n = 0 (132)
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for all m. We also need orthonormality of the translated mother function

(ψm, ψn) =
∑
l,k

glg
∗
k(φl−2m, φk−2n)

∑
k

gk−2(n−m)g
∗
k = δmn (133)

or equivalently
(ψm, ψ) =

∑
k

gk+2mg
∗
k = δm0 (134)

If we choose gk := (−1)khl−k where l is odd it follows that∑
k

gk−2(n−m)g
∗
k =

∑
k

(−)k−2(n−m)hl−k+2(n−m)(−)kh∗l−k =

∑
k

hk−2(n−m)h
∗
k = δmn (135)

where we have let l − k → k in the last term. It also follows that∑
n

hn−2mg
∗
n =

∑
n

hn−2m(−)nh∗l−n =

∑
n

hl−n′(−)l−n
′−2mh∗n′−2m = (−)l

∑
n

hl−n′(−)n
′
h∗n′−2m =

(−)l
∑
n

gn′h
∗
n′−2m (136)

Since l is odd, if hl = h∗l the sum is equal to its negative which shows that it
vanishes. [this appears to only work for real scaling coefficients]. The choice
of l is arbitrary - it simply involves moving the origin of the mother. Since
the mother is orthogonal to the translates of all of the father wavelets, it
does not matter where the origin is placed.

This shows that the coefficients hl, satisfying∑
l

hl =
√

2. (137)

∑
l

hl−2mh
∗
l = δm0 (138)

gk := (−1)khl−k l odd (139)
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gives a multi-resolution analysis, scaling function, and a mother function
using

φ(x) =
φ̃(0)√

2π

∫ ∞
−∞

eikx
∞∏
l=1

h̃(
k

2l
)dk =

φ̃(0)√
2π

∫ ∞
−∞

eikx
∞∏
l=1

∑
nl

hnl√
2
e−iknl/2

l

.

φ̃(0)
√

2πeikx
∑
n1

· · ·
∑
nm

· · ·
∞∏
l=1

hnl√
2
δ(x−

∞∑
l=1

nl/2
l).

This is not a very useful representation for computation, however it indi-
cates that if a scaling function has a finite number of coefficients hl then the
scaling function has support on

[0, (N − 1)(
1

2
+

1

4
+

1

8
· · ·)] = [0, N − 1]

where N = 2K is the number of scaling coefficients.
An alternative is to compute the scaling function exactly on a dense set

of points. This construction also starts from the scaling equation:

φ(x) =
∑
l

√
2hlφ(2x− l) (140)

Let x = n to get
φ(n) =

∑
l

√
2hlφ(2n− l) (141)

Let k = 2n− l gives
φ(n) =

∑
k

√
2h2n−kφ(k) (142)

Which gives the eigenvalue equation

φ(n) =
∑
m

Hnmφ(m) (143)

where
Hnm =

√
2h2n−m (144)

Eigenvectors of this equation with eigenvalue 1 are solutions of the scaling
function at integer points - up to normalization. Eigenvectors with eigenval-
ues other than 1 can be tossed out.
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Rather than solve the eigenvalue problems, one of the equations can be
replaced by the condition ∑

n

φ(n) = 1 (145)

which follows from the assumption that
∫
ψ(x)dx = 0. The support condition

implies that only a finite number of the φ(n) are non-zero. This condition is
independent of the orthonormality condition.

For the case of the N = 4(K = 2) Daubechies wavelets these equations
are

φ(0) =
√

2h0φ(0)

φ(1) =
√

2(h0φ(2) + h1φ(1) + h2φ(0))

φ(2) =
√

2(h1φ(3) + h2φ(2) + h3φ(1))

φ(3) =
√

2h3φ(3)

1 = φ(0) + φ(1) + φ(2) + φ(3)

The first and fourth equation give φ(0) = φ(3) = 0 (or h0 = h1 = 1/
√

2
which is the Haar solution). This also follows from the continuity of the
wavelets, since 0 and 3 are the boundaries of the support. The second and
third equations are eigenvalue equations(

φ(1)
φ(2)

)
=

( √
2h1

√
2h0√

2h2

√
2h3

)(
φ(1)
φ(2)

)
(146)

Instead of solving the eigenvalue problem for an eigenvector with eigenvalue
1, we use

φ(1) + φ(2) = 1 (147)

with
φ(1) =

√
2(h0φ(2) + h1φ(1))

to get
φ(1) =

√
2(h0(1− φ(1)) + h1φ(1))

which can be solved for

φ(1) =

√
2h0

1 +
√

2(h0 − h1)
(148)
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and

φ(2) =
1−
√

2h1

1 +
√

2(h0 − h1)
(149)

This gives exact values of the scaling function at integer points. It also
manifestly satisfies

∑
n φ(n) = 1. In this case there are only two non-zero

terms.
In order to construct construct the scaling function at the point x the first

step is to make a dyadic approximation to x. Let m be an integer that defines
a dyadic resolution. This means that we want the dyadic approximation to
satisfy the inequality |x− xapprox| < 2−m. For any m it is possible to find an
integer n such that

n

2m
≤ x <

n+ 1

2m
. (150)

Writing this as
n ≤ 2mx < n1 (151)

immediately gives
n := [2mx] (152)

where [] means greatest integer ≤ 2mx, which can be constructed by simply
assigning a floating point number to an integer variable.

Since the scaling function is continuous, for any .pdfilon > 0 we can find
a large enough m so

|φ(x)− φ(
n

2m
)| < .pdfilon

In what follows we evaluate φ( n
2m

) exactly. Let x = n
2m

. We also assume that
0 < n < 4 × 2m, otherwise φ(x) = 0 by the support condition. In order to
evaluate φ(x) note that the scaling equation gives:

φ(x) = φ(
n

2m
) =
√

2Dφ(
n

2m−1
) =

∑
l

√
2hl1T

l1φ(
n

2m−1
) =

∑
l

√
2hl1φ(

n

2m−1
− l1) =

∑
l

√
2hl1φ(

n− 2m−1l

2m−1
)

(153)
Repeating this process gives

φ(x) =
∑
l1,l2

√
2

2
hl1hl2φ(

n− 2m−1l1 − 2m−2l2
2m−2

) (154)
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Using the scaling equation m times gives

φ(x) =
∑

l1,l2···lm

√
2
m
hl1hl2 · · ·hmφ(n−2m−1l1−2m−2l2−· · · 2lm−1− lm) (155)

In this case the last expression is evaluated at integer values which gives (for
the Daubechies N=4 case):

φ(x) =∑
l1,l2···lm

cl1cl2 · · · cm×

[δn−2m−1l1−2m−2l2−···2lm−1−lm,1

√
2h0

1 +
√

2(h0 − h1)
+

δn−2m−1l1−2m−2l2−···2lm−1−lm,2
1−
√

2h1

1 +
√

2(h0 − h1)
] (156)

where ck :=
√

2hk

To implement this in a program, given n and m use the following s.pdf:

Let N = 4m, let
∑

2 = 0.
∑

2 will eventually become φ(x).

Loop on k : 0 ≤ k < N . Here k is a single integer that contains all of the l
values

k = l1 + 4l2 + 42l3 + · · ·+ 4m−1lm

To extract l1, · · · , lm from k first initialize:

M = k; d = 2m−1;
∑

= 0.

Next loop m times: n = 1, · · · ,m

ln = M − 4[M/4]; mn = lnd; d→ d/2;
∑→ ∑

+mn; M → (M − ln)/4. Here
mn = 2m−nln.

Repeat m-times (until all ln are extracted). The result is∑
= 2m−1l1 − 2m−2l2 − · · · 2lm−1 − lm
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if
∑−n− 1 = 0 then compute

a1 = c(l1)c(l2) · · · c(lm)φ(1)

add
∑

2 =
∑

2 +a1

if
∑−n− 2 = 0 then compute

a1 = c(l1)c(l2) · · · c(lm)φ(2)

add
∑

2 =
∑

2 +a1

Integer translates can be constructed using

φm(n) = φ(n−m). (157)

The scaling equation gives

φ(m/2) =
∑
l

√
2hlφ(m− l) =

∑
n

√
2hm−nφ(n). (158)

Translates of the scaled scaling function are

φn(m/2) = φ(m/2− n) = φ(
m− 2n

2
) =

∑
k

√
2hm−2n−kφ(k) =

∑
l

√
2hlφ2n+l(m) (159)

This procedure can be repeated inductively to obtain

φl(
k

2n
) = 2

n
2

∑
m1···mn

hm1 · · ·hmnφ2nl+2n−1m1+2n−2m2···+2mn−1+mn
(k) =

2
n
2

∑
m1···mn

hm1 · · ·hmnφ(k− 2nl− 2n−1m1− 2n−2m2 · · ·− 2mn−1−mn). (160)

Note that in any of the sums the only non-zero contributions occur when the
argument of φ(·) is 1 or 2. This equation gives exact values of the scaling
function at points x = n

2k
. These are dense and if the scaling function is
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continuous this method can be used to approximate the scaling function an
any point.

This has the advantage that the function is computed exactly at many
points - with iterative methods it is computed approximately at one point.

The general form of the equation is

2N−1∑
n=1

φ(n) = 1

φ(0) =
√

2h0φ(0)

φ(1) =
√

2(h0φ(2) + h1φ(1) + h2φ(0))

φ(2) =
√

2(h0φ(4) + h1φ(3) + h2φ(2) + h3φ(1) + h4φ(0))

...

φ(2N − 2) =
√

2(h2N−1φ(2N − 3) + h2N−2φ(2N − 2) + h2N−3φ(2N − 1))

φ(2N − 1) =
√

2h2N−1φ(2N − 1).

4 Daubechies Wavelets

The Daubechies wavelets have two special properties. First is that there are a
finite number of non-zero coefficients hi. This gives them a compact support.
The second feature is that the first N moments of the wavelets are zero.

The constraint on the moments has interesting consequences. First we
note that ∫

ψ(x)xldx = 0 l = 0 · · ·N − 1. (161)

From this we conclude∫
ψ0m(x)xldx =

∫
ψ(x−m)xldx =

∫
ψ(y)(y +m)ldy =

l∑
k=0

l!

k!(l − k)!
ml−k

∫
ψ(x)xkdx = 0. (162)

Similarly∫
Dψ(x)xldx =

1√
2

∫
ψ(x/2)xldx = 2l+1/2

∫
ψ(y)yldy = 0. (163)
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It straight forward to proceed inductively to show that∫
ψnk(x)xl = 0 l = 0 · · ·N − 1. (164)

This means that every element of the DaubechiesNwaveletbasisisorthogonaltoallpolynomialsofdegreelessthanN.
If we consider instead the orthonormal basis consisting of

{T nφ(x), DmT nψ(x) : −m ≥ 0} (165)

we have ∫
φm(x)xldx 6= 0 l = 0 · · ·N − 1 (166)

Although the polynomials are not square integrable; we can multiply a
polynomial by a box function b(x) which is 1 between x− and x+ and zero
elsewhere. This product is square integrable and is equal to the polynomial
on the interval [x−, x+]. It follows that

p(x)b(x) =
∑
mn

cmnψmn(x) =
∑
mn

dnφn(x) +
∑
n

∑
m≤0

cmnψmn(x) (167)

where
cmn =

∫ x+

x−
ψmn(x)p(x)dx (168)

dn =
∫ x+

x−
φn(x)p(x)dx (169)

The moment condition means that the coefficients cmn = 0 whenever the
support of the wavelet is completely contained inside of the box. Thus in the
first expression the non-zero coefficients arise from end point contributions
and to many small contributions from wavelets with support that are much
larger than the box.

In the second expression the wavelets with support larger than the box
do not appear. The endpoint contributions only affect the answer within a
distance equal to the support of the wavelet from the endpoints of the box.
Inside this distance the only nonzero coefficient are due to the translates
of the scaling functions. There are a finite number of these coefficients,
and in this region they provide an exact representation of the polynomial.
Specifically let

I(x) = b(x)p(x)−
∑
n

dnφn(x) +
∑
n

∑
m≤0

cmnψmn(x) (170)
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then we have

0 = ‖I‖2 =
∫ x−+∆

x−
I(x)2dx+

∫ x+

x+−∆
I(x)2dx+

∫ x+−∆

x−+∆
|p(x)−

∑
n

dnφn(x)|2dx. (171)

Since all three terms are non-negative we conclude that∫ x+−∆

x−+∆
|p(x)−

∑
n

dnφn(x)|2dx = 0. (172)

Since ∆ is fixed by the choice of the wavelet and x± is arbitrary we have∫ b

a
|p(x)−

∑
n

dnφn(x)|2dx = 0 (173)

for any interval [a, b]. Since p(x) and φ(x) are continuous (we did not prove
this for φ(x) - but that is the claim in the literature) and the sum of translates
is finite it follows that

p(x) =
∑
n

dnφn(x) (174)

pointwise on every finite interval. This establishes the desired result.
Note that expansion in the wavelet basis gives all coefficients zero. This

is not a contradiction because none of the polynomials are square integrable.
This is reminiscent of the initial problem that we had in representing func-
tions that did not average to zero. The key point is that once one puts a box
around a function, wavelets with very large support (large m) lead to many
small contributions.

What is interesting is that even though the Daubechies wavelets do not
have order N smoothness, there are linear combinations of the scaling func-
tion that can exactly represent polynomials locally.

These properties are the key to the normalization coefficients for the
connection coefficients Γ. The key formulas are

xl =
∑
m

clmφ(x−m) (175)

where

clm =
∫
φ(x−m)xldx =

l∑
k=0

l!

(l − k)!k!
ml−k

∫
φ(y)ykdx =
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l∑
k=0

l!

(l − k)!k!
ml−kck0. (176)

Starting with l = 0 these equations give

c0m = c00 (177)

c1m = mc00 + c10 (178)

This can be continued to express all of the translates in terms of ck0 for
k = 0, · · · , l.

Note that the normalization condition gives c00 = 1
Next note that

1 =
∑
m

c0mφ(x−m) (179)

l! =
∑
m

clm
dl

dxl
φ(x−m). (180)

Multiplying by φ(x) and integrating gives

c00 =
1

l!

∑
m

clm

∫
φ(x)

dl

dxl
φ(x−m). (181)

5 Daubechies Scaling Coefficients

Begin by defining the two formal polynomials:

P (T ) =
1√
2

M∑
l=0

hlT
l (182)

and

Q(T ) =
1√
2

M∑
l=0

glT
l =

1√
2

M∑
l=0

(−)lh∗M−lT
l N odd (183)

First we argue that M must be odd. By contradiction assume that M =
2K is even and hM , h0 6= 0. The orthogonality condition requires

2K∑
l=0

h∗l hl+2K = h∗0hM = δK0 (184)
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This vanishes if K 6= 0, requiring either h0 or hM = 0, contradicting the
assumption that M is even. It follows that M is odd or M = 2K − 1.

Inserting this in the expressions for the polynomials:

P (T ) =
1√
2

2K−1∑
l=0

hlT
l (185)

and

Q(T ) =
1√
2

2K−1∑
l=0

(−)lh∗2K−1−lT
l (186)

It follows that if we let m = 2K − 1− l

[Q(−T )]∗ =
1√
2

2K−1∑
m=0

hm(T ∗)2K−1−m (187)

This can be expressed as

[Q(−T )]∗ = (T ∗)2K−1P ((T ∗)−1) (188)

Properties of these polynomials are used to determine the coefficients hl.
First note that for complex −T = z = eiω on the unit circle, z = (z∗)−1.
Thus

Q∗(eiω) = −e−i(2K−1)ωP (ei(ω+π)) (189)

Note P (1) =
∑2K−1
l=0

1√
2
hl = 1 = −Q(−1). Next consider the orthonor-

mality condition, for z = ei2πω.

|P (z)|2 + |P (−z)|2 = (190)

1

2

2K−1∑
l,l′=0

(h∗l hl′e
i2πω(l′−l) + eiπ(l′−l)h∗l hl′e

i2πω(l′−l)) = (191)

1

2

2K−1∑
l,l′=0

h∗l hl′(e
i2πω(l′−l) + eiπ(l′−l)ei2πω(l′−l)) = (192)

1

2

2K−1∑
l,l′=0

h∗l hl′(e
iπ(l′−l)(2ω) + eiπ(l′−l)(2ω+1)) (193)
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shifting l′ − l = k gives

1

2

2K−1∑
l

2K−1−l∑
k=−l

h∗l hk+l(e
iπk(2ω) + eiπk2ωeiπk) (194)

In this form it is manifestly obvious that the coefficient of the k =odd terms
vanish. Thus let k → 2n:

2K−1∑
l

K−1/2−l/2∑
n=−l/2

h∗l hl+2ne
i4πnω (195)

where the n sum is over successive integers between −l/2 and N − 1/2.
The condition that this is 1 for all ω gives

2N−1∑
l

h∗l hl+2n = constant × δn0 (196)

or
2N−1∑
l

h∗l hl = 1 (197)

Thus we have

P (1) = 1; |P (1)|2 + |P (−1)|2 = 1 (198)

Consistency of these two equations requires that P (−1) = 0,
The Daubechies wavelets have the property that P (z) has a high order

zero at z = −1:

P (z) =
(

1 + z

2

)N+1

W (z) (199)

The normalization is chosen so that the polynomial W (1) = 1. The problem
is reduced to finding polynomials that have this property.

One technique for finding W (z) utilizes trigonometric polynomials. The
problem is to find polynomials P (z) with the property that

|P (z)|2 + |P (−z)|2 = 1 (200)

Let z = e−i2πω which gives

1 + z

2
= e−iπω cos(πω) (201)
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1− z
2

= ie−iπω sin(πω) (202)

In terms of these equations

cos(πω) =
z1/2 + z∗1/2

2
(203)

sin(πω) =
z∗1/2 − z1/2

2i
(204)

This gives

1 =
(
cos2(πω) + sin2(πω)

)2K−1
= (205)

2K−1∑
n=0

(2K − 1)!

n!(2K − 1− n)!
cos2n(πω) sin4N−2−2n(πω) = (206)

2K−1∑
n=0

(2K − 1)!

n!(2K − 1− n)!

(
z1/2 + z∗1/2

2

)2n (
z∗1/2 − z1/2

2i

)4K−2−2n

= (207)

2K−1∑
n=0

(2K − 1)!

n!(2K − 1− n)!

(
z + 1

2

)2n (1− z
2i

)4K−2−2n

z∗(2K−1) = (208)

It is useful to express the first K-terms in terms of cosines and sines:

1 =
2K−1∑
n=0

(2K − 1)!

n!(2K − 1− n)!
cos2n(πω)(1− cos2(πω))2K−1−n = (209)

This sum has the following properties:

• Has 2K terms.

• The last K terms in this sum have the desired zero at −1 with the
correct multiplicity.

• Let P+ be the sum of the last K terms and P− be the sum of the first
K terms.

• Both sums are non-negative.
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Note that

P+ =
2K−1∑
n=K

(2K − 1)!

n!(2K − 1− n)!
cos2n(πω) sin4K−2−2n(πω) = (210)

setting m = 2K − 1− n gives

K−1∑
m=0

(2K − 1)!

m!(2K − 1−m)!
cos4K−2−2m(πω) sin2m(πω) = (211)

cos2K(πω)
K−1∑
m=0

(2K − 1)!

m!(2K − 1−m)!

(
1− sin2(πω)

)K−1−m
sin2m(πω) (212)

Let

W (x) =
K−1∑
m=0

(2K − 1)!

m!(2K − 1−m)!

(
1− x2

)K−1−m
x2m (213)

Note that

P+ =
∣∣∣∣1 + z

2

∣∣∣∣2N W (sin(πω)). (214)

Since W is non-negative function of
√
z and

√
z∗, it has a non-negative square

root ,R(
√
z,
√
z∗).

Claim (proof needs to be supplied - see page 172 of ten lectures) W =
|R(z)|2 where R(z) is a polynomial. If this is true then

P (z) =
(

1 + z

2

)N
R(z) (215)

has all of the desired properties.
Case K = 2. In this case

W (x) =
3!

0!3!
(1− x2)x0 +

3!

1!2!
(1− x2)0x2 = 1 + 2x2 = 1− 1

2
(
√
z∗ −

√
z)2 =

(216)

2− 1

2
(z + z∗). (217)

The coefficients of the polynomialR should be real for real scaling coefficients.
Try Let R(z) = a+ bz; |R(z)|2 = a2 + b2 + ab(z + z∗). Equating coefficients
gives

a2 + b2 = 2 2ab = −1 (218)
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These are consistent with

(a− b)2 = 3; (a+ b)2 = 1 (219)

a− b = ±
√

3 a+ b = ±1 (220)

or

a = ±(
1

2
±
√

3

2
) b = ±(

1

2
∓
√

3

2
) (221)

The normalization R(1) = 1 gives

R(z) = (
1

2
±
√

3

2
) + (

1

2
∓
√

3

2
)z (222)

and finally

P (z) =
(

1 + z

2

)2

((
1

2
±
√

3

2
) + (

1

2
∓
√

3

2
)z) (223)

from which on can read off the N = 2 Daubechies coefficients. The two sign
choices are related by the symmetry z → z−1 followed by multiplication by a
homogeneous polynomial to preserve the polynomial nature of the function.

6 Moments and Quadrature Rules

Moments of scaling functions and mother functions are defined by

< xm >φ=
∫
φ(x)xmdx < xm >ψ=

∫
ψ(x)xmdx. (224)

Normally these are integrated over the real line. For compactly supported
wavelets this is equivalent to integrating over the support of the wavelet.

A polynomial quadrature rule is a collection of N points {xi} and weights
{wi} with the property

< xm >φ=
∫
φ(x)xmdx =

N∑
i=1

xmi wi (225)

which hold for 0 ≤ m ≤ 2N − 1. By linearity this means that

∫
φ(x)P (x)dx =

N∑
i=1

P (xi)wi (226)
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is exact for all polynomials of degree up to 2N-1.
In order to construct a quadrature rule we need to first compute the

moments, and from these we can compute the points and weights.
The moments can be constructed recursively from the normalization con-

dition
< x0 >φ= (x0, φ) =

∫
dxφ(x) = 1 (227)

using
< xm >φ= (xm, φ) = (Dxm, Dφ) =

1√
2

1

2m
∑
l

hl(x
m, T lφ) =

1√
2

1

2m
∑
l

hl((x+ l)m, φ)

1√
2

1

2m
∑
l

hl
m∑
k=0

m!

k!(m− k)!
lm−k < xk >φ

Using
∑
l hl =

√
2, and moving the k = m term to the left side of the equation

gives the recursion relation:

< xm >φ=
1

2m − 1

m−1∑
k=0

m!

k!(m− k)!
(
2N+1∑
l=1

hll
m−k) < xk >φ

Note that the right hand side involves moments with k < m. Similarly we
have for the mother function

< xm >ψ=
1

2m

m∑
k=0

m!

k!(m− k)!
(
2N−1∑
l=0

gl√
2
lm−k) < xk >φ

Since the scaling equation relates the mother function to the scaling function
there is no need to take the k = m term to the left of the equation; it is
known from the first recursion.

This gives a recursive method for generating all non-negative moments
of the scaling and mother functions from the normalization integral on the
scaling function.

Note the moments for φkl = DkT lφ and ψkl = DkT lψ can be computed
from these moments using the unitarity of the D and T operators

< xm >φkl= (xm, DkT lφ) = (T−lD−kxm, φ) =
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2k(m+1/2)
m∑
n=0

m!

n!(m− n)!
lm−n < xn >φ

and
< xm >ψkl

= (xm, DkT lψ) = (T−lD−kxm, φ) =

2k(m+1/2)
m∑
n=0

m!

n!(m− n)!
lm−n < xn >ψ

Next consider moments on the half line

< xm >φk[0:∞]:=
∫ ∞

0
xmφ(x− k)dx.

Note that scale transformations are unitary on the half interval. This gives

< xm >φk[0:∞]:=
∫ ∞

0
DxmDT kφ(x)dx =

1

2m+1/2

∑
l

hl

∫ ∞
0

xmφ(x−2k−l)dx =

1

2m+1/2

∑
l

hl < xm >φ2k+l[0:∞]

In order to understand how to compute these moments note that the
support of φ(x − k) is on [k, 2N − 1 + k]. Consider the scaling functions
that have partial overlap with the half interval. These correspond to k =
−1, · · · ,−2N+2. For each value of k between -1 and −2N+2 there is a linear
equation relating the k-th partial moment to the other partial moments.
In each equation there are three type of moments: moments that are zero
because the shifted support is not in the half interval, partial moments,
and full moments because the support is shifted entirely into the right-half
interval. This gives a linear system for the non-vanishing partial moments in
terms of the full moments.

Specifically the sums above become

< xm >φk[0:∞]=

1

2m+1/2

2N−1∑
−1−2k≤l:0≤−2N+2−2k

hl < xm >φ2k+l[0:∞] +

1

2m+1/2

2N−1∑
−1−2k<l∧l>−2N+2−2k

hl < xm >φ2k+l
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Normally it is useful to absorb the
√

2 in the coefficient hl → cl := hl/
√

2:

1

2m

2N−1∑
−1−2k≤l:0≤−2N+2−2k

cl < xm >φ2k+l[0:∞] +

1

2m

2N−1∑
−1−2k<l∧l>−2N+2−2k

cl < xm >φ2k+l

We illustrate the equation for the case that N = 2:

< xm >φ−2[0:∞]=

1

2m+1/2
(h2 < xm >φ−2[0:∞] +h3 < xm >φ−1[0:∞])

< xm >φ−1[0:∞]=

1

2m+1/2
(h0 < xm >φ−2[0:∞] +h1 < xm >φ−1[0:∞] +h2 < xm >φ0 +h3 < xm >φ‘1).

This gives two linear equations for the partial moments, < xm >φ−2[0:∞],
< xm >φ−1[0:∞] in terms of the full moments < xm >φ0 and < xm >φ1

Note that having solved for the partial moments for the scaling function
it is possible to get partial for the mother function using

< xm >ψk[0:∞]:=
1

2m+1/2

∑
l

gl

∫ ∞
0

xmφ(x− 2k − l)dx =

1

2m+1/2

∑
l

gl < xm >φ2k+l[0:∞]

which expresses the partial scaling coefficients for the mother function di-
rectly terms of moments and partial moments of the scaling function.

Similarly we can solve for the partial moments of φmn and ψmn using the
fact the dilatation operator is unitary on the half interval:

< xm >φnl[0:∞]=
∫ ∞

0
xm, DnT lφ(x)dx =

2n(m+1/2) < xm >φl[0:∞]

< xm >ψnl[0:∞]=
∫ ∞

0
xm, DnT lψ(x)dx =
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2n(m+1/2) < xm >ψl[0:∞]

Given a collection of 2N moments we can construct quadrature points
and weights using the Payne-Klink method. If {xi} are the quadrature points
define the polynomial

P (x) =
N∏
i=1

(x− xi) =
N∑
n=0

pnx
n

where pN = 1 and the other pn’s are unknown. Define

Qm(x) = xmP (x)

for m = 1, · · ·N − 1. By construction, for each m and xi , Qm(xi) = 0
because P (xi) = 0.

If we require that the points and weights reproduce 2N moments exactly
then it follows that ∫

φ(x)Qm(x)dx =
N∑
i=1

Qm(xi)wi = 0 (228)

because Qm(xi) = 0. We also have

∫
φ(x)Qm(x)dx =

N∑
n=0

pn < xn+m >φ

setting this equal to zero for each value m from m = 0 to m = N − 1 gives
N linear equations for the N unknowns p0 · · · pN−1’:

N∑
n=0

pn < xn+m >φ= 0 m = 1 · · ·N ; pN = 1

Solving this linear system for the coefficients pn , using pN = 1, give the
polynomial P (x).

Given P (x) the next step is to find the roots. The N roots of P (x) are
the quadrature points xi. The weights are determined from the remaining N
moments by solving the linear system

< xn >φ=
N∑
i=1

xni wi n = 0, · · · , N − 1
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for the weights, wi.
This shows how to construct the quadrature points and weights from the

moments. For the case of a half-interval the partial moments, < xm >φl[0:∞],
need to be used near 0.

In general one should check that the points are real and lie in the support
of the scaling function. This is not an obvious consequence of the definitions.
When this fails to occur it is best to simply assign real quadrature points
that lie on the support of the scaling function. In doing this some accuracy
is sacrificed, but it is easy to go to a higher order.

These points and weights can be transformed to father or mother function
using unitarity. To see this consider a set of points and weights {xi, wi} that
satisfy

(xm, φ) =
∫
xmφ(x)dx =

∑
xmi wi

we have

(xm, φnk) = (xm, DnT kφ)2n(m+1/2)(xm, T kφ, ) = 2n(m+1/2)((x+ k)m, φ) =∑
2nm+n/2wl(xl + k)m =

∑
(2n/2wl)(2

n(xl + k))m

If we define the transformed points and weights by

w′l = 2n/2wl x′l = 2n(xl + k)

we get
(xm, φnk) =

∑
l

w′l(x
′
l)
m.

These involve simple transformations of the original points and weights.
To use these to solve integral equations first consider the non-singular

equation

f(x) = g(x) +
∫
K(x, y)f(y)dy

Let
f(x) ≈

∑
n

fnφn(x)

where φsn(x) are translates of the scaling function on a sufficiently fine scale
s. ∑

n

fnφsn(x) ≈ g(x) +
∑
n

∫
K(x, y)fnφsn(y)dy
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Using orthonormality of the father on the same scale gives equation for the
coefficients:

fm =
∑
l

g(xlm)wlm +
∑
n

∑
l,k

wlmK(xlm, xkn)wknfn

or ∑
n

(δmn −
∑
l,k

wlmK(xlm, xkn)wkn)fn =
∑
l

g(xlm)wlm

Note that no integrals need to be evaluated, except using the local quadrature
rules. In addition the points and weights only have to be calculated for the
father on one scale - the rest can be obtained by simple transformations.

To solve this the last step is to use the wavelet transform on the indices
mn. This should give a sparse linear system that can be used to solve for fn.

The system in question has two complications. First this integral is over
a half line. The second is that the kernel has a principal value singularity.

The endpoint near x = 0 can be treated using special quadratures for the
functions on the half interval. If there is an endpoint the δmn needs to be
replaced ∫ ∞

0
φm(x)φn(x)dx = Nmn = Nnm

which is not a kronecker delta for m,n with support containing 0. Note
that these integrals can be evaluated using the same methods that were
used to calculate moments on the half interval. We simply use the scaling
equations and the orthonormality when the support of both terms are in the
half interval. Specifically

Nab
ij =

∫ b

a
φi(x)φj(x)dx =

∫ b−i

a−i
φ(x)φ(x+ i− j)dx =

∑
l,l′
hlh
′
l

∫ b−i

a−i
φ(2x− l)φ(2x+ 2i− 2j − l′)2dx =

∑
l,l′
hlh
′
l

∫ 2(b−i)−l

2(a−i)−l
φ(x)φ(x+ 2i− 2j + l − l′)dx =

∑
l,l′
hlh
′
lN

(2(a−i)−l)(2(b−i)−l)
0,−2i+2j−l+l

′

43



When both functions have support inside the inverval this is a Kronecker
delta. These equations relate these elements to the elements where the sup-
port overlaps an upper or lower endpoint. These formulas simplify if a =∞
or b = −∞. The final relations are

N
(a−i)(b−i)
0(j−i) =

∑
l,l′
hlh
′
lN

(2(a−i)−l)(2(b−i)−l)
0,−2i+2j−l+l

′

Note that N0,k = 1 if k = 0, N0,k = 0 if k > 0 or k ≤ −(2N − 1) and
non-trivial for −(2N −2) ≤ k < 0. This gives a linear system for the overlap
coefficients, Nij. For scaling functions that overlap 0 the equation becomes:

∑
n

(N0,n−m −
∑
l,k

w̃lmK(x̃lm, xkn)wkn)fn =
∑
l

g(x̃lm)w̃lm

where the indicates that for m satisfying 2N − 2 ≤ m < 0 the quadrature
points and weights need to be replaced by the ones for the half interval.

Mapping techniques should still be valuable for reducing the coupling for
functions with support near the origin. For exmaple

y = x
2 + x

2− x

mover the problem to [−2, 2] with the singularity at the origin. What re-
mains is a mechanism for treating an integrable singularity. This can be
accomplished using mapping techniques. The first step it to use a mapping
to place the singularity at the origin. After mapping the relevant integrals
are

Im(n) :=
∫ DmT nφ(x)

x
dx

Using unitarity of D gives

Im(n) :=
∫
D(DmT nφ(x))D

1

x
dx =

2√
2

∫ Dm+1T nφ(x)

x
dx =
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√
2
∫ DmT 2nDφ(x)

x
dx =

2K−1∑
l=0

√
2hlIm(2n+ l)

The equations

Im(n) =
2K−1∑
l=0

√
2hlIm(2n+ l)

give linear relations connecting the integrals with singularities to the integrals
with no singularities. The singular terms are

φm(−1), φm(−2), · · ·φm(−2K + 2)

The endpoint terms, φm(0) and φm(−2K+1) are not singular because φm(x)
must be continuous at the endpoints.

As we found these equations are ill conditioned and can be supplemented
by

0 =
∑
n

P
∫ k

−k

φmn(x)

x
dx

Which has the form
0 =

∑
n

Ikm(n)

where the integrals are over partial intervals near the endpoints. The linear
relations relate the singular integrals to the non-singular ones. For points
far enough away from the singularity and the endpoints we can express the
integrals in terms of the moments:

Im(n) =
∫ DmT nφ(x)

x
dx =

∫
T nφ(x)D−m

1

x
dx = 2

m
2

∫
φ(x)T−n

1

x
dx =

2
m
2

∫
φ(x)

1

x+ n
dx = 2

m
2

1

n

∞∑
l=0

(
− 1

n

)l
〈xl〉φ

For large enough n this converges fast. Similar methods can be used near
the endpoints.

For different asymptotic conditions note∫ m

−m

dx

x± i0+
=
∫ ∞
−∞

dx

x± i0+
−
∫ −m
−∞

dx

x± i0+

∫ ∞
m

dx

x± i0+
=

45



∫ ∞
−∞

dx

x± i0+

While this does not exist as a function, as a distribution is has the well known
value ∫ ∞

−∞

dx

x± i0+
= ∓i2πδ(x)

Using this with the wavelet expansion∫ ∑
n

φ(x)δ(x)dx =
∑
n

φn(0) = 1

With additional work one can show that required asymptotic conditions can
be achieved by replacing the supplementary condition by

∓2πi =
∑
n

Ikm(n)

The result of this is exact expressions for∫ φn(x)

x
(229)

In the region of the singularity. For these basis functions∫ K(x : y)

y
φn(y)dy =

∫ bn

an

K(x : y)−K(x, 0)

y
φn(y)dy+

K(x, 0)
∫ bn

an

φn(y)

y
dy

where φn(x) has support on [an, bn]∫ bn

an

K(x : y)

y
φn(y)dy =

∫ bn

an

K(x : y)−K(x, 0)

y
φn(y)dy+

K(x, 0)
∫ bn

an

φn(y)

y
dy =

∑
l

K(x : xl)−K(x, 0)

xl
wlK(x, 0)I0(n)

For the case of K = 1 the equations for Im(−1) and Im(−2) are

Im(−2) = c0Im(−4) + c1Im(−3) + c2Im(−2) + c3Im(−1)
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Im(−1) = c0Im(−2) + c1Im(−1)c2Im(0) + c3Im(1)

where ck =
√

2hk. These need to be supplemented by the equation:

0 =
∑
n

Im

The accuracy near the singularity can be improved using∫ xmφn
x− k

=
∫ xm − kmφn

x− k
+km

∫ φn
x− k

=
∑

l = 0m−1
∫ xlφn
x− k

+km
∫ φn
x− k

This can be replaced by an iterative scheme:∫ xm−1(x− k)φn
x− k

=
∫
xm−1φn =

∫ xmφn
x− k

− k
∫ xm−1φn

x− k

7 Derivatives and Differential Equations

In order to use use wavelets for differential equations is necessary to be able
to compute derivatives.

A typical wavelet basis consists of a the scaling function and its translates
at a fixed resolution m:

{φmn(x)}∞n=−∞ : φmn(x) = DmT nφ(x) = 2−m/2φ(2mx− n) (230)

and the wavelets for all resolutions k less than or equal to m and their
translates

{Mkn(x)}∞,mn=−∞,k=−∞ : Mmn(x) = DkT nM(x) = 2−k/2M(2kx− n) (231)

Given a function f(x) represented as

f(x) =
∑
n

f smnφmn(x) +
∑
kn

fmknMkn(x) (232)

The r-th derivative of this f(x) can be represented in the following forms

f (r)(x) =
∑
n

f smnφ
(r)
mn(x) +

∑
kn

fmknM
(r)
kn (x) (233)
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or
f (r)(x) =

∑
n

f s(r)mn φmn(x) +
∑
kn

f
m(r)
kn Mkn(x). (234)

The coefficients in these two expansions can be related by expanding the
derivatives of the basis functions in terms of the basis:

φ(r)
mn(x) =

∑
n′
φmn′(x)Γ

1(r)
mn′;mn +

∑
k′n′

Mk′n′(x)Γ
2(r)
k′n′;mn (235)

and
M

(r)
kn (x) =

∑
n′
φmn′(x)Γ

3(r)
mn′;kn +

∑
k′n′

Mk′n′(x)Γ
4(r)
k′n′;kn (236)

In terms of these quantities

f s(r)mn =
∑
n′

Γ
1(r)
mn;mn′f

s
mn′ +

∑
n′k′

Γ
3(r)
mn;k′n′f

m
k′n′ (237)

f
m(r)
kn =

∑
n′

Γ
2(r)
kn;mn′f

s
mn′ +

∑
n′k′

Γ
4(r)
kn;k′n′f

m
k′n′ (238)

The expansion coefficients are the overlap matrices

Γ
1(r)
mn;m′n′ := (φmn, φ

(r)
m′n′) (239)

Γ
2(r)
kn;m′n′ := (Mkn, φ

(r)
m′n′) (240)

Γ
3(r)
mn;k′n′ := (φmn,M

(r)
k′n′) (241)

Γ
4(r)
kn;k′n′ := (Mmn,M

(r)
k′n′) (242)

The scaling equation mean that all of these coefficients can be determined
from a subset of the coefficients. In order to exhibit the key relations it is
useful to use operators:

Df(x) =
1√
2
f(
x

2
) (243)

Tf(x) = f(x− 1) (244)

∆f(x) =
df

dx
(x) (245)

Direct computation shows

∆D =
1

2
D∆ (246)
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DT = T 2D (247)

∆T = T∆ (248)

∆† = −∆ T † = T−1 D† = D−1 (249)

We also have the scaling equations:

Dφ =
∑
l

hlT
lφ (250)

DM =
∑
l

glT
lφ (251)

Using the operator relations above

D∆rφ = 2r
∑
l

hlT
l∆rφ (252)

D∆rM = 2r
∑
l

glT
l∆rφ (253)

In terms of these operators

Γ
1(r)
m′n′;mn := (Dm′T n

′
φ,∆rDmT nφ) (254)

Γ
2(r)
m′n′;kn := (Dm′T n

′
M,∆rDmT nφ) (255)

Γ
3(r)
k′n′;mn := (Dk′T n

′
φ,∆rDmT nM) (256)

Γ
4(r)
k′n′;kn := (Dk′T n

′
M,∆rDmT nM) (257)

In order to evaluate these coefficients the following s.pdf are used:
1. Move all of the factors of D to a single side of the equation. Choose

the side where the power of D is positive.
2. Move the D’s through all derivatives.
3. Use the scaling equations to eliminate all of the D’s.
4. Move all of the T ’s to the left side of the scalar product.
Using these all of the Γ’s can be expressed in terms of

Γ
1(r)
0n;00 := (Tnφ,∆

rφ) (258)

Γ
2(r)
0n;00 := (T nM,∆rφ) (259)
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Γ
3(r)
0n;00 := (T nφ,∆rM, ) (260)

Γ
4(r)
0n;00 := (T nM,∆rM) (261)

These quantities satisfy scaling equations. To see this consider

Γ
1(r)
0n;00 := (T nφ,∆rφ) =

(DT nφ,D∆rφ) = 2r(T 2nDφ,∆rDφ) =∑
ll′
h∗l hl′2

r(T 2n+lφ, T l
′
∆rφ) =

∑
ll′
h∗l hl′2

r(T 2n+l−l′φ,∆rφ) =

∑
ll′
h∗l hl′2

rΓ
1(r)
0,2n+l−l′;00 =

∑
k

(
∑
l′
h∗k−2n+l′hl′)2

rΓ
1(r)
0k;00‘ (262)

This gives an eigenvalue equation for the vector Γ
1(r)
0n;00. The solution is the

eigenvector with eigenvalue 1. The normalization can be fixed by computing
Γ

1(r)
00;00 := (φ,∆rφ) directly

Define H
(r)
nk by

H
(r)
nk :=

∑
l′
h∗k+l′−2nhl′2

r (263)

With this definition the eigenvalue problem takes on the form:

Γ
1(r)
0n;00 =

∑
k

H
(r)
nk Γ

1(r)
0k;00 (264)

Note that this can be written as

2−rΓ
1(r)
0n;00 =

∑
k

H0
nkΓ

1(r)
0k;00 (265)

This treats all allowed derivatives with a single equation - the eigenvector
with eigenvalue 2−r is the coefficient for the rth derivative.

These quantities can be used to determine all of the other quantities using

Γ
2(r)
0n;00 := (T nM,∆rφ) =
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∑
ll′
g∗l′hl2

rΓ
1(r)
0,2n+l′−l;00 =

∑
m

(
∑
l

g∗l′)h2n+l−m)2rΓ
1(r)
0′m;00 (266)

Γ
3(r)
0n;00 := (T nφ,∆rM) =

∑
ll′
h∗l′gl2

rΓ
1(r)
0,2n+l′−l;00 =

∑
m

(
∑
l

h∗l g2n+l−m)2rΓ
1(r)
0m;00 (267)

Γ
4(r)
0n;00 := (T nM,∆rM, ) =

∑
ll′
g∗l gl′2

rΓ
1(r)
0,2n+l′−l;00 =

∑
m

(
∑
l

g∗l g2n+l−m)2rΓ
1(r)
0m;0 (268)

This shows that all of the expansion coefficients for any number of deriva-
tives can be constructed from the solutions of a single eigenvalue problem.

There are a number of stepping formulas:

Γ
1(r)
0m;0n = Γ

1(r)
0m−n;00 (269)

Γ
1(r)
0m+k;0,n+k = Γ

1(r)
0m;0n (270)

Γ
1(r)
kn;tm =

∑
l

h∗l Γ
1(r)
k−1,2n+l;tm (271)

Γ
1(r)
kn;tm = 2r

∑
l

hlΓ
1(r)
k+1,n;t,2m+l (272)

Γ
1(r)
kn;tm =

∑
l

hlΓ
1(r)
kn;t−1,2m+l (273)

Γ
1(r)
kn;tm = 2

∑
l

h∗l Γ
1(r)
k,2n+1;t+1,2m+l (274)

which can be used to reduce the number of dilitations to zero.
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8 Moments and Wavelets

Consider the equations for the moments of the scaling function and the
mother function:

〈xm〉φ :=
∫
xmφ(x)dx (275)

〈xm〉m :=
∫
xmm(x)dx (276)

To develop relations among the moments use the unitarity of the dilitation
operator:

〈xm〉φ =
∫
xmφ(x)dx =

∫
DxmDφ(x)dx =

1

2m+1/2

∫
xmDφ(x)dx (277)

Using the scaling equation gives

1

2m+1/2

∑
l

∫
xmhlφ(x− l)dx =

1

2m+1/2

∑
l

∫
(l + y)mhlφ(y)dy =

Nest use the binomial theorem to get:

1

2m+1/2

m∑
k=0

∑
l

hl
m!

k!(m− k)!
lm−k

∫
ykφ(y)dy =

1

2m+1/2

m∑
k=0

∑
l

hl
m!

k!(m− k)!
lm−k〈xk〉φ (278)

This gives a set of eigenvalue equations for 〈xk〉φ The moments of the mother
function have similar properties with hl replaced by gl: :

〈xm〉m =
∫
xmm(x)dx =

∫
DxmDm(x)dx =
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1

2m+1/2

m∑
k=0

∑
l

gl
m!

k!(m− k)!
lm−k〈xk〉φ (279)

The nice thing about these equations is that they are lower triangular.
Specifically for the 〈xk〉φ equations we have for m = 0:

〈x0〉φ =
1

21/2

∑
l

hl〈x0〉φ (280)

which is the constraint
∑
l hl =

√
2. For m = 1 this equation is

〈x1〉φ =
1

23/2

∑
l

hl

(
1!

0!1!
l1〈x0〉φ +

1!

1!0!
l0〈x1〉φ

)
(281)

Using the first equation gives

〈x1〉φ =
1√
2

∑
l

lhl〈x0〉φ (282)

This gives 〈x1〉φ in terms of 〈x0〉φ
For m = 2 is equation becomes

〈x2〉φ =

1

25/2

∑
l

hl

(
2!

0!2!
l2〈x0〉φ +

2!

1!1!
l1〈x1〉φ +

2!

2!0!
l0 + 〈x2〉φ

)
=

1

25/2

(∑
l

hll
2〈x0〉φ +

√
2(
∑

lhl)
2〈x0〉φ +

√
2〈x2〉φ

)

which can be solved for 〈x2〉φ in terms of 〈x0〉φ
The general form of the recursion relation is

〈xm〉φ =

m!

2m+1 − 2

m−1∑
k=0

∑
l

hll
m−k

k!(m− k)!
〈xk〉φ (283)

A similar recursion can be derived for moments of the mother function:

〈xm〉m =
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m!

2m+1

m−1∑
k=0

∑
l

gll
m−k

k!(m− k)!
〈xk〉φ (284)

There are all fixed in terms of the value of the integral
∫
φ(x)dx.

It follows from this relation that the condition that the first p moments
of the mother function vanishing are∑

l

lkgl = 0 k = 0, 1, · · · , p (285)

These equations come from looking at the coefficients of the moments of the
scaling function. They give all of the moments in terms of the hl’s and

〈x0〉φ =
∫
φ(x)dx (286)

These equations, along with the normalization equation and the orthonor-
mality equation determine the hl’s for the Daubechies wavelets. The general
equations are ∑

l

hlhl−2k = δk0 k = 0, 1, · · · (287)

∑
l

hl =
√

2 (288)

∑
l

lk(−)lh1−l = 0 k = 0, 1, · · · , p (289)

where 1 can be replaced by any odd integer.y
Moments of all of the other functions can be computed using

〈xm〉φrs =
∫
xmDrT sφ(x)dx =

∫
(T−sD−rxm)φ(x)dx = 2

r
2

+mr
∫

(x+ s)mφ(x)dx =

2
r
2

+mr
m∑
k=0

m!

k!(m− k)!
sm−k〈xr〉φ

and
〈xm〉mrs =

∫
xmDrT sm(x)dx =∫

(T−sD−rxm)m(x)dx = 2
r
2

+mr
∫

(x+ s)mm(x)dx =
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2
r
2

+mr
m∑
k=0

m!

k!(m− k)!
sm−k〈xr〉m

We can use these to determine the normalization of the Γ′s: Consider

dφ

dx
(x) =

∑
l

φml(x)Γ
1(1)
ml;00 +

∑
kl

mkl(x)Γ2
kl;00 (290)

Multiply by x to get

〈x0〉φ =
∫
φ(x)dx = −

∫
x
dφ

dx
(x)dx =

∑
l

〈x1〉φml
Γ

1(1)
ml;00 +

∑
kl

〈x1〉mkl
Γ

2(1)
kl;00

Given that we know the Γ’s up to an overall normalization, and all of the
moments in terms of 〈x0〉, this equation fixes the normalization of the Γ(1)’s
in terms of 〈x0〉.

The Γ’s corresponding to the higher derivatives can be derived using∫
xl
dlφ

dxl
(x)dx = (−)ll!〈x0〉φ =

∑
s

〈xl〉φmsΓ
1(l)
ms;00 +

∑
ks

〈xl〉mks
Γ

2(l)
ks;00 (291)

which expresses the Γ’s for the higher derivatives in terms of higher moments.

9 Normalization issues

The orthonormality of the wavelets means that the scaling function φ(x)
satisfies ∫

φ2(x)dx = 1. (292)

Because this is preserved under the continuous scale transformation

φ(x)→ φ′(x) :=
1√
s
φ(
x

s
) (293)

by choosing s we can simultaneously fix∫
φ′(x)dx =

√
s
∫
φ(x)dx (294)
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Choosing s so
∫
φ′(x)dx = 1 fixes a starting scale. In this way we can

simultaneously require ∫
φ2(x)dx =

∫
φ(x)dx = 1 (295)

Given the conditions ∫
φ2(x)dx =

∫
φ(x)dx = 1 (296)

we can compute all of the necessary normalization coefficients.
First we calculate the expansion of 1. In this case the assumption that

the integral of the mother function gives zero implies that 1 can be expressed
in terms of translates of the scaling function:

1 =
∑

c0
nφ(x− n) (297)

Multiplying by φm(x) = φ(x−m) and using the orthonormality and
∫
φ(x)dx =

1 gives

1 = cm =
∫
φm(x)dx =

∫
φ(x)dx = β0 (298)

Thus we conclude that
1 =

∑
n

φn(x) (299)

Next we show that we can compute all of the moments

βm :=
∫
xmφ(x)dx (300)

in terms of the hl’s and β0. To see this note

βm :=
∫
xmφ(x)dx =

∫
DxmDφ(x)dx =

1√
2

∫ (
x

2

)m∑
l

hlφ(x− l)dx =

2−m−
1
2

∑
l

hl

∫
(x+ l)mφ(x)dx =

2−m−
1
2

∑
l

hl
m∑
k=0

m!

k!(m− k)!
lm−kβk (301)
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Putting the k = m term on the left and using
∑
l hl =

√
2 gives

βm =
1

2m − 1

1√
2

∑
l

hl
m−1∑
k=0

m!

k!(m− k)!
lm−kβk (302)

This give an explicit expression for the m-th moment in terms of β0 =
1, β1, · · · , βm−1 and the scaling coefficients. This determines all of the mo-
ments.

Note that these equations follow directly from the scaling equations and
the normalization condition that gives β0. No special properties of the mother
function have been used.

Given the moments we show that they can be used to compute the ex-
pansion coefficients for all monomial xl that vanish when integrated against
the mother function.

To see this note
xl =

∑
k

clkφk(x) (303)

Using orthonormality gives

clm =
∫
φm(x)xldx =

∫
φ(x)(x+m)ldx

l∑
k=0

l!

k!(l − k)!
ml−kβk

which expresses these expansion coefficients in terms of the previously com-
puted moments.

We can use these to get inhomogeneous equations for the Γs:

xl =
∑
k

clkφk(x) (304)

If we differentiate this l times, multiply by φ(x), and integrate we get

l!
∫
φ(x)dx =

∑
k

clk

∫
φ(x)

dlφk
dxl

(x−m)dx =

∑
k

clk

∫
φ(x+ k)

dlφ

dxl
(x)dx
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which becomes

1 =
1

l!

∑
k

clkΓ
l
0−k;00 (305)

This gives the needed inhomogeneous equation to determine the Γs for
any allowed derivative.

Thus we have shown how β0 = 1 determines all of the necessary normal-
izations.

10 Integral equations

Consider an integral equation of one of the two forms

f(x) =
∫
Kλ(x, y)f(y)dy (306)

where λ is a parameter like an eigenvalue or

f(x) = g(x) +
∫
K(x, y)f(y)dy (307)

In the first equation there will not be solutions unless λ takes on certain
values. Each solution is associated with a specific value of λ. This can be
considered like a matrix equation, where the matrix does not have an inverse
for certain values of λ.

In the second equation there is no parameter. The function g(x) is given
this looks like a system of linear equations.

These equations can be solved using Galerkin or collocation methods. For
the Galerkin method the solution can be expanded in terms of an orthonormal
basis (wavelets):

f(x) =
∑
n

φn(x)fn (308)

where the fn are unknown expansion coefficients. For the case of wavelets
the index n is replaced by two indices.

Inserting this solution into either of the above equations gives∑
n

φn(x)fn =
∫
Kλ(x, y)

∑
n

φn(y)fndy (309)

or ∑
n

φn(x)fn = g(x) +
∫
K(x, y)

∑
n

φn(y)fndy (310)
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Assuming that both expression are well behaved it is possible to change the
order of the sum and the integral to obtain:∑

n

φn(x)fn =
∑
n

∫
Kλ(x, y)φn(y)dyfn (311)

∑
n

φn(x)fn = g(x) +
∑
n

∫
K(x, y)φn(y)dyfn (312)

This is not yet an equation. In applications the infinite sum has to be replaced
by a finite sum. The equation then becomes approximate.

For the Galerkin method the equation is required to hold on the subspace
generated by the first N basis functions. The equations for the coefficients
are obtained by integrating against φ∗m(x) for m = 1, · · · , N . Using the
orthonormality of the basis functions gives:

fm =
N∑
n=1

∫
φ∗m(x)Kλ(x, y)φn(y)dyfn (313)

fm =
∫
φ∗m(x)g(x)dx+

N∑
n=1

∫
φ∗m(x)K(x, y)φn(y)dyfn (314)

If we define
Kλmn :=

∫
φ∗m(x)Kλ(x, y)φn(y)dxdy (315)

Kmn :=
∫
φ∗m(x)K(x− y)φn(y)dxdy (316)

gm :=
∫
φ∗m(x)g(x)dx (317)

these equations become

fm =
N∑
n=1

Kλmnfn m ∈ {1, 2, · · ·N} (318)

fm = gm +
N∑
n=1

Kmnfn m ∈ {1, 2, · · ·N} (319)

These equation are linear algebraic equations for the coefficients fn. The ap-
proximate solution can be expressed in terms of solution for these coefficients
as:

f(x) ∼
N∑
n=1

φn(x)fn (320)
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This can be improved using the equation

f(x) ∼
N∑
n=1

∫
Kλ(x, y)

∑
n

φn(y)dyfn (321)

or

f(x) ∼ g(x0 +
N∑
n=1

∫
K(x, y)

∑
n

φn(y)dyfn (322)

These equations can also be approached using the collocation method.
For the collocation method the number of basis functions is also truncated.
Rather than projecting on the subspace generated by the first N basis func-
tions the equations are required to be exact at N points {xi}Ni=1. This gives
a different set of linear algebraic equations:

∑
n

φn(xm)fn =
N∑
n=1

∫
Kλ(xm, y)φn(y)dyfn m ∈ {1, · · ·N} (323)

∑
n

φn(xm)fn = g(xm) +
N∑
n=1

∫
K(xm, y)φn(y)dyfn m ∈ {1, · · ·N} (324)

In this case the equations have the structure

N∑
n=1

φmnfn =
N∑
n=1

Kλmnfn (325)

N∑
n=1

φmnfn = gm +
N∑
n=1

Kmnfn (326)

where
φmn := φn(xm) (327)

Kλmn :=
∫
Kλ(xm, y)φn(y)dy (328)

Kmn :=
∫
K(xm, y)φn(y)dy (329)

gm := g(xm) (330)
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These equation give approximate values of the fn, and an approximate solu-
tion of the form

f(x) ∼
N∑
n=1

φn(x)fn (331)

This can be improved by the same interpolation method that was used in
the Galerkin method.

In both cases the use of wavelet method will allow for efficient computa-
tion of the basis functions. The advantage of the integral equation method
is that there there are no problems with integrating functions, like the Haar
functions, that have discontinuous derivatives.

In order to obtain any additional benefit our of the wavelet basis the
kernel K(x, y) needs to have additional properties. In many cases of practical
interest the kernel is translationally invariant. This means the

K(x, y) = K(x− y). (332)

I consider the Galerkin case, where the these benefits are of most value.
For a translationally invariant kernel the Galerkin method involves comput-
ing matrix elements of the general form:∫

φ∗mn(x)K(x− y)φkl(y)dxdy (333)

where here I have introduced indices on the scaling function. Similar equa-
tions are needed for the mother function. Define

cn :=
∫
φ∗(x)K(x− y + n)φ(y)dxdy (334)

where φ(x) is the scaling function. Note that

Kmn:kl :=
∫

(DmT nφ)∗(x)K(x− y)(DkT lφ)(y)dxdy (335)

Using the scaling equations we show that it is possible to reduce the values
of m and k respectively:

Kmn:kl :=
∫

(DmT nφ)∗(x)K(x− y)(DkT lφ)(y)dxdy = (336)

∑
r

hr

∫
(DmT nφ)∗(x)K(x− y)(Dk−1T 2l+rφ)(y)dxdy =

∑
r

hrKmn:k−1,2l+r

(337)
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∑
r

h∗r

∫
(Dm−1T 2n+rφ)∗(x)K(x− y)(DkT lφ)(y)dxdy =

∑
r

h∗fKm−1,2n+r:kl

(338)
These equations show that it is possible to successively reduce the value of
m and k. Once these are reduced to 0 what remains is

K0n:0l :=
∫

(T nφ)∗(x)K(x−y)(T lφ)(y)dxdy =
∫
φ∗(x)K(x+n−y−l)φ(y)dxdy = cn−l

(339)
Similar results can be obtained for the mother functions. In that case the
hm’s are replaced by the gm’s.

The problem with this is that it does not cover the case of negative values
of m and k. We conclude that given a small enough base scale, translational
invariance can be used to generate matrix elements of the kernel on all larger
scales, in terms of translates on the base scale.

In order to deal with negative values of m and k the Kernel must have
additional properties with respect to scale transformations. Unfortunately,
unlike translations, most integral equation do not have scale invariant ker-
nels. Roughly speaking, parameters with physical dimensions appearing in
equations break scale invariance. The Maxwell’s equation are an exception.
They to not have a natural distance scale.

We say that a kernel has scale dimension s if

2−snK(2n(x− y)) = K(x− y) (340)

For example

K(x− y) :=
1

|x− y|1/2
(341)

has scale dimension s = −1/2.
For these kernels direct integration shows

(f,KDg) :=
∫
f ∗(x)K(x− y)(Dg)(y)dxdy = (342)∫

f ∗(x)K(x− y)(Dg)(y)dxdy = (343)∫
f ∗(x)K(x− y)

1√
2
g(y/2)dxdy = (344)

2√
2

∫
f ∗(x)K(x− 2u)g(u)dxdu = (345)
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4√
2

∫
f ∗(2v)K(2(v − u))g(u)dvdu = (346)

2
∫

(D†f ∗)(v)K(2(v − u))g(u)dvdu = (347)

21+s
∫

(D†f ∗)(v)K(v − u)g(u)dvdu = (348)

21+s(D†f,Kg) (349)

Similarly it is possible to show

(Df,Kg) = 2s+1(f,KD†g) (350)

and
(Df,KDg) = 2s+1(f,Kg) (351)

(D†f,KD†g) = 2−(s+1)(f,Kg) (352)

These equations allow reductions of the form

(D−nTmφ,KD−kT lφ) = (353)

assuming n > k this becomes

2m(s+1)(Tmφ,KDn−kT lφ) = (354)

2m(s+1)(φ,KT 2n−kl−mDn−kφ) (355)

In this form the scaling equations can be used to eliminate powers of D.
Similar relations can be derived fort he case k > n and k = n.

We conclude that if the kernel is scale and translationally invariant, the
matrix elements for the Galerkin method can be expressed in terms of matrix
elements of translates of the scaling function and mother function.

11 Pyramid Method

Consider a function χ(x) that is periodic on [0, L].
Divide this interval into 2N subintervals of length ∆ := L/2N

Let φ(x) be a Daubechies scaling function. Let

ψ(x) =
1√
∆
φ(
x

∆
) (356)
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This has the following properties:∫
ψ(x)ψ(x− n∆) =

1

∆
φ(
x

∆
)φ(

x

∆
− n)dx

∫
φ(y)φ(y − n)dy = δn0 (357)

∑
n

φ(x− n∆) =
∑
n

1√
∆
ψ(

x

∆
− n) =

1√
∆

(358)

which follow from the orthogonality of the translated scaling function and
the moment condition of the father wavelet (we have assumed both orthonor-
mality of the translated wavelets and

∑
n(φ(x − n) = 1 - if there are not

compatible we need to readjust the constant).
We define

ψn(x) = ψ(x− n∆) (359)

ψkn(x) = Dkψn(x) = 2−k/2ψn(
x

2k
) (360)

as well as the corresponding expressions for the mother function

u(x) =
1√
∆
m(

x

∆
) (361)

un(x) = u(x− n∆) (362)

ukn(x) = Dkun(x) = 2−k/2u(
x

2k
) (363)

The scaling equations for ψ(x) and u(x) are

Dψ(x) =
∑
n

hnψ(x− n∆) (364)

Du(x) =
∑
n

gnψ(x− n∆) (365)

Approximate χ(x) at resolution 2N on [0, L] by

χ2N (x) :=
2N∑
n=1

cnψ(x− n∆) (366)

where
cn =

∫
ψ(x− n∆)χ(x)dx (367)
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Here we assume that the integrals extend past [0, L] by extending the
functions so they are periodic. The coefficients cn are an approximate repre-
sentation of the function. Because

χ(x) = χ(x)
∑
n

√
∆φ(x− n∆) (368)

we expect that the sum of the cn for the basis functions that are non-vanishing
at x should be approximately the value of χ at x times

√
∆.

The approximation χ2N (x) is finest resolution approximation of the exact
function. This is the V0 representation of the function. This can be decom-
posed into a pair of vectors of length 2N−1 corresponding to the V1 and W1

subspace.
On these subspaces the expansions are

χ2N (x) =
∑

c1nDψn(x) +
∑

d1nDun(x) (369)

Using the scaling relations gives

χ2N (x) =
∑
n

c1n

∑
m

hmψ(x− 2n∆−m∆) +
∑

d1n

∑
m

gmψ(x− 2n∆−m∆)

(370)
Integrating against φ(x− k∆) gives

ck =
∑
n

(c1n

∑
m

hk−2n + d1n

∑
m

gk−2n) (371)

This can be expressed as a matrix equation:
c1
...
cN2

 =

 h1−2 · · ·h1−22N g1−2 · · · g1−22N

· · · · · ·
h2N−2 · · ·h2N−22N g2N−2 · · · g2N−22N




c11
...

d12N−1

 (372)

This procedure can be repeated on the c1 part, using h and g on next
coarser scale. In this case the next matrix is smaller by a factor of four.
Repeating the procedure on every level gives

{cN , dN , dN−1, dN−2, · · · d1} (373)

The relations connecting these with c0 can be put in the form of ma-
trix. Since both bases are real and orthonormal this is necessarily are real
orthogonal matrix. This is the wavelet transform.

The rows and columns are clearly manipulated by similarity transforma-
tions at each level.
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12 Multigrid Methods

To understand the standard procedure consider a linear equation of the form:

Lu = f (374)

where L is a linear operator and f is known. Let n denote a wavelet level
with higher n denoting a finer grid.
Step 1: Start with a coarse grid - call it the n = 1 grid. Project L and f on
the basis functions spanning this grid. This gives

L1u1 = f 1 (375)

In terms of the scaling functions we have

L1
mn =

∫
φm(x)Lφn(x)dx (376)

f 1
m =

∫
φm(x)f(x)dx (377)

Solve this equation exactly for u1. This gives a first approximation on
the next level. In the case of wavelets this is the smooth part of the solution.
Step 2: The next step is to go to the next level. Define L2 and f 2 by

L2
mn =

∫
D−1φm(x)LD−1φn(x)dx (378)

f 2
m =

∫
D−1φm(x)f(x)dx (379)

We can map the course solution to the fine grid in two different ways.
The first is simply to expand

ũ2 =
∑
m

(ũ1, D−1Tmφ)φ−1,m(x) (380)

The expansion coefficients (ũ1, D−1Tmφ) cam be expressed in terms of
the scaling coefficients:

(ũ1, D−1Tmφ) =
∑
n

(Dφ, Tm−2nφ)un =
∑
n

(Dφ, Tm−2nφ)un =
∑
n

hm−2nun

(381)
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which gives

ũ2 =
∑
m,n

φ−1,m(x)hm−2n (382)

While this expresses the approximation in terms of the basis on the next
level, it makes more sense to use the mother functions on the previous level,
since they deal with the high frequency information. In this case we have
the equivalent expression:

ũ2 =
∑
m

umφ0,m(x) +
∑
m

vmM0,m(x) (383)

where all of the coefficients vm = 0.
On the next level we include the mothers. We note that the projected

equation on the next level is

L2u2 = f 2 (384)

If we use the approximate solution 2̃, which is exact on the previous level,
we get

d2
1 = L2ũ2 − f 2 (385)

which is called the defect. This measure how much the coarse grid solution
fails to satisfy the equation at the next finest level.

We can also compute the error

v2 = u2 − ũ2 (386)

Knowing v2 is equivalent to knowing u2. We also have

L2v2 = L2(u2 − ũ2) = −d2
1 (387)

which gives an equation for the error in terms of the defect.
The idea is to map this up to the coarse level and solve for an approximate

ṽ2
1. Projecting on the coarse level does not help, because d2 is orthogonal to

the coarse subspace; however, we can use the mothers - which is a space of
the same size and project this equation on the mother subspace. This gives
a correction; ṽ2 that is orthogonal to ũ2

Define a new ũ2
2 by

ũ2
2 = ũ2

1 + ṽ2
1 (388)
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This has a part on the coarse father space and a part on the coarse mother
space.

Compute a new defect

d2
2 = L2ũ2

2 − f 2 (389)

this has parts on the coarse father and mother subspaces.
We have the relation

L2ṽ2
2 = d2

2 (390)

We seek an approximation on the father space by projection - this gives
a correction ṽ2

2 on the father space, and a new approximate solution

ũ2
3 = ũ2

2 + ṽ2
2 = ũ2

1 + ṽ2
1 + ṽ2

2 (391)

This process can be repeated, alternating between the mother and father
space until a solution of the desired accuracy is obtained.
Step 3. The next step uses this solution to go to the next level. The above
process needs to be used for each solution on the previous level.

The advantage is that if the coupling between the different scales is small
the convergence should be fast.

13 Quadrature Methods

The problem is to compute the overlap coefficients

νjk := (φjk, f) = (DjT kφ, f) (392)

and
µjk := (ψjk, f) = (DjT kψ, f) (393)

The scaling equations relate coefficients on one scale to the coefficients on a
finer or coarser scale.

We use the basic scaling equations:

Dφ =
∑
l

hlT
lφ (394)

and
Dψ =

∑
l

glT
lφ (395)
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and the commutation relations

DT = T 2D (396)

In addition, the multiresolution analysis implies the inverse relations:

φl =
∑
k

(hl−2kDT
kφ+ gl−2kDT

kψ) (397)

(these following from completeness and orthogonality)
The scaling equations give

νjk = (DjT kφ, f) = (Dj−1T 2kDφ, f) =∑
l

hlνj−1,2k+l =
∑
m

hm−2kνj−1,m (398)

and similarly
µjk = (DjT kψ, f) = (Dj−1T 2kDψ, f) =∑

l

glνj−1,2k+l =
∑
m

gm−2kνj−1,m (399)

The inverse relations give

νj−i,l =
∑
k

(hl−2kνjk + gl−2kµjk). (400)

To understand the one-point quadrature rule note∫
f(x)φ(x)dx = ν (401)

Define
x1 :=

∫
xφ(x)dx = M1 (402)

Then ∫
(a+ bx)φ(x)dx = a+ bM1 = a+ bx1 (403)

For orthogonal wavelets note

km :=
∫
xφ(x)φ(x−m) =

∫
(y +m)φ(y +m)φ(y) =

∫
xφ(x+m)φ(x) = k−m
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It follows that ∑
mkm =

∑
(−m)km = 0 (404)

Since ∑
mφ(x−m) = x−M1 (405)

we have

0 =
∑∫

mxφ(x)φ(x−m) =
∑

sφ(x)x(x−M1) = M2 −M2
1 (406)

This means that∫
φ(x)(a+ bx+ cx2) = a+ bM1 + cM2 = a+ bx1 + cx2

1 (407)

or that for x1 = M1 the one-point rule integrates polynomials of degree 2
exactly.

Coiflets have the property that∫
xkφ(x)dx = 0 (408)

for k = 1, 2, · · ·N . In this case for x1 = M1 = 0 we have

∫
φ(x)

N∑
n=1

cnx
n =

N∑
n=1

cnx
n
1 = c0 (409)

which integrates polynomials of degree N exactly.
For orthogonal wavelets the error will be of the order 2−3n where 2−n is

the finest scale wavelet.
The most useful alternative is to use a multipoint formula. These are are

not limited in terms of errors and still allow wavelets with small support.
Choose wavelets that have compact support on [0, L]. In general we need

to calculate
Imn[f ] =

∫
φmn(x)f(x)dx (410)

where φ(x) is a scaling function. We also need

Îmn[f ] =
∫
ψmn(x)f(x)dx (411)

where ψmn(x) is a wavelet.
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First observe that if we work with wavelets on the finest scale the scaling
equations map to coarser scales. Thus we have

Imn[f ] =
∫
DmT nφ(x)f(x)dx =

∑
l

hl

∫
Dm−1T 2n+lφ(x)f(x)dx =

∑
l

hlIm−1,2n+l[f ]

and
Îmn[f ] =

∫
ψmn(x)f(x)dx =∑

l

glIm−1,2n+l[f ]

This can be repeated by reapplying the scaling relations m − 1 more times
to express these integrals in terms of the integrals

I0l[f ]

which are translates of the scaling function on the finest scale. This is done
using the wavelet transform.

We seek a quadrature rule of the form

I[f ] =
N∑
n=1

wnf(xn) (412)

where the points xn are in the interval [0, L] and the formula is exact for
polynomials

I[xm] =
N∑
n=1

wnx
m
n (413)

We also note that
I0,1[f ] = I[T−1f ] (414)

This means that

I0,1[xm] = I[(x+ 1)m] =
N∑
n=1

wn(xn + 1)m (415)
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or more generally

I0,k[x
m] = I[(x+ k)m] =

N∑
n=1

wn(xn + k)m (416)

which will also be exact. Thus, for a general function we have the approxi-
mations:

I0,k[f ] =
N∑
n=1

wnf(xn + k) (417)

Thus, having points and weights for the scaling function provide a means to
compute all overlap integrals on the finest scale. The scaling equation for
the scaling function and wavelets allow one to get to the overlap integrals for
the wavelet basis.

Two problems remain - they are the computation of the moments of the
scaling function and the computation of the quadrature weights.

For stability it is useful to replace the system

I[xm] =
N∑
n=1

wnx
m
n (418)

by

I[Pm] =
N∑
n=1

wnPm(xn) (419)

where Pn is a system of real orthogonal polynomials on the support of the
scaling function. For a scaling function with support in [0, L] we assume∫ L

0
Pm(x)Pn(x)w(x)dx = δmn (420)

For a polynomial naturally supported on y ∈ [−1, 1] let

y =
2

L
x− 1 (421)

If Tn(y) are orthogonal on [−1, 1]; i.e.∫ 1

−1
Tm(y)Tn(y)s(y)dy = δmn (422)
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then

Pn(x) = Tm(y(x))

√
dy

dx
=

√
2

L
Tm(

2

L
x− 1) (423)

with weight

w(x) = s(y(x)) = s(
2

L
x− 1) (424)

The main reason for including the weight is that the Chebyshev polynomials
have a non-trivial weight.

Because of the structure of the wavelets it is useful to pick N equally
spaced quadrature points on [0, L].

xn = (n− 1)2s + τ (425)

which go from

x1 = τ to xN = (N − 1)2s + τ < L (426)

While τ can be used as an adjustable parameter to increase the order of the
quadrature, it seem like a better strategy is to simply increase N . In this
case the problem is to solve the linear system

I[Pm] =
N∑
n=1

wnPm(xn) (427)

for the weights wn. The relevant approximate quadrature is then

I[f ] ∼
N∑
n=1

wnf(xn) (428)

which is exact for polynomials of degree ≤ N − 1.
In order to solve these equations we need expression for the moments

I[Pm]. To do this we use scaling and unitarity. We need the following two
sets of coefficients

DPn(x) =
1√
2
Pn(

x

2
) =

n∑
m=0

dnmPm(x) (429)

T−lPn(x) = Pn(x+ l) =
n∑

m=0

tlnmPm(x) (430)
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We can get exact expressions for the matrices dmn and tlmn using the appro-
priate gauss quadrature formula:

∫ L

0
Pn(x)Pm(x)w(x)dx = δmn =

K∑
i=1

Pn(ui)Pm(ui)wui (431)

where K > n/2,m/2. Multiplying the above equations by Pk(x)w(x) and
using the quadrature rule gives:

dnk =
K∑
i=1

wui
1√
2
Pn(

ui
2

)Pk(ui) (432)

tlnk =
K∑
i=1

wuiPn((ui + l))Pk(ui) (433)

To compute the moments assuming P0(x) = c we have

I[P0] =
∫ L

0
φ(x)P0(x)dx = c (434)

Note

I[Pn] =
∫ L

0
φ(x)Pn(x)dx =∫ L

0
Dφ(x)DPn(x)dx =

∑
l

hl
∑
m

dnm

∫ L

0
T lφ(x)Pm(x)dx =

∑
l

hl
∑
m

dnm

∫ L

0
φ(x)T−lPm(x)dx =

∑
l

hl
∑
mk

dnmt
l
mkI[Pk]

We can separate off the k = n term and write

I[Pn] =

∑
l hl

∑k<n
mk dnmt

l
mkI[Pk]

1−∑l hl
∑
mk dnmtlmn

(435)

Which can be used to recursively generate the required moments in terms of
I[P0] = c.
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The advantage of the Chebyshev polynomials are that the points and
weights are known analytically. We have the formulas

∫ l

−1
f(x)

dx√
1− x2

≈
N∑
n=1

π

N
f(cos(

(2n− 1)π

2N
)) (436)

which are exact for f(x) a polynomial of degree 2N − 1. To get the ui and
wui these expressions have to be transformed from [−1, 1] to [0, L]:

uk =
L

2
(cos(

(2n− 1)π

2N
+ 1) (437)

and

wuk =
2π

LN
(438)
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