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1 Fourier Analysis:

Consider a function f(x), defined for x satisfying 0 ≤ x ≤ L, of the form:

f(x) =
N∑
n=1

cn sin(
nπx

L
). (1)

The coefficients cn can be found in terms of f(x) by computing the integral:

∫ L

0
f(x) sin(

mπx

L
)dx =

∫ L

0

N∑
n=1

cn sin(
nπx

L
) sin(

mπx

L
)dx. (2)

Because the sum is finite, it is possible to change the order of the sum and
the integral:
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∫ L

0
f(x) sin(

mπx

L
) =

N∑
n=1

cn

∫ L

0
sin(

nπx

L
) sin(

mπx

L
)dx. (3)

The integral can be done analytically using the trigonometric identity:

sin(a) sin(b) =
1

2i
(eiax − e−iax) 1

2i
(eibx − e−ibx) =

−1

4
(ei(a+b)x + e−i(a+b)x − ei(a−b)x − e−i(a−b)x) =

1

2
(cos((a− b)x)− cos((a+ b)x)) . (4)

Using this identity in the integrals gives∫ L

0
sin(

nπx

L
) sin(

mπx

L
)dx =

∫ L

0

1

2

(
cos(

(m− n)πx

L
)− cos(

(m+ n)πx

L
)

)
dx

For the case m 6= n this integral is

1

2

(
L

(m− n)π
sin(

(m− n)πx

L
)− L

(m+ n)π
sin(

(m+ n)πx

L
)

)
|L0 = 0

while for the case that m = n the first term is non-zero and gives∫ L

0
sin(

nπx

L
) sin(

nπx

L
)dx =

L

2
.

This gives the orthogonality relation

2

L

∫ L

0
sin(

nπx

L
) sin(

mπx

L
)dx =

{
1 : m = n
0 : m 6= n

The integral becomes

cm =
2

L

∫ L

0
f(x) sin(

mπx

L
)dx.
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If f(x) is an arbitrary function we can define approximate functions fN(x)
by

fN(x) :=
N∑
n=1

cn sin(
nπx

L
)

where the coefficients cn are given by:

cn :=
2

L

∫ L

0
f(x) sin(

mπx

L
)dx.

It is natural to ask to what extent fN approximates f

lim
N→∞

(f(x)− fN(x))
?

→
0

This is the basic problem of Fourier analysis. In order to answer this both
the class of functions and nature of the convergence need to be defined.

It turns our that this works for a large class of functions. This will be
discussed later. Let us define

φ(x) =

√
2

L
sin(

πx

L
).

‘ The Fourier expansion has the form

fN(x) :=
N∑
n=1

cnφ(nx).

The normalization integral becomes∫ L

0
φ(nx)φ(mx)dx = δmn

If we want to approximate a function on the interval [nL, (n + 1)L] we can
use

fN(x) :=
N∑
m=1

cmφ(mx− nL).

where the φn(x) is defined to be 0 outside of the interval [0, L]. It follows
that functions of the form φ(mx − nL) can be used to approximate a large
class of functions.
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These expressions look very much like the relations that express vectors
in terms of orthogonal unit vectors. They are infinite dimensional versions
of these vector relations.

Wavelets attempt to do a similar thing. The idea is to start with a

“mother function” (like
√

2
L

sin(πx
L

)) and use scaling and translations to gen-
erate a basis.
note: The Fourier sine series can be thought of as defining a basis for odd
functions on [−L,L], while Fourier cosine series can be thought of as defining
a basis for even functions on [−L,L]. Since any function on [0, L] can be
extended uniquely to an even or odd function of [0, L], we can represent
any function on [0, L] by sines or cosines. What this means in practice, if
the interval [0, L] corresponds to half of a wavelength we can use sines or
cosines. If the interval corresponds to a full wavelength we need both sines
and cosines.

2 Periodic Functions:

The Fourier series provides a useful representation for functions that are
periodic. A function f(t) is periodic with period T if T is the smallest number
for which f(t+ T ) = f(t) for all t.

The functions sin(n2πt
T

), cos(n2πt
T

) are easily seen to satisfy this condition
with period T .

One can show (see later) that (almost) any periodic function with period
T can be approximated to arbitrary accuracy in the mean, L2[0, T ], by a
series of the form:

fN(t) = c0 +
N∑
n=1

cn cos(
n2πt

T
) +

N∑
n=1

dn sin(
n2πt

T
) (5)

where

c0 =
1

T

∫ T

0
f(t)dt (6)

cn =
2

T

∫ T

0
f(t) cos(

n2πt

T
)dt (7)

dn =
2

T

∫ T

0
f(t) sin(

n2πt

T
)dt. (8)
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Note that, as was discussed in the first section, for functions defined on
[0, T/2] (half of the full wavelength) it is possible to use just sines or cosines.

The nature of the convergence is that if f(x) is any (complex) function
that satisfies

‖f‖ = [
∫ T

0
f ∗(t)f(t)dt]1/2 <∞ (9)

then for every .pdfilon > 0 there is an N.pdfilon such that for any N >
N.pdfilon ∫ T

0
(f ∗(t)− f ∗N(t))(f(t)− fN(t))dt < .pdfilon2 (10)

This is called L2[0, T ] or convergence or convergence in the mean.
If the function is continuous and periodic the convergence is uniform and

pointwise. The class of functions satisfying ‖f‖ <∞ is larger because it also
includes discontinuous functions, and functions with mild singularities. For
these functions the pointwise convergence is replaced by convergence in the
mean.

Since many signals are periodic, the Fourier coefficients are useful param-
eterizations of the signal.

3 Complex Fourier Series:

The functions

ei
2nπx
L = cos(

2nπx

L
) + i sin(

2nπx

L
) (11)

and

e−i
2nπx
L = cos(

2nπx

L
)− i sin(

2nπx

L
) (12)

can be use to express cos(2nπx
L

) and sin(2nπx
L

) as linear combinations of e−i
nπx
L

and ei
nπx
L .

In this case the Fourier expansion can be written as

f(x) = fr(x) + ifi(x) =
∞∑

n=−∞
cne

i 2nπx
L . (13)

If we take the complex conjugate of this equation it becomes

f ∗(x) = fr(x)− ifi(x) =
∞∑

n=−∞
c∗ne
−i 2nπx

L =
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∞∑
n=−∞

c∗−ne
i 2nπx

L . (14)

If we use
cn = cnr + icni c∗n = cnr − icni (15)

we can separate the real and imaginary parts of these expressions:

fr(x) =
∞∑

n=−∞
[
(cnr + c−nr)

2
cos(

2nπx

L
)− cni − c−ni

2
sin(

2nπx

L
)] (16)

and

fi(x) =
∞∑

n=−∞
[
(cnr − c−nr)

2
sin(

2nπx

L
) +

cni + c−ni
2

cos(
2nπx

L
)] (17)

Except for the special case of n = 0, the sums over negative and positive
values of n give identical values which means that these equations can be
written as

fr(x) = c0r +
∞∑
n=1

[(cnr + c−nr) cos(
2nπx

L
)− (cni − c−ni) sin(

2nπx

L
)] (18)

fi(x) = c0i +
∞∑
n=1

[(cnr − c−nr) sin(
2nπx

L
) + (cni + c−ni) cos(

2nπx

L
)] (19)

which is the usual form of the Fourier series in terms of trigonometric func-
tions.

This shows that the complex form of the series has the same content as
the real from. The Fourier coefficients in

f(x) =
∞∑

n=−∞
cne

i 2nπx
L (20)

can be evaluated

cn =
1

L

∫ L

0
e−i

2nπx
L f(x)dx (21)

If the function f(x) is real, then the coefficients satisfy c∗n = c−n, which
is equivalent to setting cnr = c−nr and cni = −c−ni. These conditions also
ensure that fi(x) in the expression above vanishes.

Note that we have freely changed the orders of sums and integrals. This
is not generally justified for infinite sums. The proper treatment is us use
finite sums and then show that the limit exists and converges to the desired
function.
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4 Fourier Transform:

The Fourier transform is a continuous version of the Fourier series. The
Fourier transform of f(x) is given by

f̃(k) =
1√
2π

∫ ∞
−∞

e−ikxf(x)dx (22)

The functions f̃(k) play the role of the coefficients cn, and the integral over
k replaces the sum over n.

The inverse Fourier transform is given by

f(x) =
1√
2π

∫ ∞
−∞

eikxf̃(k)dk (23)

This follows from the key result:

f(x) =
1

2π

∫ ∞
−∞

dk
∫ ∞
−∞

dyeik(x−y)f(y) (24)

for f(x) piecewise continuous and absolutely integrable. The origin of the
factor 2π is because ∫

ei2πkxdk =
1

2π

∫
eikxdk. (25)

In order to prove the key result first note that the second integral only
makes sense after the first one is done. To interchange the order of integration
we replace the k integral by the limit of integrals over a finite region:

f(x) = lim
λ→∞

1

2π

∫ λ

−λ
dk
∫ ∞
−∞

dyeik(x−y)f(y) = (26)

lim
λ→∞

1

2π

∫ ∞
−∞

dy
∫ λ

−λ
dkeik(x−y)f(y). (27)

Because the integrand is absolutely integrable we can change the order of
integration to get

lim
λ→∞

1

2π

∫ ∞
−∞

dy
eiλ(x−y) − e−iλ(x−y)

i(x− y)
f(y) = (28)

lim
λ→∞

1

π

∫ ∞
−∞

dy
sin(λ(x− y))

(x− y)
f(y). (29)
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To motivate the proof let t = x− y:

lim
λ→∞

1

π

∫ ∞
−∞

dt
sin(λt)

t
f(x− t) (30)

and s = λt

lim
λ→∞

1

π

∫ ∞
−∞

ds
sin(s)

s
f(x− s

λ
) (31)

If we could bring the limit inside of the integral and the integrand was con-
tinuous we would get the desired result (after doing the s integral). Since we
cannot justify this interchange, and we want to allow for the possibility that
the function might have some isolated discontinuities, we have to be more
careful.

First separate this into two cases - one where s is positive and one where
s is negative. We also undo the s = λt substitution to get:

lim
λ→∞

1

π
[
∫ 0

−∞
dt

sin(λt)

t
f(x− t)) +

∫ ∞
0

dt
sin(λt)

t
f(x− t)]. (32)

To evaluate this we treat each of the two terms separately. We will need
the result

1

π

∫ 0

−∞
ds

sin(s)

s
=

1

π

∫ ∞
0

ds
sin(s)

s
=

1

2
(33)

which can be checked numerically or by using a tables of integrals.
We consider the second term in (??). The treatment of the first term in

similar. The second term is

lim
λ→∞

1

π

∫ ∞
0

dt
sin(λt)

t
f(x− t).

We break the region of integration up into three parts:∫ ∞
0

=
∫ δ

0
+
∫ T

δ
+
∫ ∞
T

(34)

We want to show that we can choose T , λ large enough, and δ small
enough that this integral is within a prescribed .pdfilon of the left hand
limit of f(x)/2 = f(x− 0+)/2. To this end we fix any .pdfilon > 0.
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If f(x) is absolutely integrable then

|
∫ ∞
T

dt
sin(λt)

t
f(x− t)]| ≤

∫ ∞
T

dt|f(x− t)
t

| <∞

In order that this integral converge there must be a sufficiently large T such
that ∫ ∞

T
dt|f(x− t)

t
| < .pdfilon

3

Note that this choice is independent of λ. This shows that it is possible to
choose T sufficiently large so the contribution from

∫∞
T is less than .pdfilon/3

Next consider the choice of δ which is in the integral

1

π

∫ δ

0
dt

sin(λt)

t
f(x− t). (35)

Since f(x) is assumed to have only isolated discontinuities we can assume
the either f(x − t) is continuous at t = 0 or discontinuous at t = 0, and
continuous in (0, δ]. I will not consider the most general case, I will assume
that the derivative of f(x−t) is also continuous on (0, δ] (i.e. except possibly
at t = 0). Then the mean value theorem implies

f(x− t) = f(x− 0+) + tgx(t)

where gx(t) is continuous in t. With this replacement

1

π

∫ δ

0
dt

sin(λt)

t
(f(x− 0+) + tgx(t)) =

f(x− 0+)

π

∫ δ

0
dt

sin(λt)

t
+

1

π

∫ δ

0
dt sin(λt)gx(t)) (36)

The second term is bounded by gmaxδ
π

where gmax is the maximum value of
gx(t) for 0 ≤ t ≤ δ. We can choose δ so this is less than .pdfilon/3

Give δ and T the middle integral can be made as small as desired by
integrating by parts and choosing λ large enough

| 1
π

∫ T

δ
dt

sin(λt)

t
f(x− t)| ≤ (37)

9



1

λπ
|cos(λδ)

δ
f(x−δ)−cos(λT )

T
f(x−T )− 1

π

∫ T

δ
dt cos(λt)(

f(x− t)
t2

−f
′(x− t)
t

)|
(38)

As long a f ′ is continuous the expression in the absolute value is bounded and
independent of λ. The 1/λ term makes this expression vanish as λ → ∞.
It follows that λ can be chosen to be sufficiently large so this is less than
.pdfilon/3

Putting everything together gives the following

| 1

2π

∫ ∞
−∞

dy
∫ λ

−λ
dkeik(x−y)f(y)−(f(x− 0+) + f(x+ 0+)

π

∫ δ

0
dt

sin(λt)

t
| < 2.pdfilon

(39)
The factor of 2 comes from the −∞→ 0 integral. Since the .pdfilon can be
made as small as desired and the estimate is independent of λ for sufficiently
large λ, we can take the lim as λ→∞ which gives

lim
λ→∞

1

2π

∫ ∞
−∞

dy
∫ λ

−λ
dkeik(x−y)f(y) =

(f(x− 0+) + f(x+ 0+)

2
(40)

We write the final result as

f(x) =
1

2π

∫ ∞
−∞

dk
∫ ∞
−∞

dyeik(x−y)f(y) (41)

or
1

2π

∫ ∞
−∞

dk
∫ ∞
−∞

dyeik(x−y) = δ(x− y) (42)

where
f(x)

∫ ∞
−∞

δ(x− y)f(y)dy (43)

with the understanding that this form is only valid at points of continuity.
This can be extended to square integrable functions, functions without lo-

cal continuous derivatives (and more general classes of functions) by approx-
imating them in the mean by functions that are also absolutely integrable.
This is a technicality that is neither difficult nor important.

exercise 1: show by plotting that | sin(x)/x| ≤ 1

exercise 2: show (using mathcad) that
∫ λ
0 dx sin(x)/x approaches π

2
as λ gets

large.
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5 Spaces of Functions

It is claimed that the Fourier series can be used to approximate a large class
of functions defined on the interval [0, L]. This raises a number of questions
such as (a) what is the class of functions and (b) what is meant by the term
“approximate”?

There are many possible answers to these two questions. In quantum
mechanics the appropriate class of functions are complex functions f(x) =
fr(x) + ifi(x) that are square integrable in the sense:

‖f‖2 =
∫ L

0
f(x)∗f(x)dx =

∫ L

0
(f 2
r (x) + f 2

i (x))dx <∞ (44)

The answer to what do we mean by approximate is that if fN(x) is the
partial series constructed from the first 2N + 1 terms in Fourier series:

fN(x) =
N∑

n=−N
cne

i 2nπx
L (45)

with

cn =
1

L

∫ L

0
e−i

2nπx
L f(x)dx (46)

then we require that for every .pdfilon > 0 there is an N.pdfilon such that
for any N > N.pdfilon that

‖f − fN‖ < .pdfilon. (47)

This means that if we can always choose N large enough so that the integral
of the square of the difference between the exact and approximate functions
are small.

Note that while this kind of convergence is physically relevant in quantum
mechanics, it does not always mean that the difference has to be small at
every point. To see this consider a function that has value 1/.pdfilon if x is
within ±.pdfilon2/2 of L/2 and zero otherwise. The integral of this function
is .pdfilon which vanishes as .pdfilon → 0, but at the point x = L/2, the
value of the function is 1/.pdfilon → ∞ as .pdfilon → 0. If f − fN was
this function with .pdfilon = 1/N , then fN → f in the above sense, but the
difference at the point x = L/2 is arbitrarily large.
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This same point is illustrated with the Gibbs phenomena, the difference
between the Fourier approximations and the exact function leads to large
oscillations near points where the function has discontinuous derivatives.

The simplest proof of the above result uses a classical result about poly-
nomials due to Weierstrass. The Weierstrass theorem states that any con-
tinuous function of [0, L] can be uniformly approximated by a finite degree
polynomial, pn(x). What is essential is that L < ∞ and the end points are
points of continutiy. In this case the both the class of functions (continu-
ous) and the convergence (uniform) is different. Uniform convergence simply
means that for every .pdfilon > 0 there is an N.pdfilon such that for any
n > N.pdfilon

|f(x)− pn(x)| < .pdfilon (48)

independent of x ∈ [0, L]. Here the class of functions is smaller but the
convergence is stronger. This can be used to eventually derive the result
for the L2[0, L] convergence of the Fourier series to any square integrable
function.

The idea of the proof of the Weierstrass theorem is based on some key
elements:
1.) First, using an additional polynomial if necessary, extend the function to
a continuous function that vanishes outside of a fixed bounded interval.
2.) Pick a set of functions pn(t) that are polynomials in some sufficiently
large region, are continuous and identically zero outside of that region, and
have two important properties. The first is that they always integrate to
1. The second is that they decrease strongly with increasing n except at
the point t = 0. An example would be something like cn(L

2−t2
L2 )n, where the

constant cn is chosen so the integral is 1.
3.) The integral

∫
f(s)pn(x− s)ds defines functions that are polynomials on

the appropriate region and are approximations to f(s). The fact that f(s) is
bounded and continuous on the interval [0, L] is essential to show there is a
sufficiently small interval such that f(s) can be approximated by a constant
in any given interval of that size. This is enough to ensure that for sufficiently
large N that this polynomial is close to the whole function.
4.) The next step is to convert the Fourier series to a series in two polynomial
variables. If the function is not periodic, the discontinuities can be fixed with
small square integrable corrections.
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6 Wavelets

We begin by considering the continuous wavelet transform. This is like the
Fourier transform. Both continuous and discrete wavelets are built from a
single function called the mother function. We use the notation, M(x),
for the mother function

Before considering general properties of a mother function we define trans-
lations and scale transformations of M(x)

Mt,s(x) := |s|−pM(
x− t
s

). (49)

The factor p is at our disposal. These functions are the wavelets associated
with the mother function M(x). We investigate conditions on the mother
function that allow one to expand any function in terms of wavelets.

We can choose p to satisfy certain properties. Note that∫ ∞
−∞

∣∣∣∣|s|−pM(
x− t
s

)
∣∣∣∣q dx =

|s|1−qp
∫ ∞
−∞
|M(u)|qdu (50)

It follows that if p = 1/q the q-norm

‖M‖q :=
(∫ ∞
−∞
|M(u)|qdu

)1/q

(51)

is preserved under scale transformations. This is a nice feature, but it not of
any fundamental importance. With p = 1/q:

‖M‖q = ‖Mt,s‖q for all s, t (52)

The continuous wavelet transform of f is defined by the formula:

f̂(s, t) :=
∫ ∞
−∞

M∗
s,t(x)f(x)dx = (Ms,t, f) (53)

where ∗ indicates the complex conjugate in the case that the mother function
is complex. In what follows a ˆ is used to indicate the wavelet transform of
a function.
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We investigate the condition on the mother function so this expression
can be inverted to express f(x) in terms of f̂(s, t).

Parseval’s identity for the Fourier transform ensures that the wavelet
transform can be expressed in terms of the function and the mother function
or in terms of their Fourier transforms:

f̂(s, t) = (Ms,t, f) = (M̃s,t, f̃) (54)

where the ∼ indicates the Fourier transform defined by:

M̃s,t(k) =
1√
2π

∫ ∞
−∞

e−ikxMs,t(x)dx (55)

f̃(k) =
1√
2π

∫ ∞
−∞

e−ikxf(x)dx. (56)

Note that Parseval’s identity states (f, f) = (f̃ , f̃), however using this
with f = g + h and f = g + ih gives

(g, g) + (h, h) + (g, h) + (h, g) = (g̃, g̃) + (h̃, h̃) + (g̃, h̃) + (h̃, g̃) (57)

and

(g, g) + (h, h) + i(g, h)− i(h, g) = (g̃, g̃) + (h̃, h̃) + i(g̃, h̃)− i(h̃, g̃) (58)

which, using the identities (g, g) = (g̃, g̃) and (h, h) = (h̃, h̃), gives the solu-
tion to (??) and (??):

(g, h) = (g̃, h̃) (59)

which is the form of Parseval’s identity that was used in (??).
The Fourier transform of Ms,t(x) can be expressed in terms of the Fourier

transform of the mother function:

M̃s,t(k) :=
1√
2π

∫ ∞
−∞

e−ikx|s|−pM(
x− t
s

)dx =

1√
2π

∫ ∞
−∞

e−iksue−ikt|s|−p+1M(u)du =

|s|1−pe−iktM̃(sk). (60)
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This is useful because the Fourier transform can be expressed in terms of the
Fourier transform of the mother function.

The inner product of the Fourier transforms gives

f̂(s, t) = (M̃s,t, f̃) =∫ ∞
−∞

M̃∗
s,t(k)f̃(k)dk∫ ∞

−∞
|s|1−peiktM̃∗(sk)f̃(k)dk (61)

Multiply both sides of (??) by e−ik
′t and integrate over t to get

1

2π

∫ ∞
−∞

e−ik
′t(M̃s,t, f̃)dt =

|s|1−pM̃∗(sk′)f̃(k′), (62)

were we have used the representation of the delta function:

1

2π

∫ ∞
−∞

e−i(k
′−k)tdt = δ(k′ − k). (63)

The right had side of (??) is multiplied by the Fourier transform of the
original function. We can’t divide by M̃∗(sk′) because it might be zero for
some values of k′. Instead, the trick is to eliminate it using the variable s.

Multiply both sides of this equation by M̃(sk′) and a yet to be determined
weight function w(s) and integrate over s. This gives

1

2π

∫ ∞
−∞

w(s)ds
∫ ∞
−∞

dte−ik
′tM̃(sk′)f̂(s, t) =

f̃(k′)
∫ ∞
−∞

w(s)ds|s|1−pM̃∗(sk′)M̃(sk′) = f̃(k′)Y (k′) (64)

where
Y (k′) =

∫ ∞
−∞

dsw(s)|s|1−p|M̃(sk′)|2. (65)

In order to be able to extract the Fourier transform of the original func-
tion, it is sufficient that Y (k′) satisfies 0 < A ≤ Y (k′) ≤ B < ∞ for some
numbers A and B. In this case
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f̃(k) =
1

2πY (k)

∫ ∞
0

w(s)ds
∫ ∞
−∞

dte−iktM̃(sk)f̂(s, t). (66)

It is convenient to rewrite this in terms of the wavelet basis:

f̃(k) =
1

2πY (k)

∫ ∞
−∞

w(s)|s|p−1ds
∫ ∞
−∞

dtM̃s,t(k)f̂(s, t). (67)

We define the dual wavelet by

M̃ s,t(k) =
1

2πY (k)
M̃s,t(k). (68)

The dual wavelet is distinguished from the ordinary wavelet by having the
parameters s, t appearing as superscripts rather than subscripts.

The inversion formula can be expressed in terms of the dual wavelet by

f̃(k) =
∫ ∞
−∞

w(s)sp−1ds
∫ ∞
−∞

dtM̃ s,t(k)f̂(s, t). (69)

In order to recover the original function we take the inverse Fourier trans-
form of this expressions:

f(x) =
1√
2π

∫ ∞
−∞

dkeikxf̃(k) =

∫ ∞
−∞

w(s)|s|p−1ds
∫ ∞
−∞

dtM s,t(x)f̂(s, t) (70)

where

M s,t(x) =
1√
2π

∫ ∞
−∞

dkeikxM̃ s,t(k). (71)

In general this is a tedious procedure because the dual wavelet M s,t(x) must
be computed using (??) and ( ??) for each value of s and t. If the dual
wavelet also had a mother function, then it would only be necessary to Fourier
transform the “dual mother” and then all of the other Fourier transforms
could be expressed in terms of the transform of the dual mother.

The first step is to investigate the structure of the dual wavelets in x-
space:

M s,t(x) =
1√
2π

∫ ∞
−∞

dkeikxM̃ s,t(k) =
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1√
2π

∫ ∞
−∞

dkeikx
1

2πY (k)
|s|1−pe−iktM̃(sk) =

M s,0(x− t)

where

M s,0(x) =
1√
2π

∫ ∞
−∞

dkeikx
1

2πY (k)
|s|1−pM̃(sk).

This shows for a single scale the dual wavelet and its translation can be
expressed in terms of a single function. This is not necessarily true for the
dual wavelet and the scaled quantity.

M s,0(x) =
1√
2π

∫ ∞
−∞

dkeikx
1

2πY (k)
|s|1−pM̃(sk) =

M s,0(x) =
1√
2π

∫ ∞
−∞

dueiu
x
s

1

2πY (u/s)
|s|−pM̃(u).

This fails to be a rescaling of the single function due to the s dependence in
the quantity Y (u). It follows that if we can find a weight function w(s) such
that Y (u/s) = Y (u) then the dual wavelet will satisfy

M s,0(x) =
1√
2π

∫ ∞
−∞

dueiu
x
s

1

2πY (u/s)
|s|−pM̃(u) = |s|−pM1,0(x/s). (72)

Note that in this case Y (u) is a constant which we denote by Y . The function
M1,0(x) serves as the dual mother wavelet.

To show how to choose w(s) note that

Y (sk) =
∫ ∞
−∞

dtw(t)|t|1−p|M̃(tsk)|2.

Let t′ = st to get

Y (sk) =
∫ ∞
−∞

dtw(t)|t|1−p|M̃(tsk)|2

|s|p−2
∫ ∞
−∞

dt′w(t′/s)|t|′1−p|M̃(t′k)|2.

This will equal Y (k) provided

w(t′) = |s|p−2w(t′/s) w(s) = |s|p−2w(1).
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With this choice

Y (k) = w(1)
∫ ∞
−∞

dt

|t|
|M̃(t)|2 = Y.

Assuming this choice of weight the admissibility condition becomes

0 < A ≤ Y ≤ B <∞

Having computed the constant Y it is now possible to write down an
explicit expression for the dual mother wavelet:

M s,0(x− t) =

|s|−p√
2π

∫ ∞
−∞

dueiu
(x−t)
s

1

2πY
M̃(u)

Letting k = u/s

1√
2π

∫ ∞
−∞

dk
1

2πY +
|s|1−peik(x−t)M̃(ks)

1√
2π

∫ ∞
−∞

dk
1

2πY
eikxM̃s,t(k).

This has the form

M s,t(x) =
1

2π

1

Y
Ms,t(x). (73)

Thus the inversion procedure can be summarized by the formulas:

f(x) =
∫ ∞
−∞
|s|2p−3ds

∫ ∞
−∞

dtM s,t(x)f̂(s, t) (74)

Y =
∫ ∞
−∞

dt

|t|
|M̃(t)|2 (75)

M s,t(x) =
Ms,t(x)

2πY
(76)

Ms,t = |s|−pM(
x− t
s

). (77)

The only condition on the mother function is 0 < Y <∞. This requires that
the Fourier transform of the mother function vanishes at the origin.
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If we use the representation for the wavelet transform we get a represen-
tation of a delta function:

δ(x− y) =∫ ∞
−∞
|s|2p−3ds

∫ ∞
−∞

dtM s,t(x)M∗
s,t(y) =

1

2πY

∫ ∞
−∞
|s|2p−3ds

∫ ∞
−∞

dtMs,t(x)M∗
s,t(y).

We can also use this to formulate a Parseval’s identity for wavelets

(f, f) =
1

2πY

∫ ∞
−∞
|s|2p−3ds

∫ ∞
−∞

dt|f̂(s, t)|2. (78)

Consider the example of the Mexican hat wavelet. The mother function
is

M(x) =
1√
2π

(x2 − 1)e−x
2/2

To work with the Mexican hat mother function it is useful to derive
general properties of Gaussian integrals:∫ ∞

−∞
e−ax

2+bx+cdx =

∫ ∞
−∞

e−a(x− b
2a

)2+ b2

4a
+cdx.

Change variables to y =
√
a(x− b

2a
) to obtain:

e
b2

4a
+c

√
a

∫ ∞
−∞

e−y
2

dy =

√
π

a
e
b2

4a
+c.

This can be used to compute the Fourier transform of the Mexican hat
mother function:

M̃(k) =
1√
2π

∫ ∞
−∞

e−ikxM(x)dx =
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1

2π

∫ ∞
−∞

(x2 − 1)e−x
2/2−ikxdx

To do the integral insert a parameter a which will be set to 1 at the end of
the calculation:

(−2
d

da
− 1)

1

2π

∫ ∞
−∞

e−x
2a/2−ikxdx =

(−2
d

da
− 1)

1

2π

√
2π

a
e−

k2

2a =

(
1

a
− k2

a2
− 1)

√
1

2πa
e−

k2

2a .

In the limit that a→ 1 this becomes

−
√

1

2π
k2e−

k2

2 .

Using this expression it is possible to calculate the coefficient Y

Y =
∫ ∞
−∞

dk

|k|
|M̃(k)|2 =

∫ ∞
−∞

dk

|k|
|M̃(k)|2 =

1

2π

∫ ∞
−∞
|k|3dke−k2 =

1

π

∫ ∞
0

k3dke−k
2

.

Inserting a parameter a which will eventually be set to 1 gives

1

2π
(− d

da
)
∫ ∞

0
2kdke−ak

2

=

1

2π
(− d

da
)
1

a

∫ ∞
0

dve−v =

1

2π
.

This satisfies the essential inequality 0 < Y <∞ which ensures the admissi-
bility of the Mexican hat mother function.
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The expression for the wavelet transform and its inverse can be written
as:

f̂(s, t) = |s|−p
∫ ∞
−∞

dx
1√
2π

((
x− t
s

)2 − 1)e−(x−t
s

)2/2f(x) =

|s|1−p
∫ ∞
−∞

du
1√
2π

(u2 − 1)e−u
2/2f(su+ t).

where x = su+ t
The inverse is formally given by

f(x) =
∫ ∞
−∞
|s|2p−3ds

∫ ∞
−∞

dt
Mst(x)

2πY
f̂(s, t) =

∫ ∞
−∞
|s|2p−3ds

∫ ∞
−∞

dt
1√
2π
|s|−p((x− t

s
)2 − 1)e−(x−t

s
)2/2f̂(s, t)

1√
2π

∫ ∞
−∞
|s|p−3ds

∫ ∞
−∞

dt((
x− t
s

)2 − 1)e−(x−t
s

)2/2f̂(s, t)

1√
2π

∫ ∞
−∞
|s|p−3ds

∫ ∞
−∞

du(u2 − 1)e−u
2/2f̂(s, su+ x)

where t = su+ x.

7 Scaling Functions and Wavelets

The concept of scaling functions is most easily understood using Haar wavelets
(these are the ones made out of simple box functions).

In this example the scaling function is given by

φ(x) =


0 x ≤ 0
1 0 < x ≤ 1
0 x > 1

. (79)

Note that this is normalized so

(φ, φ) :=
∫ ∞
−∞

φ∗(x)φ(x)dx =
∫ 1

0
φ∗(x)dx = 1. (80)
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Define the unit translation operator T by

(Tψ)(x) = ψ(x− 1). (81)

This operator moves φ(x) to the right by 1 unit. The translation operator
has the following properties:

(Tψ, Tχ) =
∫ ∞
−∞

ψ∗(x− 1)χ(x− 1)dx = (82)

changing variables y = x− 1 gives:∫ ∞
−∞

ψ∗(y)χ(y)dy = (ψ, χ) (83)

or
(Tψ, Tχ) = (ψ, χ). (84)

If A is a linear operator its adjoint A† is defined by the relation

(ψ,A†χ) = (Aψ, χ). (85)

It follows that

(ψ, T †χ) = (Tψ, χ) =
∫ ∞
−∞

ψ∗(x− 1)χ(x)dx. (86)

Changing variables to y = x− 1 gives

(ψ, T †χ) =
∫ ∞
−∞

ψ∗(y)χ(y + 1)dy (87)

or
(T †ψ)(x) = ψ(x+ 1). (88)

Since
(ψ, χ) = (Tψ, Tχ) = (ψ, T †Tχ) (89)

we see that T † = T−1. An operator whose adjoint is its inverse is called
unitary. Unitary operators preserve inner products.

It follows from the definition of the scaling function φ(x) that

(Tmφ, T nφ) = (φ, T n−mφ) =
∫ ∞
−∞

φ∗(x)φ(x− n+m)dx =
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∫ 1

0
φ(x− n+m)dx = δnm (90)

This means the functions

φm(x) := (T nφ)(x) = φ(x− n) (91)

are orthonormal. There are an infinite number of these functions as n :
−∞→∞ in integer s.pdf.

Define V0 to be the subspace of the space of square integrable functions
of the form

f(x) =
∞∑

n=−∞
fnφn(x) =

∞∑
n=−∞

fn(T nφ)(x) (92)

where the square integrability requires that the coefficients satisfy

∞∑
n=−∞

|fn|2 <∞. (93)

This is the space of square integrable functions that are piecewise con-
stant on each unit interval. Note that while there are an infinite number
of functions in V0, it is a small subspace of the space of square integrable
functions.

In addition to translations, we define a linear operator D corresponding
to scale transformations:

(Dψ)(x) =
1√
2
ψ(x/2). (94)

When this is applied to the scaling function it gives

(Dφ)(x) =


0 x ≤ 0

1√
2

0 < x ≤ 2

0 x > 2

(95)

This function has the basic box structure, except it is twice as wide as
the original scaling function and shorter by a factor of

√
2. Note that the

normalization ensures

(Dψ,Dχ) =
∫ ∞
−∞

1

2
ψ∗(x/2)χ(x/2)dx = (96)
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setting y = x/2, ∫ ∞
−∞

2

2
ψ∗(2)χ(y)dy = (ψ, χ) (97)

or
(Dψ,Dχ) = (ψ, χ). (98)

To compute the adjoint of D note that

(ψ,D†χ) = (Dψ, χ) =
∫ ∞
−∞

1√
2
ψ∗(x/2)χ(x)dx. (99)

Setting y = x/2 ∫ ∞
−∞

ψ∗(y)
√

2χ(2y)dy (100)

implies that
(D†χ)(x) =

√
2χ(2x). (101)

This shows that D† = D−1 with D also unitary.
Define the functions

φmn(x) = (Dmφn)(x) = 2−m/2φ(2−mx− n) = 2−m/2φ(2−m(x− 2mn)). (102)

It follows that for fixed m

(φmn, φmk) = (Dmφn, D
mφk) = (φn, D

m−mφk) = (φn, φk) = δnk (103)

This shows that the functions φmn(x) for fixed m are orthonormal. We define
the subspace Vm of the square integrable functions to be those functions of
the form:

f(x) =
∞∑

n=−∞
fnφmn(x) =

∞∑
n=−∞

fn(DmT nφ)(x) (104)

where the square integrability requires that the coefficients satisfy

∞∑
n=−∞

|fn|2 <∞. (105)

Normally the scaling function is the solution of a scaling equation. The
scaling equation relates the (Dφ)(x) to translates of the original scaling func-
tion. The general form of this relation is

(Dφ)(x) =
∑

hlT
lφ(x) (106)
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where hl are fixed constants.
In general this equation cannot be solved analytically. In the Haar case

we can write down the solution realizing that the scaled box is stretched over
two adjacent boxes with a suitable reduction in height:

Dφ(x) =
1√
2
φ(x/2) =

1√
2
φ(x) +

1√
2
Tφ(x) =

1√
2
φ(x) +

1√
2
φ(x− 1). (107)

Here h0 = h1 = 1/
√

2. This equation is special to the Haar wavelets. The
best way to think of this is that the scaling function φ(x) is the solution of
the scaling equation up to normalization.

To proceed a few additional relations are useful. First note

DTψ(x) = Dψ(x− 1) =
1√
2
ψ(x/2− 1) =

1√
2
ψ(
x− 2

2
) = T 2Dψ(x) (108)

which leads to the operator relation

DT = T 2D. (109)

It follows from this equation that

Dφn(x) = DT nφ(x) = T 2nDφ(x) = T 2n(h0φ(x) + h1Tφ(x)) (110)

This shows that all of the basis elements in V1 can be expressed in terms of
basis elements in V0.

Specifically if ψ(x) ∈ V1 then

ψ(x) =
∞∑
−∞

ψnφ1n(x) = (111)

∞∑
−∞

ψnDφn(x) =
∞∑
−∞

(ψnh0φ2n(x) + ψnh1φ2n+1(x)) = (112)

∞∑
−∞

cnφn(x) (113)
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where
c2n = ψnh0 c2n+1 = ψnh1. (114)

It is easy to show that
∞∑
−∞
|cn|2 =

∞∑
−∞
|ψn|2 (115)

What we have shown, as a consequence of the scaling equation, is the
inclusion

V0 ⊃ V1. (116)

Similarly, it is not difficult to show the inclusions

· · · V−k ⊃ V−k+1 ⊃ · · · ⊃ V0 ⊃ · · · Vk ⊃ Vk · · · (117)

In this example there are all spaces of piecewise constant, square integrable
functions that are constant on segments that differ by powers of 2.

First note that as k → −∞ the approximation to f(x) given by

fk(x) =
∞∑

n=−∞
fknφkn(x) (118)

with
fkn =

∫ ∞
−∞

φ∗kn(x)f(x)dx (119)

is bounded by the upper and lower Riemann sums for s.pdf of width 2−k.
(to deal with the infinite interval it is best to first consider functions that
vanish outside of finite intervals and take limits). Since the upper and lower
Riemann sums converge to the same integral (when the function is integrable)
it follows that ∫ ∞

−∞
|fk(x)− f(x)|2dx < .pdfilon (120)

for sufficiently large −k.
Similarly, as k → +∞ the width of φkn(x) grows like 2k while the height

falls off like 2−k/2. Again, if the function vanishes outside of a bounded
interval then for sufficiently large k there is only one (or two) φkn(x) that are
non-vanishing where the function is non-vanishing. It follows that

fk(x) ∼ 2−k/2φkn0(x)
∫ ∞
−∞

f(x)dx (121)
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The integral of the square of this function ∼ 2−k → 0 as k →∞.
Note that ∫ ∞

−∞
fk(x)dx→

∫ ∞
−∞

f(x)dx (122)

as k →∞. This shows that this integral is finite in L1 but 0 in L2. Thus the
nature of the convergence is important. It also explains the dilemma with
expanding functions with non zero mean in terms of functions with 0 mean.

If we define the projection operators

Pkf(x) =
∞∑

n=−∞
fknφkn(x) (123)

where
fkn =

∫ ∞
−∞

φ∗kn(x)f(x)dx. (124)

The above conditions can be stated in terms of these projectors:

lim
k→−∞

Pk = I (125)

lim
k→+∞

Pk = 0 (126)

We are now ready to construct wavelets. First recall the condition

V0 ⊃ V1 (127)

Let W1 be the space of vectors in the space V0 that are orthogonal to the
vectors in V1. We can write

V0 = V1 ⊕W1 (128)

This notation means that any vector in V0 can be expressed as a sum of two
vectors - one that is in V1 and one that is orthogonal to every vector in V1.

Note that the scaling equation implies that every vector in V1 can be
expressed as a linear combination of vectors in V0 using

Dφn(x) = h0φ2n(x) + h1φ2n+1(x) (129)

Clearly the functions that are orthogonal to these in V1 on the same interval
can be expressed in terms of the functions

M1n(x) := DMn(x) = h0φ2n(x)− h1φ2n+1(x) =
1√
2

(φ2n(x)− φ2n+1(x))

(130)
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These are also the elements of V0 that satisfy

(DM1n, Dφl) = 0. (131)

Thus we have thatW1 is that space of square integrable functions of the form

f(x) =
∞∑

n=−∞
fnM1n(x) (132)

with

f(x) =
∞∑

n=−∞
|fn|2 (133)

where we have used
(M1n,M1k) = δnk (134)

which follows from the definitions.
Similarly we can express Vl = Vl+1 ⊕ Wl+1 for all values of l. For the

special case l = −1 we define the mother wavelet as

M(x) = D−1(h0φ(x)− h1Tφ(x)) = (135)

h0

√
2φ(2t)− h1

√
2φ(2(t− 1) = (φ(2t)− φ(2(t− 1)) (136)

which is manifestly orthogonal to the scaling function. Translates of this
function define a basis for W0

Mn(x) = T nM(x) = T nD−1(h0φ(x)− h1Tφ(x)) = (137)

D−1(h0φ2n(x)− h1φ2n+1(x)) (138)

It is simple to show that
(Mn,Mk) = δnk (139)

If we decompose every space we have for any k

V−k =W−k+1 ⊕ V−k+1 = (140)

W−k+1 ⊕W−k+2 ⊕ V−k+2 = (141)

W−k+1 ⊕W−k+2 ⊕ · · · ⊕Wl ⊕ Vl (142)

Note that unlike the V spaces, the Wk spaces are all mutually orthogonal,
since if k > l→Wk ⊂ Vl which is orthogonal to Wl by definition.
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If f(x) is any square integrable function the conditions

lim
k→−∞

Pk = I (143)

lim
k→+∞

Pk = 0 (144)

mean that for sufficiently large k and l that f(x) can be well approximated
by a function in

W−k+1 ⊕W−k+2 ⊕ · · · ⊕Wl (145)

This means that the function can be approximated by a linear combina-
tion of basis functions (wavelets) from each of the spaces Wr .

Basis functions for Wm are given by

Mmn(x) = DmT nM(x) = Dm−1(h0φ2n(x)− h1φ2n+1(x)) (146)

That these are a basis with the required properties is easily shown by showing
that these functions are orthogonal to Vm and can be used to recover the
remaining vectors in Vm−1.

The functions Mnl(x) satisfy

(Mnl,Mn′l′) = δnn′δll′ (147)

where the δnn′ follows from the orthogonality of the spaces Wn and Wn′ for
n 6= n′.

The δll′ follows from the unitarity of D and

(M,T nM) = δn0. (148)

To summarize the important s.pdf one starts with a scaling equation of
the form:

Dφ(x) =
∑

hlT
lφ(x) (149)

where one is normally given only the coefficients hl. This equation is solved to
find the scaling function φ(x). This, along with translations and dilitations is
used to construct the spaces Vl. The scaling equation ensures the existence of
space Wk that can be used to build discrete orthonormal basis. The mother
wavelet is expressed in terms of the scaling function and the coefficients as

M(x) = D−1(h0φ(x)− h1Tφ(x)) (150)

which is more complicated for a general scaling equation.
In general the coefficients hl must satisfy constraints for the solution to

the scaling equation to exist.
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8 Scaling Functions II

The scaling function is the solution of the scaling equation

Dφ(x) =
∑
l

hlT
lφ(x). (151)

Using the definitions of the operators D and T this equation becomes:

1√
2
φ(
x

2
) =

∑
hlφ(x− l). (152)

It can be put in the form

φ(x) =
∑
l

√
2hlφ(2x− l). (153)

The sums are assumed to be from −∞ → ∞. Finite sums are treated by
assuming that a finite number of the hl’s are non zero.

The claim is that if this equation has a solution, it is unique up to an over-
all normalization factor. To investigate this claim take the Fourier transform
of both sides of equation (??) to get

1√
2π

∫ ∞
−∞

e−ikxφ(x)dx =
∑
l

√
2hl

1√
2π

∫ ∞
−∞

e−ikxφ(2x− l)dx. (154)

Changing variables x→ 2x− l gives

1√
2π

∫ ∞
−∞

e−ikxφ(x)dx =
∑
l

1√
2
hl

1√
2π

∫ ∞
−∞

e−i(k/2)(x+l)φ(x)dx. (155)

or

φ̃(k) = φ̃(
k

2
)h̃(

k

2
) (156)

where

h̃(k) =
∑
l

hl√
2
e−ikl. (157)

This form of the scaling equation can be iterated n times to get:

φ̃(k) = φ̃(
k

2n
)

n∏
m=1

h̃(
k

2m
) (158)
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This equation holds for any n. For a finite n, an approximation can be
made by a finite number of iterations of the form

φ̃n(k) = φ̃n−1(
k

2
)h̃(

k

2
) (159)

for any starting function φ̃0(k). In the limit of large n the function φ̃m(k)
should converge to the scaling function. It is clear that this result is approx-
imately independent of the choice of starting function; it really depends on
the coefficients hl.

If the limit exists as n → ∞ and the scaling function is continuous in a
neighborhood of zero then

φ̃(k) = lim
n→∞

φ̃(
k

2n
)
n∏
l=1

h̃(
k

2l
) =

φ̃(0)
∞∏
l=1

h̃(
k

2l
) (160)

If the infinite product converges, then we have an expression for the scal-
ing function, up to normalization, which is fixed by assigning a value to
φ̃(0).

The coefficients hl are not arbitrary. First note that setting k = 0 gives

1 =
∞∏
l=0

h̃(0) (161)

or

h̃(0) = 1 =
∑
l

hl√
2

(162)

or ∑
l

hl =
√

2. (163)

This condition is clearly satisfied by the Haar wavelets. This is a necessary
condition on the scaling coefficients in order to have a solution to the scaling
equation.

Another condition is that is needed to make a multiresolution analysis is
the orthogonality of the unit translates, (φn, φm) = δnm. This requires

2
∑
lk

h∗l hk

∫ ∞
−∞

φ∗(2x− 2n− l)φ(2x− 2m− k)dx =
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2
∑
lk

h∗l hk

∫ ∞
−∞

φ∗(2x)φ(2x− 2(m− n)− (k − l))dx =

∑
lk

h∗l hk

∫ ∞
−∞

φ∗(x)φ(x− 2(m− n)− (k − l))dx

∑
l

h∗l hl−2(m−n) = δmn (164)

or equivalently ∑
l

h∗l−2mhl = δm0. (165)

This is trivially satisfied for the Haar wavelets. Note that since∑
m

hn+2m =
∑
m

hn+2m+2k (166)

the m sum has two values according to whether n is even or odd:

he :=
∑
m

h2m ho :=
∑
m

h2m+1. (167)

This means that ∑
m,n

h∗nhn+2m =
∑
m

δm0 = 1 =

he
∑
n

h∗2n + ho
∑
n

h∗2n+1 = 1 (168)

or
h∗ehe + h∗oho = 1 (169)

We also have
he + ho =

√
2 (170)

Assuming that the coefficients hl are real these can be solved to get

he = ho =
1√
2
. (171)

These condition are useful checks and uniquely determine the Haar coeffi-
cients; but the essential equations are (??) and (??).

The other conditions that require some study are the ones relating the
scaling function to the mother function. The mother function satisfies

M(x) =
∑
n

√
2gnφ(2x− n). (172)
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This and all of its translates should be orthogonal to the scaling function. In
terms of the coefficients:

(Mm, φ) =
∑
n,l

hlg
∗
n(φn−2m, φl)

∑
n,l

hlg
∗
nδn−2m,l

∑
n

hn−2mg
∗
n = 0 (173)

for all m. We also need orthonormality of the translated mother function

(Mm,Mn) =
∑
l,k

glg
∗
k(φl−2m, φk−2n)

∑
k

gk−2(n−m)g
∗
k = δmn (174)

or equivalently
(Mm,M) =

∑
k

gk+2mg
∗
k = δm0 (175)

If we choose gk := (−1)khl−k where l is odd it follows that∑
k

2gk−2(n−m)g
∗
k =

∑
k

2(−)l−k+2(n−m)hk−2(n−m)(−)khl−k =

∑
k

2hk−2(n−m)hk = δmn (176)

where we have let l − k → k in the last term. It also follows that∑
n

2hn−2mg
∗
n =

∑
n

2hn−2m(−)nh∗l−n =

∑
n

2hl−n′(−)l−n
′−2mh∗n′−2m = (−)l

∑
n

2hl−n′(−)n
′
h∗n′−2m (177)

Since l is odd, the sum is equal to its negative which shows that it vanishes.
The choice of l is arbitrary - it simply involves moving the origin of the
mother. Since the mother is orthogonal to the translates of all of the father
wavelets, it does not matter where the origin is placed.
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This shows that the coefficients hl, satisfying∑
l

hl =
√

2. (178)

∑
l

hl−2mh
∗
l = δm0 (179)

gk := (−1)khl−k l odd (180)

gives a multiresolution analysis, scaling function, and a mother function using

φ(x) =
φ̃(0)√

2π

∫ ∞
−∞

eikx
∞∏
l=1

h̃(
k

2l
)dk =

φ̃(0)√
2π

∫ ∞
−∞

eikx
∞∏
l=1

∑
n

hn√
2
e−ikn/2

l

This is not a very useful representation for computation, however it indicates
that if a scaling fucntion has a finite number of coefficients hl that the scaling
function has support on

[0, N(
1

2
+

1

4
+

1

8
· · ·)] = [0, N ]

where N is the number of scaling coefficients.
An alternative is to compute the scaling function exactly on a dense set

of points. This construction also starts from the scaling equation:

φ(x) =
∑
l

√
2hlφ(2x− l) (181)

Let x = n to get
φ(n) =

∑
l

√
2hlφ(2n− l) (182)

Let k = 2n− l gives
φ(n) =

∑
k

√
2h2n−kφ(k) (183)

Which gives the eigenvalue equation

φ(n) =
∑
m

Hnmφ(m) (184)
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where
Hnm =

√
2h2n−m (185)

Eigenvectors of this equation with eigenvalue 1 are solutions of the scaling
function at integer points - up to normalization. Eigenvectors with eigenval-
ues other than 1 can be tossed out.

Rather than solve the eigenvalue problems, one of the equations can be
replaced by the condition ∑

n

φ(n) = 1 (186)

which follows from the assumption that
∫
M(x)dx = 0. The support condi-

tion implies that only a finite number of the φ(n) are non-zero. Note that
this condition can be imposed independent of the orthonormality condition.

For the case of the N = 2 Daubechies wavelets these equations are

φ(0) =
√

2h0φ(0)

φ(1) =
√

2(h0φ(2) + h1φ(1) + h2φ(0))

φ(2) =
√

2(h1φ(3) + h2φ(2) + h3φ(1))

φ(3) =
√

2h3φ(3)

1 = φ(0) + φ(1) + φ(2) + φ(3)

The first and forrth equation give φ(0) = φ(3) = 0. The second and third
equations are eigenvalue equations(

φ(1)
φ(2)

)
=

( √
2h1

√
2h0√

2h2

√
2h3

)(
φ(1)
φ(2)

)
(187)

Instead of solving the eigenvalue problem for an eigenvector with eigenvalue
1, we use

φ(1) + φ(2) = 1 (188)

with
φ(1) =

√
2(h0φ(2) + h1φ(1))

to get
φ(1) =

√
2(h0(1− φ(1)) + h1φ(1))
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which can be solved for

φ(1) =

√
2h0

1 +
√

2(h0 − h1)
(189)

and

φ(2) =
1−
√

2h1

1 +
√

2(h0 − h1)
(190)

This gives exact values of the scaling function at integer points. In this case
there are only two non zero terms.

Integer translates can be constructed using

φm(n) = φ(n−m) (191)

The scaling equation gives

φ(m/2) =
∑
l

√
2hlφ(m− l) =

∑
n

√
2hm−nφ(n). (192)

Translates of the scaled scaling function are

φn(m/2) = φ(m/2− n) = φ(
m− 2n

2
) =

∑
k

√
2hm−2n−kφ(k) =

∑
l

√
2hlφ2n−l(m) (193)

This procedure can be repeated inductively to obtain

φl(
k

2n
) = 2

n
2

∑
m1···mn

hm1 · · ·hmnφ2nl−2n−1m1−2n−2m2···−2mn−1−mn(k) =

2
n
2

∑
m1···mn

hm1 · · ·hmnφ(k− 2nl− 2n−1m1− 2n−2m2 · · · − 2mn−1−mn) (194)

Note that in any of the sums the only non-zero contributions occur when the
argument of φ(·) is 1 or 2. This equation gives exact values of the scaling
function at points x = n

2k
. These are dense and if the scaling function is

continuous this method can be used to approximate the scaling function an
any point.

This has the advantage that the function is computed exactly at many
points - with iterative metods it is computed approximately at one point.
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The general form of the equations is

2N−1∑
n=1

φ(n) = 1

φ(0) =
√

2h0φ(0)

φ(1) =
√

2(h0φ(2) + h1φ(1) + h2φ(0))

φ(2) =
√

2(h0φ(4) + h1φ(3) + h2φ(2) + h3φ(1) + h4φ(0))

...

φ(2N − 2) =
√

2(h2N−1φ(2N − 3) + h2N−2φ(2N − 2) + h2N−3φ(2N − 1))

φ(2N − 1) =
√

2h2N−1φ(2N − 1)

The middle equations are related to the pyramid algorithm.

9 Daubechies Wavelets

The Daubechies wavelets have two special properties. First is that there are a
finite number of non-zero coefficients hi. This gives them a compact support.
The second feature is that the first N moments of the wavelets are zero.

The constraint on the moments has interesting consequences. First we
note that ∫

M(x)xl = 0 l = 0 · · ·N − 1. (195)

From this we conclude∫
M0m(x)xl =

∫
M(x−m)xl =

∫
M(y)(y +m)l =

l∑
k=0

l!

k!(l − k)!
ml−k

∫
M(x)xk = 0. (196)

Similarly∫
DM(x)xl =

1√
2

∫
M(x/2)xldx = 2l+1/2

∫
M(y)yldy = 0. (197)
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It straight forward to proceed inductively to show that∫
Mnk(x)xl = 0 l = 0 · · ·N − 1. (198)

This means that every element of the Daubechies wavelet basis is orthogonal
to all polynomials of degree less than N .

If we consider instead the orthonormal basis consisting of

{T nφ(x), DmT nM(x) : −m ≥ 0} (199)

we have ∫
φm(x)xl 6= 0 l = 0 · · ·N − 1 (200)

Although the polynomials are not square integrable; we can multiply a
polynomial by a box function b(x) which is 1 between x− and x+ and zero
elsewhere. This product is square integrable and is equal to the polynomial
on the interval [x−, x+]. It follows that

p(x)b(x) =
∑
mn

cmnMmn(x) =
∑
mn

dnφn(x) +
∑
n

∑
m≤0

cmnMmn(x) (201)

where
cmn =

∫ x+

x−
Mmn(x)p(x)dx (202)

dn =
∫ x+

x−
φn(x)p(x)dx (203)

The moment condition means that the coefficients cmn = 0 whenever the
support of the wavelet is completely contained inside of the box. Thus in the
first expression the non-zero coefficients arise from end point contributions
and to many small contributions from wavelets with support that are much
larger than the box.

In the second expression the wavelets with support larger than the box
do not appear. The endpoint contributions only affect the answer within a
distance equal to the support of the wavelet from the endpoints of the box.
Inside this distance the only nonzero coefficient are due to the translates
of the scaling functions. There are a finite number of these coefficients,
and in this region they provide an exact representation of the polynomial.
Specifically let

I(x) = b(x)p(x)−
∑
n

dnφn(x) +
∑
n

∑
m≤0

cmnMmn(x) (204)
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then we have

0 = ‖I‖2 =
∫ x−+∆

x−
I(x)2dx+

∫ x+

x+−∆
I(x)2dx+

∫ x+−∆

x−+∆
|p(x)−

∑
n

dnφn(x)|2dx. (205)

Since all three terms are non-negative we conclude that∫ x+−∆

x−+∆
|p(x)−

∑
n

dnφn(x)|2dx = 0. (206)

Since ∆ is fixed by the choice of the wavelet and x± is arbitrary we have∫ b

a
|p(x)−

∑
n

dnφn(x)|2dx = 0 (207)

for any interval [a, b]. Since p(x) and φ(x) are continuous (we did not prove
this for φ(x) - but that is the claim in the literature) and the sum of translates
is finite it follows that

p(x) =
∑
n

dnφn(x) (208)

pointwise on every finite interval. This establishes the desired result.
Note that expansion in the wavelet basis gives all coefficients zero. This

is not a contradiction because none of the polynomials are square integrable.
This is reminiscent of the initial problem that we had in representing func-
tions that did not average to zero. The key point is that once one puts a box
around a function, wavelets with very large support (large m) lead to many
small contributions.

What is interesting is that even though the Daubechies wavelets do not
have order N smoothness, there are linear combinations of the scaling func-
tion that can exactly represent polynomials locally.

These properties are the key to the normalization coefficients for the Γ
and the coefficients needed to compute the wavelets by the Strang method.
The key formulas are

xl =
∑
m

clmφ(x−m) (209)

where

clm =
∫
φ(x−m)xldx =

l∑
k=0

l!

(l − k)!k!
ml−k

∫
φ(y)ykdx =
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l∑
k=0

l!

(l − k)!k!
ml−kck0. (210)

Starting with l = 0 these equations give

c0m = c00 (211)

c1m = mc00 + c10 (212)

This can be continued to express all of the translates in terms of ck0 for
k = 0, · · · , l.

Note that the normalization conditions gives c00 = 1
Next note that

1 =
∑
m

c0mφ(x−m) (213)

l! =
∑
m

clm
dl

dxl
φ(x−m). (214)

Multiplying by φ(x) and integrating gives

c00 =
1

l!

∑
m

clm

∫
φ(x)

dl

dxl
φ(x−m). (215)

10 Daubechies Scaling Coefficients

Begin by defining the two standard polynomials:

P (T ) =
1√
2

M∑
l=0

hlT
l (216)

and

Q(T ) =
1√
2

M∑
l=0

glT
l =

1√
2

M∑
l=0

(−)lh∗N−lT
l N odd (217)

First we argue that M must be odd. By contradiction assume that M =
2K is even and hM , h0 6= 0. The orthogonality condition requires

2K∑
l=0

h∗l hl+2K = h∗0hM = δK0 (218)
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This vanishes if K 6= 0, requiring either h0 or hM = 0, contradicting the
assumption that M is even. It follows that M is odd or M = 2N − 1.

Inserting this in the expressions for the polynomials:

P (T ) =
1√
2

2N−1∑
l=0

hlT
l (219)

and

Q(T ) =
1√
2

2N−1∑
l=0

(−)lh∗2N−1−lT
l (220)

It follows that if we let m = 2N − 1− l

Q∗(−T ) =
1√
2

2N−1∑
m=0

hm(T ∗)2N−1−m (221)

This can be expressed as

Q∗(−T ) = T 2N−1P ((T ∗)−1) (222)

Properties of these polynomials are used to determine the coefficients hl.
First note that for complex z = eiω on the unit circle, z = (z∗)−1. Thus

Q∗(eiω) = ei(2N−1)ωP (ei(ω+π)) (223)

Note P (1) =
∑2N−1
l=0

1√
2
hl = 1. Next consider the orthonormality condi-

tion, for z = ei2πω.
|P (z)|2 + |P (−z)|2 = (224)

1

2

2N−1∑
l,l′=0

(h∗l hl′e
i2πω(l′−l) + (−)iπ(l′−l)h∗l hl′e

i2πω(l′−l)) = (225)

1

2

2N−1∑
l,l′=0

h∗l hl′(e
i2πω(l′−l) + (−)iπ(l′−l)ei2πω(l′−l)) = (226)

1

2

2N−1∑
l,l′=0

h∗l hl′(e
iπ(l′−l)(2ω) + eiπ(l′−l)(2ω+1) (227)

shifting l′ − l = k gives

1

2

2N−1∑
l

2N−1−l∑
k=−l

h∗l hk+l(e
iπk(2ω) + eiπk2ωeiπk) (228)
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In this form it is manifestly obvious that the coefficient of the k =odd terms
vanish. Thus let k → 2n:

2N−1∑
l

N−1/2−l/2∑
n=−l/2

h∗l hl+2ne
i4πnω) (229)

where the n sum is over successive integers between −l/2 and N−1/2/− l/2.
The condition that this is 1 for all ω gives

2N−1∑
l

h∗l hl+2n = constant × δn0 (230)

or
2N−1∑
l

h∗l hl = 1 (231)

Thus we have

P (1) = 1; |P (1)|2 + |P (−1)|2 = 1 (232)

Consistency of these two equations requires that P (−1) = 0,
The Daubechies wavelets have the property that P (z) has a high order

zero at z = −1:

P (z) =
(

1 + z

2

)N+1

W (z) (233)

The normalization is chosen so the polynomial W (z) = 1. The problem is
reduced to finding polynomials that have this property.

One technique for finding W (z) utilizes trigonometric polynomials. The
problem is to find polynomials P (z) with the property that

|P (z)|2 + |P (−z)|2 = 1 (234)

Let z = e−i2πω which gives

1 + z

2
= e−iπω cos(πω) (235)

1− z
2

= ie−iπω sin(πω) (236)
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In terms of these equations

cos(πω) =
z1/2 + z∗1/2

2
(237)

sin(πω) =
z∗1/2 − z1/2

2i
(238)

This gives

1 =
(
cos2(πω) + sin2(πω)

)2N−1
= (239)

2N−1∑
n=0

(2N − 1)!

n!(2N − 1− n)!
cos2n(πω) sin4N−2−2n(πω) = (240)

2N−1∑
n=0

(2N − 1)!

n!(2N − 1− n)!

(
z1/2 + z∗1/2

2

)2n (
z∗1/2 − z1/2

2i

)4N−2−2n

= (241)

2N−1∑
n=0

(2N − 1)!

n!(2N − 1− n)!

(
z + 1

2

)2n (1− z
2i

)4N−2−2n

z∗(2N−1) = (242)

It is useful to express the first N -terms in terms of cosines and sines:

1 =
2N−1∑
n=0

(2N − 1)!

n!(2N − 1− n)!
cos2n(πω)(1− cos2(πω))2N−1−n = (243)

This sum has the following properties:

• Has 2N terms.

• The last N terms in this sum have the desired zero at -1 with the correct
multiplicity.

• Let P+ be the sum of the last N terms and P− be the sum of the first
N terms.

• Both sums are non-negative.

Note that

P+ =
2N−1∑
n=N

(2N − 1)!

n!(2N − 1− n)!
cos2n(πω) sin4N−2−2n(πω) = (244)
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setting m = 2N − 1− n gives

N−1∑
m=0

(2N − 1)!

m!(2N − 1−m)!
cos4N−2−2m(πω) sin2m(πω) = (245)

cos2N(πω)
N−1∑
m=0

(2N − 1)!

m!(2N − 1−m)!

(
1− sin2(πω)

)N−1−m
sin2m(πω) (246)

Let

W (x) =
N−1∑
m=0

(2N − 1)!

m!(2N − 1−m)!

(
1− x2

)N−1−m
x2m (247)

Note that

P+ =
∣∣∣∣1 + z

2

∣∣∣∣2N W (sin(πω)). (248)

Since W is non-negative function of
√
z and

√
z∗, it has a non-negative square

root ,R(
√
z,
√
z∗).

Claim (proof needs to be supplied) W = |R(z)|2 where R(z) is a polyno-
mial. If this is true then

P (z) =
(

1 + z

2

)N
R(z) (249)

has all of the desired properties.
Case N = 2. In this case

W (x) =
3!

0!3!
(1− x2)x0 +

3!

1!2!
(1− x2)0x2 = 1 + 2x2 = 1− 1

2
(
√
z∗ −

√
z)2 =

(250)

2− 1

2
(z + z∗). (251)

The coefficients of the polynomialR should be real for real scaling coefficients.
Try Let R(z) = a+ bz; |R(z)|2 = a2 + b2 + ab(z + z∗). Equating coefficients
gives

a2 + b2 = 2 2ab = −1 (252)

These are consistent with

(a− b)2 = 3; (a+ b)2 = 1 (253)

a− b = ±
√

3 a+ b = ±1 (254)
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or

a = ±(
1

2
±
√

3

2
) b = ±(

1

2
∓
√

3

2
) (255)

The normalization R(1) = 1 gives

R(z) = (
1

2
±
√

3

2
) + (

1

2
∓
√

3

2
)z (256)

and finally

P (z) =
(

1 + z

2

)2

((
1

2
±
√

3

2
) + (

1

2
∓
√

3

2
)z) (257)

from which on can read off the N = 2 Daubechies coefficients. The two sign
choices are related by the symmetry z → z−1 followed by multiplication by a
homogeneous polynomial to preserve the polynomial nature of the function.

11 Derivatives and Differential Equations

In order to use use wavelets for differential equations is necessary to be able
to compute derivatives.

A typical wavelet basis consists of a the scaling function and its translates
at a fixed resolution m:

{φmn(x)}∞n=−∞ : φmn(x) = DmT nφ(x) = 2−m/2φ(2mx− n) (258)

and the wavelets for all resolutions k less than or equal to m and their
translates

{Mkn(x)}∞,mn=−∞,k=−∞ : Mmn(x) = DkT nM(x) = 2−k/2M(2kx− n) (259)

Given a function f(x) represented as

f(x) =
∑
n

f smnφmn(x) +
∑
kn

fmknMkn(x) (260)

The r-th derivative of this f(x) can be represented in the following forms

f (r)(x) =
∑
n

f smnφ
(r)
mn(x) +

∑
kn

fmknM
(r)
kn (x) (261)

45



or
f (r)(x) =

∑
n

f s(r)mn φmn(x) +
∑
kn

f
m(r)
kn Mkn(x). (262)

The coefficients in these two expansions can be related by expanding the
derivatives of the basis functions in terms of the basis:

φ(r)
mn(x) =

∑
n′
φmn′(x)Γ

1(r)
mn′;mn +

∑
k′n′

Mk′n′(x)Γ
2(r)
k′n′;mn (263)

and
M

(r)
kn (x) =

∑
n′
φmn′(x)Γ

3(r)
mn′;kn +

∑
k′n′

Mk′n′(x)Γ
4(r)
k′n′;kn (264)

In terms of these quantities

f s(r)mn =
∑
n′

Γ
1(r)
mn;mn′f

s
mn′ +

∑
n′k′

Γ
3(r)
mn;k′n′f

m
k′n′ (265)

f
m(r)
kn =

∑
n′

Γ
2(r)
kn;mn′f

s
mn′ +

∑
n′k′

Γ
4(r)
kn;k′n′f

m
k′n′ (266)

The expansion coefficients are the overlap matrices

Γ
1(r)
mn;m′n′ := (φmn, φ

(r)
m′n′) (267)

Γ
2(r)
kn;m′n′ := (Mkn, φ

(r)
m′n′) (268)

Γ
3(r)
mn;k′n′ := (φmn,M

(r)
k′n′) (269)

Γ
4(r)
kn;k′n′ := (Mmn,M

(r)
k′n′) (270)

The scaling equation mean that all of these coefficients can be determined
from a subset of the coefficients. In order to exhibit the key relations it is
useful to use operators:

Df(x) =
1√
2
f(
x

2
) (271)

Tf(x) = f(x− 1) (272)

∆f(x) =
df

dx
(x) (273)

Direct computation shows

∆D =
1

2
D∆ (274)
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DT = T 2D (275)

∆T = T∆ (276)

∆† = −∆ T † = T−1 D† = D−1 (277)

We also have the scaling equations:

Dφ =
∑
l

hlT
lφ (278)

DM =
∑
l

glT
lφ (279)

Using the operator relations above

D∆rφ = 2r
∑
l

hlT
l∆rφ (280)

D∆rM = 2r
∑
l

glT
l∆rφ (281)

In terms of these operators

Γ
1(r)
m′n′;mn := (Dm′T n

′
φ,∆rDmT nφ) (282)

Γ
2(r)
m′n′;kn := (Dm′T n

′
M,∆rDmT nφ) (283)

Γ
3(r)
k′n′;mn := (Dk′T n

′
φ,∆rDmT nM) (284)

Γ
4(r)
k′n′;kn := (Dk′T n

′
M,∆rDmT nM) (285)

In order to evaluate these coefficients the following s.pdf are used:
1. Move all of the factors of D to a single side of the equation. Choose

the side where the power of D is positive.
2. Move the D’ through all derivatives.
3. Use the scaling equations to eliminate all of the D’s.
4. Move all of the T ′ to the right side of the scalar product.
Using these all of the Γ’s can be expressed in terms of

Γ
1(r)
0n;00 := (Tnφ,∆

rφ) (286)

Γ
2(r)
0n;00 := (T nM,∆rφ) (287)
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Γ
3(r)
0n;00 := (T nφ,∆rM, ) (288)

Γ
4(r)
0n;00 := (T nM,∆rM) (289)

These quantities satisfy scaling equations. To see this consider

Γ
1(r)
0n;00 := (T nφ,∆rφ) =

(DT nφ,D∆rφ) = 2r(T 2nDφ,∆rDφ) =∑
ll′
h∗l hl′2

r(T 2n+lφ, T l
′
∆rφ) =

∑
ll′
h∗l hl′2

r(T 2n+l−l′φ,∆rφ) =

∑
ll′
h∗l hl′2

rΓ
1(r)
0,2n+l−l′;00 =

∑
k

(
∑
l′
h∗k−2n+l′hl′)2

rΓ
1(r)
0k;00‘ (290)

This gives an eigenvalue equation for the vector Γ
1(r)
0n;00. The solution is the

eigenvector with eigenvalue 1. The normalization can be fixed by computing
Γ

1(r)
00;00 := (φ,∆rφ) directly

Define H
(r)
nk by

H
(r)
nk :=

∑
l′
h∗k+l′−2nhl′2

r (291)

With this definition the eigenvalue problem takes on the form:

Γ
1(r)
0n;00 =

∑
k

H
(r)
nk Γ

1(r)
0k;00 (292)

Note that this can be written as

2−rΓ
1(r)
0n;00 =

∑
k

H0
nkΓ

1(r)
0k;00 (293)

This treats all allowed derivatives with a single equation - the eigenvector
with eigenvalue 2−r is the coefficient for the rth derivative.

These quantities can be used to determine all of the other quantities using

Γ
2(r)
0n;00 := (T nM,∆rφ) =
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∑
ll′
g∗l′hl2

rΓ
1(r)
0,2n+l′−l;00 =

∑
m

(
∑
l

g∗l′)h2n+l−m)2rΓ
1(r)
0′m;00 (294)

Γ
3(r)
0n;00 := (T nφ,∆rM) =

∑
ll′
h∗l′gl2

rΓ
1(r)
0,2n+l′−l;00 =

∑
m

(
∑
l

h∗l g2n+l−m)2rΓ
1(r)
0m;00 (295)

Γ
4(r)
0n;00 := (T nM,∆rM, ) =

∑
ll′
g∗l gl′2

rΓ
1(r)
0,2n+l′−l;00 =

∑
m

(
∑
l

g∗l g2n+l−m)2rΓ
1(r)
0m;0 (296)

This shows that all of the expansion coefficients for any number of deriva-
tives can be constructed from the solutions of a single eigenvalue problem.

There are a number of stepping formulas:

Γ
1(r)
0m;0n = Γ

1(r)
0m−n;00 (297)

Γ
1(r)
0m+k;0,n+k = Γ

1(r)
0m;0n (298)

Γ
1(r)
kn;tm =

∑
l

h∗l Γ
1(r)
k−1,2n+l;tm (299)

Γ
1(r)
kn;tm = 2r

∑
l

hlΓ
1(r)
k+1,n;t,2m+l (300)

Γ
1(r)
kn;tm =

∑
l

hlΓ
1(r)
kn;t−1,2m+l (301)

Γ
1(r)
kn;tm = 2

∑
l

h∗l Γ
1(r)
k,2n+1;t+1,2m+l (302)

which can be used to reduce the number of dilitations to zero.
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12 Moments and Wavelets

Consider the equations for the moments of the scaling function and the
mother function:

〈xm〉φ :=
∫
xmφ(x)dx (303)

〈xm〉m :=
∫
xmm(x)dx (304)

To develop relations among the moments use the unitarity of the dilitation
operator:

〈xm〉φ =
∫
xmφ(x)dx =

∫
DxmDφ(x)dx =

1

2m+1/2

∫
xmDφ(x)dx (305)

Using the scaling equation gives

1

2m+1/2

∑
l

∫
xmhlφ(x− l)dx =

1

2m+1/2

∑
l

∫
(l + y)mhlφ(y)dy =

Nest use the binomial theorem to get:

1

2m+1/2

m∑
k=0

∑
l

hl
m!

k!(m− k)!
lm−k

∫
ykφ(y)dy =

1

2m+1/2

m∑
k=0

∑
l

hl
m!

k!(m− k)!
lm−k〈xk〉φ (306)

This gives an a set eigenvalue equations for 〈xk〉φ The moments of the mother
function have similar properties with hl replaced by gl: :

〈xm〉m =
∫
xmm(x)dx =

∫
DxmDm(x)dx =
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1

2m+1/2

m∑
k=0

∑
l

gl
m!

k!(m− k)!
lm−k〈xk〉φ (307)

The nice thing about these equations is that they are lower triangular.
Specifically for the 〈xk〉φ equations we have for m = 0:

〈x0〉φ =
1

21/2

∑
l

hl〈x0〉φ (308)

which is the constraint
∑
l hl =

√
2. For m = 1 this equation is

〈x1〉φ =
1

23/2

∑
l

hl

(
1!

0!1!
l1〈x0〉φ +

1!

1!0!
l0〈x1〉φ

)
(309)

Using the first equation gives

〈x1〉φ =
1√
2

∑
l

lhl〈x0〉φ (310)

This gives 〈x1〉φ in terms of 〈x0〉φ
For m = 2 is equation becomes

〈x2〉φ =

1

25/2

∑
l

hl

(
2!

0!2!
l2〈x0〉φ +

2!

1!1!
l1〈x1〉φ +

2!

2!0!
l0 + 〈x2〉φ

)
=

1

25/2

(∑
l

hll
2〈x0〉φ +

√
2(
∑

lhl)
2〈x0〉φ +

√
2〈x2〉φ

)

which can be solved for 〈x2〉φ in terms of 〈x0〉φ
The general form of the recursion relation is

〈xm〉φ =

m!

2m+1 − 2

m−1∑
k=0

∑
l

hll
m−k

k!(m− k)!
〈xk〉φ (311)

A similar recursion can be derived for moments of the mother function:

〈xm〉m =

51



m!

2m+1

m−1∑
k=0

∑
l

gll
m−k

k!(m− k)!
〈xk〉φ (312)

There are all fixed in terms of the value of the integral
∫
φ(x)dx.

It follows from this relation that the condition that the first p moments
of the mother function vanishing are∑

l

lkgl = 0 k = 0, 1, · · · , p (313)

These equations come from looking at the coefficients of the moments of the
scaling function. They give all of the moments in terms of the hl’s and

〈x0〉φ =
∫
φ(x)dx (314)

These equations, along with the normalization equation and the orthonor-
mality equation determine the hl’s for the Daubechies wavelets. The general
equations are ∑

l

hlhl−2k = δk0 k = 0, 1, · · · (315)

∑
l

hl =
√

2 (316)

∑
l

lk(−)lh1−l = 0 k = 0, 1, · · · , p (317)

where 1 can be replaced by any odd integer.y
Moments of all of the other functions can be computed using

〈xm〉φrs =
∫
xmDrT sφ(x)dx =

∫
(T−sD−rxm)φ(x)dx = 2

r
2

+mr
∫

(x+ s)mφ(x)dx =

2
r
2

+mr
m∑
k=0

m!

k!(m− k)!
sm−k〈xr〉φ

and
〈xm〉mrs =

∫
xmDrT sm(x)dx =∫

(T−sD−rxm)m(x)dx = 2
r
2

+mr
∫

(x+ s)mm(x)dx =
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2
r
2

+mr
m∑
k=0

m!

k!(m− k)!
sm−k〈xr〉m

We can use these to determine the normalization of the Γ′s: Consider

dφ

dx
(x) =

∑
l

φml(x)Γ
1(1)
ml;00 +

∑
kl

mkl(x)Γ2
kl;00 (318)

Multiply by x to get

〈x0〉φ =
∫
φ(x)dx = −

∫
x
dφ

dx
(x)dx =

∑
l

〈x1〉φmlΓ
1(1)
ml;00 +

∑
kl

〈x1〉mklΓ
2(1)
kl;00

Given that we know the Γ’s up to an overall normalization, and all of the
moments in terms of 〈x0〉, this equation fixes the normalization of the Γ(1)’s
in terms of 〈x0〉.

The Γ’s corresponding to the higher derivatives can be derived using∫
xl
dlφ

dxl
(x)dx = (−)ll!〈x0〉φ =

∑
s

〈xl〉φmsΓ
1(l)
ms;00 +

∑
ks

〈xl〉mksΓ
2(l)
ks;00 (319)

which expresses the Γ’s for the higher derivatives in terms of higher moments.

13 Normalization issues

The orthonormality of the wavelets means that the scaling function φ(x)
satisfies ∫

φ2(x)dx = 1. (320)

Because this is preserved under the continuous scale transformation

φ(x)→ φ′(x) :=
1√
s
φ(
x

s
) (321)

by choosing s we can simultaneously fix∫
φ′(x)dx =

√
s
∫
φ(x)dx (322)
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Choosing s so
∫
φ′(x)dx = 1 fixes a starting scale. In this way we can

simultaneously require ∫
φ2(x)dx =

∫
φ(x)dx = 1 (323)

Given the conditions ∫
φ2(x)dx =

∫
φ(x)dx = 1 (324)

we can compute all of the necessary normalization coefficients.
First we calculate the expansion of 1. In this case the assumption that

the integral of the mother function gives zero implies that 1 can be expressed
in terms of translates of the scaling function:

1 =
∑

c0
nφ(x− n) (325)

Multiplying by φm(x) = φ(x−m) and using the orthonormality and
∫
φ(x)dx =

1 gives

1 = cm =
∫
φm(x)dx =

∫
φ(x)dx = β0 (326)

Thus we conclude that
1 =

∑
n

φn(x) (327)

Next we show that we can compute all of the moments

βm :=
∫
xmφ(x)dx (328)

in terms of the hl’s and β0. To see this note

βm :=
∫
xmφ(x)dx =

∫
DxmDφ(x)dx =

1√
2

∫ (
x

2

)m∑
l

hlφ(x− l)dx =

2−m−
1
2

∑
l

hl

∫
(x+ l)mφ(x)dx =

2−m−
1
2

∑
l

hl
m∑
k=0

m!

k!(m− k)!
lm−kβk (329)
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Putting the k = m term on the left and using
∑
l hl =

√
2 gives

βm =
1

2m − 1

1√
2

∑
l

hl
m−1∑
k=0

m!

k!(m− k)!
lm−kβk (330)

This give an explicit expression for the m-th moment in terms of β0 =
1, β1, · · · , βm−1 and the scaling coefficients. This determines all of the mo-
ments.

Note that these equations follow directly from the scaling equations and
the normalization condition that gives β0. No special properties of the mother
function have been used.

Given the moments we show that they can be used to compute the ex-
pansion coefficients for all monomials xl that vanish when integrated against
the mother function.

To see this note
xl =

∑
k

clkφk(x) (331)

Using orthonormality gives

clm =
∫
φm(x)xldx =

∫
φ(x)(x+m)ldx

l∑
k=0

l!

k!(l − k)!
ml−kβk

which expresses these expansion coefficients in terms of the previously com-
puted moments.

We can use these to get inhomogeneous equations for the Γs:

xl =
∑
k

clkφk(x) (332)

If we differentiate this l times, multiply by φ(x), and integrate we get

l!
∫
φ(x)dx =

∑
k

clk

∫
φ(x)

dlφk
dxl

(x−m)dx =

∑
k

clk

∫
φ(x+ k)

dlφ

dxl
(x)dx
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which becomes

1 =
1

l!

∑
k

clkΓ
l
0−k;00 (333)

This gives the needed inhomogeneous equation to determine the Γs for
any allowed derivative.

Thus we have shown how β0 = 1 determines all of the necessary normal-
izations.

14 Integral equations

Consider an integral equation of one of the two forms

f(x) =
∫
Kλ(x, y)f(y)dy (334)

where λ is a parameter like an eigenvalue or

f(x) = g(x) +
∫
K(x, y)f(y)dy (335)

In the first equation there will not be solutions unless λ takes on certain
values. Each solution is associated with a specific value of λ. This can be
considered like a matrix equation, where the matrix does not have an inverse
for certain values of λ.

In the second equation there is no parameter. The function g(x) is given
this looks like a system of linear equations.

These equations can be solved using Galerkin or collocation methods. For
the Galerkin method the solution can be expanded in terms of an orthonormal
basis (wavelets):

f(x) =
∑
n

φn(x)fn (336)

where the fn are unknown expansion coefficients. For the case of wavelets
the index n is replaced by two indices.

Inserting this solution into either of the above equations gives∑
n

φn(x)fn =
∫
Kλ(x, y)

∑
n

φn(y)fndy (337)

or ∑
n

φn(x)fn = g(x) +
∫
K(x, y)

∑
n

φn(y)fndy (338)
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Assuming that both expression are well behaved it is possible to change the
order of the sum and the integral to obtain:∑

n

φn(x)fn =
∑
n

∫
Kλ(x, y)φn(y)dyfn (339)

∑
n

φn(x)fn = g(x) +
∑
n

∫
K(x, y)φn(y)dyfn (340)

This is not yet an equation. In applications the infinite sum has to be replaced
by a finite sum. The equation then becomes approximate.

For the Galerkin method the equation is required to hold on the subspace
generated by the first N basis functions. The equations for the coefficients
are obtained by integrating against φ∗m(x) for m = 1, · · · , N . Using the
orthonormality of the basis functions gives:

fm =
N∑
n=1

∫
φ∗m(x)Kλ(x, y)φn(y)dyfn (341)

fm =
∫
φ∗m(x)g(x)dx+

N∑
n=1

∫
φ∗m(x)K(x, y)φn(y)dyfn (342)

If we define
Kλmn :=

∫
φ∗m(x)Kλ(x, y)φn(y)dxdy (343)

Kmn :=
∫
φ∗m(x)K(x− y)φn(y)dxdy (344)

gm :=
∫
φ∗m(x)g(x)dx (345)

these equations become

fm =
N∑
n=1

Kλmnfn m ∈ {1, 2, · · ·N} (346)

fm = gm +
N∑
n=1

Kmnfn m ∈ {1, 2, · · ·N} (347)

These equation are linear algebraic equations for the coefficients fn. The ap-
proximate solution can be expressed in terms of solution for these coefficients
as:

f(x) ∼
N∑
n=1

φn(x)fn (348)
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This can be improved using the equation

f(x) ∼
N∑
n=1

∫
Kλ(x, y)

∑
n

φn(y)dyfn (349)

or

f(x) ∼ g(x0 +
N∑
n=1

∫
K(x, y)

∑
n

φn(y)dyfn (350)

These equations can also be approached using the collocation method.
For the collocation method the number of basis functions is also truncated.
Rather than projecting on the subspace generated by the first N basis func-
tions the equations are required to be exact at N points {xi}Ni=1. This gives
a different set of linear algebraic equations:

∑
n

φn(xm)fn =
N∑
n=1

∫
Kλ(xm, y)φn(y)dyfn m ∈ {1, · · ·N} (351)

∑
n

φn(xm)fn = g(xm) +
N∑
n=1

∫
K(xm, y)φn(y)dyfn m ∈ {1, · · ·N} (352)

In this case the equations have the structure

N∑
n=1

φmnfn =
N∑
n=1

Kλmnfn (353)

N∑
n=1

φmnfn = gm +
N∑
n=1

Kmnfn (354)

where
φmn := φn(xm) (355)

Kλmn :=
∫
Kλ(xm, y)φn(y)dy (356)

Kmn :=
∫
K(xm, y)φn(y)dy (357)

gm := g(xm) (358)
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These equation give approximate values of the fn, and an approximate solu-
tion of the form

f(x) ∼
N∑
n=1

φn(x)fn (359)

This can be improved by the same interpolation method that was used in
the Galerkin method.

In both cases the use of wavelet method will allow for efficient computa-
tion of the basis functions. The advantage of the integral equation method
is that there there are no problems with integrating functions, like the Haar
functions, that have discontinuous derivatives.

In order to obtain any additional benefit our of the wavelet basis the
kernel K(x, y) needs to have additional properties. In many cases of practical
interest the kernel is translationally invariant. This means the

K(x, y) = K(x− y). (360)

I consider the Galerkin case, where the these benefits are of most value.
For a translationally invariant kernel the Galerkin method involves comput-
ing matrix elements of the general form:∫

φ∗mn(x)K(x− y)φkl(y)dxdy (361)

where here I have introduced indices on the scaling function. Similar equa-
tions are needed for the mother function. Define

cn :=
∫
φ∗(x)K(x− y + n)φ(y)dxdy (362)

where φ(x) is the scaling function. Note that

Kmn:kl :=
∫

(DmT nφ)∗(x)K(x− y)(DkT lφ)(y)dxdy (363)

Using the scaling equations we show that it is possible to reduce the values
of m and k respectively:

Kmn:kl :=
∫

(DmT nφ)∗(x)K(x− y)(DkT lφ)(y)dxdy = (364)

∑
r

hr

∫
(DmT nφ)∗(x)K(x− y)(Dk−1T 2l+rφ)(y)dxdy =

∑
r

hrKmn:k−1,2l+r

(365)
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∑
r

h∗r

∫
(Dm−1T 2n+rφ)∗(x)K(x− y)(DkT lφ)(y)dxdy =

∑
r

h∗fKm−1,2n+r:kl

(366)
These equations show that it is possible to successively reduce the value of
m and k. Once these are reduced to 0 what remains is

K0n:0l :=
∫

(T nφ)∗(x)K(x−y)(T lφ)(y)dxdy =
∫
φ∗(x)K(x+n−y−l)φ(y)dxdy = cn−l

(367)
Similar results can be obtained for the mother functions. In that case the
hm’s are replaced by the gm’s.

The problem with this is that it does not cover the case of negative values
of m and k. We conclude that given a small enough base scale, translational
invariance can be used to generate matrix elements of the kernel on all larger
scales, in terms of translates on the base scale.

In order to deal with negative values of m and k the Kernel must have
additional properties with respect to scale transformations. Unfortunately,
unlike translations, most integral equation do not have scale invariant ker-
nels. Roughly speaking, parameters with physical dimensions appearing in
equations break scale invariance. The Maxwell’s equation are an exception.
They to not have a natural distance scale.

We say that a kernel has scale dimension s if

2−snK(2n(x− y)) = K(x− y) (368)

For example

K(x− y) :=
1

|x− y|1/2
(369)

has scale dimension s = −1/2.
For these kernels direct integration shows

(f,KDg) :=
∫
f ∗(x)K(x− y)(Dg)(y)dxdy = (370)∫

f ∗(x)K(x− y)(Dg)(y)dxdy = (371)∫
f ∗(x)K(x− y)

1√
2
g(y/2)dxdy = (372)

2√
2

∫
f ∗(x)K(x− 2u)g(u)dxdu = (373)
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4√
2

∫
f ∗(2v)K(2(v − u))g(u)dvdu = (374)

2
∫

(D†f ∗)(v)K(2(v − u))g(u)dvdu = (375)

21+s
∫

(D†f ∗)(v)K(v − u)g(u)dvdu = (376)

21+s(D†f,Kg) (377)

Similarly it is possible to show

(Df,Kg) = 2s+1(f,KD†g) (378)

and
(Df,KDg) = 2s+1(f,Kg) (379)

(D†f,KD†g) = 2−(s+1)(f,Kg) (380)

These equations allow reductions of the form

(D−nTmφ,KD−kT lφ) = (381)

assuming n > k this becomes

2m(s+1)(Tmφ,KDn−kT lφ) = (382)

2m(s+1)(φ,KT 2n−kl−mDn−kφ) (383)

In this form the scaling equations can be used to eliminate powers of D.
Similar relations can be derived fort he case k > n and k = n.

We conclude that if the kernel is scale and translationally invariant, the
matrix elements for the Galerkin method can be expressed in terms of matrix
elements of translates of the scaling function and mother function.

15 Pyramid Method

Consider a function χ(x) that is periodic on [0, L].
Divide this interval into 2N subintervals of length ∆ := L/2N

Let φ(x) be a Daubechies scaling function. Let

ψ(x) =
1√
∆
φ(
x

∆
) (384)
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This has the following properties:∫
ψ(x)ψ(x− n∆) =

1

∆
φ(
x

∆
)φ(

x

∆
− n)dx

∫
φ(y)φ(y − n)dy = δn0 (385)

∑
n

φ(x− n∆) =
∑
n

1√
∆
ψ(

x

∆
− n) =

1√
∆

(386)

which follow from the orthogonality of the translated scaling function and
the moment condition of the father wavelet (we have assumed both orthonor-
mality of the translated wavelets and

∑
n(φ(x − n) = 1 - if there are not

compatible we need to readjust the constant).
We define

ψn(x) = ψ(x− n∆) (387)

ψkn(x) = Dkψn(x) = 2−k/2ψn(
x

2k
) (388)

as well as the corresponding expressions for the mother function

u(x) =
1√
∆
m(

x

∆
) (389)

un(x) = u(x− n∆) (390)

ukn(x) = Dkun(x) = 2−k/2u(
x

2k
) (391)

The scaling equations for ψ(x) and u(x) are

Dψ(x) =
∑
n

hnψ(x− n∆) (392)

Du(x) =
∑
n

gnψ(x− n∆) (393)

Approximate χ(x) at resolution 2N on [0, L] by

χ2N (x) :=
2N∑
n=1

cnψ(x− n∆) (394)

where
cn =

∫
ψ(x− n∆)χ(x)dx (395)
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Here we assume that the integrals extend past [0, L] by extending the
functions so they are periodic. The coefficients cn are an approximate repre-
sentation of the function. Because

χ(x) = χ(x)
∑
n

√
∆φ(x− n∆) (396)

we expect that the sum of the cn for the basis functions that are non-vanishing
at x should be approximately the value of χ at x times

√
∆.

The approximation χ2N (x) is finest resolution approximation of the exact
function. This is the V0 representation of the function. This can be decom-
posed into a pair of vectors of length 2N−1 corresponding to the V1 and W1

subspace.
On these subspaces the expansions are

χ2N (x) =
∑

c1nDψn(x) +
∑

d1nDun(x) (397)

Using the scaling relations gives

χ2N (x) =
∑
n

c1n

∑
m

hmψ(x− 2n∆−m∆) +
∑

d1n

∑
m

gmψ(x− 2n∆−m∆)

(398)
Integrating against φ(x− k∆) gives

ck =
∑
n

(c1n

∑
m

hk−2n + d1n

∑
m

gk−2n) (399)

This can be expressed as a matrix equation:
c1
...
cN2

 =

 h1−2 · · ·h1−22N g1−2 · · · g1−22N

· · · · · ·
h2N−2 · · ·h2N−22N g2N−2 · · · g2N−22N




c11
...

d12N−1

 (400)

This procedure can be repeated on the c1 part, using h and g on next
coarser scale. In this case the next matrix is smaller by a factor of four.
Repeating the procedure on every level gives

{cN , dN , dN−1, dN−2, · · · d1} (401)

The relations connecting these with c0 can be put in the form of ma-
trix. Since both bases are real and orthonormal this is necessarily are real
orthogonal matrix. This is the wavelet transform.

The rows and columns are clearly manipulated by similarity transforma-
tions at each level.
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16 Multigrid Methods

To understand the standard procedure consider a linear equation of the form:

Lu = f (402)

where L is a linear operator and f is known. Let n denote a wavelet level
with higher n denoting a finer grid.
Step 1: Start with a coarse grid - call it the n = 1 grid. Project L and f on
the basis functions spanning this grid. This gives

L1u1 = f 1 (403)

In terms of the scaling functions we have

L1
mn =

∫
φm(x)Lφn(x)dx (404)

f 1
m =

∫
φm(x)f(x)dx (405)

Solve this equation exactly for u1. This gives a first approximation on
the next level. In the case of wavelets this is the smooth part of the solution.
Step 2: The next step is to go to the next level. Define L2 and f 2 by

L2
mn =

∫
D−1φm(x)LD−1φn(x)dx (406)

f 2
m =

∫
D−1φm(x)f(x)dx (407)

We can map the course solution to the fine grid in two different ways.
The first is simply to expand

ũ2 =
∑
m

(ũ1, D−1Tmφ)φ−1,m(x) (408)

The expansion coefficients (ũ1, D−1Tmφ) cam be expressed in terms of
the scaling coefficients:

(ũ1, D−1Tmφ) =
∑
n

(Dφ, Tm−2nφ)un =
∑
n

(Dφ, Tm−2nφ)un =
∑
n

hm−2nun

(409)
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which gives

ũ2 =
∑
m,n

φ−1,m(x)hm−2n (410)

While this expresses the approximation in terms of the basis on the next
level, it makes more sense to use the mother functions on the previous level,
since they deal with the high frequency information. In this case we have
the equivalent expression:

ũ2 =
∑
m

umφ0,m(x) +
∑
m

vmM0,m(x) (411)

where all of the coefficients vm = 0.
On the next level we include the mothers. We note that the projected

equation on the next level is

L2u2 = f 2 (412)

If we use the approximate solution 2̃, which is exact on the previous level,
we get

d2
1 = L2ũ2 − f 2 (413)

which is called the defect. This measure how much the coarse grid solution
fails to satisfy the equation at the next finest level.

We can also compute the error

v2 = u2 − ũ2 (414)

Knowing v2 is equivalent to knowing u2. We also have

L2v2 = L2(u2 − ũ2) = −d2
1 (415)

which gives an equation for the error in terms of the defect.
The idea is to map this up to the coarse level and solve for an approximate

ṽ2
1. Projecting on the coarse level does not help, because d2 is orthogonal to

the coarse subspace; however, we can use the mothers - which is a space of
the same size and project this equation on the mother subspace. This gives
a correction; ṽ2 that is orthogonal to ũ2

Define a new ũ2
2 by

ũ2
2 = ũ2

1 + ṽ2
1 (416)
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This has a part on the coarse father space and a part on the coarse mother
space.

Compute a new defect

d2
2 = L2ũ2

2 − f 2 (417)

this has parts on the coarse father and mother subspaces.
We have the relation

L2ṽ2
2 = d2

2 (418)

We seek an approximation on the father space by projection - this gives
a correction ṽ2

2 on the father space, and a new approximate solution

ũ2
3 = ũ2

2 + ṽ2
2 = ũ2

1 + ṽ2
1 + ṽ2

2 (419)

This process can be repeated, alternating between the mother and father
space until a solution of the desired accuracy is obtained.
Step 3. The next step uses this solution to go to the next level. The above
process needs to be used for each solution on the previous level.

The advantage is that if the coupling between the different scales is small
the convergence should be fast.

17 Quadrature Methods

The problem is to compute the overlap coefficients

νjk := (φjk, f) = (DjT kφ, f) (420)

and
µjk := (ψjk, f) = (DjT kψ, f) (421)

The scaling equations relate coefficients on one scale to the coefficients on a
finer or coarser scale.

We use the basic scaling equations:

Dφ =
∑
l

hlT
lφ (422)

and
Dψ =

∑
l

glT
lφ (423)
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and the commutation relations

DT = T 2D (424)

In addition, the multiresolution analysis implies the inverse relations:

φl =
∑
k

(hl−2kDT
kφ+ gl−2kDT

kψ) (425)

(these following from completeness and orthogonality)
The scaling equations give

νjk = (DjT kφ, f) = (Dj−1T 2kDφ, f) =∑
l

hlνj−1,2k+l =
∑
m

hm−2kνj−1,m (426)

and similarly
µjk = (DjT kψ, f) = (Dj−1T 2kDψ, f) =∑

l

glνj−1,2k+l =
∑
m

gm−2kνj−1,m (427)

The inverse relations give

νj−i,l =
∑
k

(hl−2kνjk + gl−2kµjk). (428)

To understand the one-point quadrature rule note∫
f(x)φ(x)dx = ν (429)

Define
x1 :=

∫
xφ(x)dx = M1 (430)

Then ∫
(a+ bx)φ(x)dx = a+ bM1 = a+ bx1 (431)

For orthogonal wavelets note

km :=
∫
xφ(x)φ(x−m) =

∫
(y +m)φ(y +m)φ(y) =

∫
xφ(x+m)φ(x) = k−m
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It follows that ∑
mkm =

∑
(−m)km = 0 (432)

Since ∑
mφ(x−m) = x−M1 (433)

we have

0 =
∑∫

mxφ(x)φ(x−m) =
∑

sφ(x)x(x−M1) = M2 −M2
1 (434)

This means that∫
φ(x)(a+ bx+ cx2) = a+ bM1 + cM2 = a+ bx1 + cx2

1 (435)

or that for x1 = M1 the one-point rule integrates polynomials of degree 2
exactly.

Coiflets have the property that∫
xkφ(x)dx = 0 (436)

for k = 1, 2, · · ·N . In this case for x1 = M1 = 0 we have

∫
φ(x)

N∑
n=1

cnx
n =

N∑
n=1

cnx
n
1 = c0 (437)

which integrates polynomials of degree N exactly.
For orthogonal wavelets the error will be of the order 2−3n where 2−n is

the finest scale wavelet.
The most useful alternative is to use a multipoint formula. These are are

not limited in terms of errors and still allow wavelets with small support.
Choose wavelets that have compact support on [0, L]. In general we need

to calculate
Imn[f ] =

∫
φmn(x)f(x)dx (438)

where φ(x) is a scaling function. We also need

Îmn[f ] =
∫
ψmn(x)f(x)dx (439)

where ψmn(x) is a wavelet.
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First observe that if we work with wavelets on the finest scale the scaling
equations map to coarser scales. Thus we have

Imn[f ] =
∫
DmT nφ(x)f(x)dx =

∑
l

hl

∫
Dm−1T 2n+lφ(x)f(x)dx =

∑
l

hlIm−1,2n+l[f ]

and
Îmn[f ] =

∫
ψmn(x)f(x)dx =∑

l

glIm−1,2n+l[f ]

This can be repeated by reapplying the scaling relations m − 1 more times
to express these integrals in terms of the integrals

I0l[f ]

which are translates of the scaling function on the finest scale. This is done
using the wavelet transform.

We seek a quadrature rule of the form

I[f ] =
N∑
n=1

wnf(xn) (440)

where the points xn are in the interval [0, L] and the formula is exact for
polynomials

I[xm] =
N∑
n=1

wnx
m
n (441)

We also note that
I0,1[f ] = I[T−1f ] (442)

This means that

I0,1[xm] = I[(x+ 1)m] =
N∑
n=1

wn(xn + 1)m (443)
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or more generally

I0,k[x
m] = I[(x+ k)m] =

N∑
n=1

wn(xn + k)m (444)

which will also be exact. Thus, for a general function we have the approxi-
mations:

I0,k[f ] =
N∑
n=1

wnf(xn + k) (445)

Thus, having points and weights for the scaling function provide a means to
compute all overlap integrals on the finest scale. The scaling equation for
the scaling function and wavelets allow one to get to the overlap integrals for
the wavelet basis.

Two problems remain - they are the computation of the moments of the
scaling function and the computation of the quadrature weights.

For stability it is useful to replace the system

I[xm] =
N∑
n=1

wnx
m
n (446)

by

I[Pm] =
N∑
n=1

wnPm(xn) (447)

where Pn is a system of real orthogonal polynomials on the support of the
scaling function. For a scaling function with support in [0, L] we assume∫ L

0
Pm(x)Pn(x)w(x)dx = δmn (448)

For a polynomial naturally supported on y ∈ [−1, 1] let

y =
2

L
x− 1 (449)

If Tn(y) are orthogonal on [−1, 1]; i.e.∫ 1

−1
Tm(y)Tn(y)s(y)dy = δmn (450)
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then

Pn(x) = Tm(y(x))

√
dy

dx
=

√
2

L
Tm(

2

L
x− 1) (451)

with weight

w(x) = s(y(x)) = s(
2

L
x− 1) (452)

The main reason for including the weight is that the Chebyshev polynomials
have a non-trivial weight.

Because of the structure of the wavelets it is useful to pick N equally
spaced quadrature points on [0, L].

xn = (n− 1)2s + τ (453)

which go from

x1 = τ to xN = (N − 1)2s + τ < L (454)

While τ can be used as an adjustable parameter to increase the order of the
quadrature, it seem like a better strategy is to simply increase N . In this
case the problem is to solve the linear system

I[Pm] =
N∑
n=1

wnPm(xn) (455)

for the weights wn. The relevant approximate quadrature is then

I[f ] ∼
N∑
n=1

wnf(xn) (456)

which is exact for polynomials of degree ≤ N − 1.
In order to solve these equations we need expression for the moments

I[Pm]. To do this we use scaling and unitarity. We need the following two
sets of coefficients

DPn(x) =
1√
2
Pn(

x

2
) =

n∑
m=0

dnmPm(x) (457)

T−lPn(x) = Pn(x+ l) =
n∑

m=0

tlnmPm(x) (458)
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We can get exact expressions for the matrices dmn and tlmn using the appro-
priate gauss quadrature formula:

∫ L

0
Pn(x)Pm(x)w(x)dx = δmn =

K∑
i=1

Pn(ui)Pm(ui)wui (459)

where K > n/2,m/2. Multiplying the above equations by Pk(x)w(x) and
using the quadrature rule gives:

dnk =
K∑
i=1

wui
1√
2
Pn(

ui
2

)Pk(ui) (460)

tlnk =
K∑
i=1

wuiPn((ui + l))Pk(ui) (461)

To compute the moments assuming P0(x) = c we have

I[P0] =
∫ L

0
φ(x)P0(x)dx = c (462)

Note

I[Pn] =
∫ L

0
φ(x)Pn(x)dx =∫ L

0
Dφ(x)DPn(x)dx =

∑
l

hl
∑
m

dnm

∫ L

0
T lφ(x)Pm(x)dx =

∑
l

hl
∑
m

dnm

∫ L

0
φ(x)T−lPm(x)dx =

∑
l

hl
∑
mk

dnmt
l
mkI[Pk]

We can separate off the k = n term and write

I[Pn] =

∑
l hl

∑k<n
mk dnmt

l
mkI[Pk]

1−∑l hl
∑
mk dnmtlmn

(463)

Which can be used to recursively generate the required moments in terms of
I[P0] = c.
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The advantage of the Chebyshev polynomials are that the points and
weights are known analytically. We have the formulas

∫ l

−1
f(x)

dx√
1− x2

≈
N∑
n=1

π

N
f(cos(

(2n− 1)π

2N
)) (464)

which are exact for f(x) a polynomial of degree 2N − 1. To get the ui and
wui these expressions have to be transformed from [−1, 1] to [0, L]:

uk =
L

2
(cos(

(2n− 1)π

2N
+ 1) (465)

and

wuk =
2π

LN
(466)
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