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Abstract

We discuss the role of spin in Poincaré invariant formulations of quan-
tum mechanics.

1 Introduction

In this paper we discuss the role of spin in relativistic few-body models. The
new feature with spin in relativistic quantum mechanics is that sequences of
rotationless Lorentz transformations that map rest frames to rest frames can
generate rotations. To get a well-defined spin observable one needs to define it
in one preferred frame and then use specific Lorentz transformations to relate
the spin in the preferred frame to any other frame. Different choices of the
preferred frame and the specific Lorentz transformations lead to an infinite
number of possible observables that have all of the properties of a spin. This
paper provides a general discussion of the relation between the spin of a system
and the spin of its elementary constituents in relativistic few-body systems.

In section 2 we discuss the Poincaré group, which is the group relating
inertial frames in special relativity. Unitary representations of the Poincaré
group preserve quantum probabilities in all inertial frames, and define the rel-
ativistic dynamics. In section 3 we construct a large set of abstract operators
out of the Poincaré generators, and determine their commutation relations and

∗During the preparation of this paper Walter Glöckle passed away. We dedicate this paper
to Walter, who was a great friend and collaborator.
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transformation properties. In section 4 we identify complete sets of commut-
ing observables, including a large class of spin operators. We use the Poincaré
commutation relations to determine the eigenvalue spectrum of these opera-
tors. Representations of the physical Hilbert space are constructed as square
integrable functions of these commuting observables over their spectra. The
transformation properties of these operators are used to construct unitary rep-
resentations of the Poincaré group and its infinitesimal generators on this space.
This construction gives irreducible representations of the Poincaré group.

The commuting observables introduced in section 4 include a large class of
spin observables. All of these operators are functions of the Poincaré genera-
tors, are Hermetian, satisfy SU(2) commutation relations, commute with the
four momentum, and have a square that is the spin Casimir operator of the
Poincaré group. In section 5 we discuss the most important examples of spin
operators and how they are related. These are the helicity, canonical, and light-
front spins. In section 6 we discuss the problem of adding angular momenta;
specifically how single-particle spins and orbital angular momenta are added in
relativistic systems to obtain the total spin of the system. This is the problem of
constructing Clebsch-Gordan coefficients for the Poincaré group. We consider
the implications doing this using different spin and orbital observables. We show
that the coupling is, up to some overall rotations on the initial and final spins,
independent of the spin observables used in the coupling. In section 7 we discuss
the relation between two and four component spinors and their relation to field
theory. We show in general how boosts transform Poincaré covariant spinors
to Lorentz covariant spinors, and how this role is played by the u and v Dirac
spinors in the spin 1/2 case. In section 8 we argue that there is no loss of gen-
erality in working with models with a non-interacting spin (Bakamjian-Thomas
models) by showing that any model is related to a Bakamjian-Thomas model
[1] by an S-matrix preserving unitary transformation. In section 9 we consider
aspects of the relativistic three-nucleon problem. We show how relativistic in-
variance can be realized by requiring invariance with respect to rotations in the
rest frame of the three-nucleon system. We also argue that S-matrix cluster
properties is an important additional constraint on the treatment of the spin.
Finally in section 10 we discus the relation between the different types of spins
and experimental observables.

2 The Poincaré group

The Poincaré group is the group of space-time transformations that relate dif-
ferent inertial frames in the theory of special relativity. In a relativistically
invariant quantum theory the Poincaré group is a symmetry group of the the-
ory [2].

The Poincaré group is the group of point transformations that preserve the
proper time, τab, or proper distance, dab, between any two events with space-
time coordinates xµa and xµb ,

−τ2ab = d2ab = (xa − xb)µ(xa − xb)νηµν = (xa − xb)2, (1)
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where ηαβ is the Minkowski metric with signature (−,+,+,+) and repeated
4-vector indices are assumed to be summed from 0 to 3.

The most general point transformation, xµ → x′µ = fµ(x), satisfying (1)
has the form

xµ → xµ
′

= Λµ
νx

ν + aµ, (2)

where aµ is a constant 4-vector, xµ is xµa or xµb and the Lorentz transformation,
Λµ

ν , is a constant matrix satisfying

ηµνΛµ
αΛν

β = ηαβ . (3)

The full Poincaré group includes Lorentz transformations, Λµ
ν , that are

not continuously connected to the identity. These transformations involve dis-
crete space reflections, time reversals, or both. Since time reversal and space
reflection are not symmetries of the weak interactions, the symmetry group asso-
ciated with special relativity is the subgroup of Poincaré transformations that
is continuously connected to the identity. This subgroup contains the active
transformations that can be experimentally realized. In this paper the term
Poincaré group refers to this subgroup.

It is sometimes useful to represent Poincaré transformations using the group
of complex 2× 2 matrices with unit determinant [3], SL(2,C). In this represen-
tation real four vectors are represented by 2 × 2 Hermetian matrices. A basis
for the 2 × 2 Hermetian matrices (over the real numbers) are the identity and
the three Pauli spin matrices

σµ := (I, σ1, σ2, σ3). (4)

There is a 1-1 correspondence between real four vectors and 2 × 2 Hermetian
matrices given by

X := xµσµ =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
xµ =

1

2
Tr(σµX). (5)

The determinant of X is the square of the proper time of the vector

τ2 = det(X) = −ηµνxµxν . (6)

The most general linear transformation that preserves both the Hermiticity and
the determinant of X has the form

X→ X′ = ΛXΛ† (7)

where Λ are complex 2 × 2 matrices with det(Λ) = 1. We have used the nota-
tion Λ for these 2 × 2 matrices because they are related to the 4 × 4 Lorentz
transformation Λµ

ν by

Λµ
ν =

1

2
Tr(σµΛσνΛ†). (8)

This is a 2 to 1 correspondence because both Λ and −Λ result in the same Λµ
ν

in (8). This relation between SL(2,C) and the Lorentz group is the same 2 to 1
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correspondence that one has in relating SU(2) rotations to SO(3) rotations. It
emerges when the SL(2,C) matrices are restricted to the SU(2) subgroup. In
the 2× 2 matrix representation a Poincaré transformation has the form

X→ X′ = ΛXΛ† + A A = A† (9)

where

A = aµσµ aµ =
1

2
Tr(Aσµ). (10)

Elements of the Poincaré group are pairs (Λµ
ν , a

µ) or equivalently (Λ, A).
The group product is

(Λµ
2 ν , a

µ
2 )(Λµ

1 ν , a
µ
1 ) = (Λµ

2αΛα
1 ν ,Λ

µ
2 νa

ν
1 + aµ2 ) (11)

or equivalently

(Λ2,A2)(Λ1,A1) = (Λ2Λ1,Λ2A1Λ†
2 + A2). (12)

The identity is (ηµν , 0) or (I, 0), and the inverse is

((Λ−1)µν ,−(Λ−1)µνa
ν) (13)

or
(Λ−1,−Λ−1AΛ†−1). (14)

The most general 2× 2 matrix with unit determinant has the form

Λ(z) = ez·σσσ = cosh(z) +
1

z
sinh(z)z · σσσ , (15)

where z is a complex 3-vector and z =
√∑

k z
2
k is a complex scalar. The

branch of the square root does not matter because both 1
z sinh(z) and cosh(z)

are even in z. This representation can be understood by noting that the σµ are
a basis (over the complex numbers) for all complex matrices and det(ez

µσµ) =

ez
µTr(σµ) = e2z

0

which is 1 for z0 = 0.
It is easy to see that the matrices Λ(z) correspond to Lorentz transformations

that are continuously connected to the identity because

Λ(λz) = eλz·σσσ (16)

is a Lorentz transformation for all λ and it continuously approaches the identity
as λ varies between 1 and 0. The SO(3, 1) Lorentz transformation constructed
by using (16) in (8) is also continuously connected to the identity.

When z = ρρρ/2 is a real vector, Λ(ρρρ/2) is a positive matrix (Hermetian with
positive eigenvalues). It corresponds to a rotationless Lorentz transformation
in the direction ρ̂ρρ with rapidity ρ:

ez·σσσ → e
1
2ρρρ·σσσ = cosh(ρ/2) + ρ̂ρρ · σσσ sinh(ρ/2). (17)

4



Using Eq. (17) in (8) leads to the four-vector form of this transformation

x′ = x + ρ̂ρρ sinh(ρ)x0 + ρ̂ρρ(cosh(ρ)− 1)(ρ̂ρρ · x)

x0
′

= cosh(ρ)x0 + sinh(ρ)(ρ̂ρρ · x)

ρ =
√
ρρρ2. (18)

If we make the identifications p/m = ρ̂ρρ sinh(ρ) = γβββ and p0/m = cosh(ρ) =
γ this Lorentz transformation can also be parameterized by the transformed
momentum of a mass m particle initially at rest as

(Λc(p))
µ
ν =

(
p0

m
p
m

p
m δij +

pipj

m(m+p0)

)
. (19)

Equations (17,18) and (19) are different ways of parameterizing the same Lorentz
transformation. We refer to this transformation as a rotationless or canonical
Lorentz boost, hence the subscript c.

When z = iθθθ/2 is an imaginary vector, Λ(z) is unitary and corresponds to a

rotation about the θ̂θθ axis through an angle θ

ez·σσσ → e
i
2θθθ·σσσ = cos(θ/2) + iθ̂θθ · σσσ sin(θ/2). (20)

Again using Eq.(20) in (8) leads to

x′ = cos(θ)x + sin(θ)(x× θ̂θθ) + (1− cos(θ))θ̂θθ(θ̂θθ · x). (21)

A rotation about any axis by 2π transforms Λ(z) to −Λ(z) which corresponds
to the same Λµ

ν in (8).
Since any SL(2,C) matrix A has a polar decomposition:

A = PU P = (AA†)1/2 U = (AA†)−1/2A (22)

or
A = U ′P ′ P ′ = (A†A)1/2 U ′ = A(A†A)−1/2 (23)

into the product of a positive Hermetian matrix P and a unitary matrix U , every
Lorentz transformation can be decomposed into the product of a canonical boost
and a rotation, in either order. The boost and rotation are the matrices P (P ′)
and U(U ′), respectively, in (22-23).

In what follows we use the notation P to refer to both the group of Poincaré
transformations connected to the identity and the group inhomogeneous SL(2,C).
P is a ten parameter group; six parameters are needed to fix the complex 3-
vector z in Λ(z), and four additional parameters are needed to fix aµ.

One important property of the group SL(2,C) that is relevant for the treat-
ment of spin in Lorentz covariant theories is that Λ(z) and Λ(z)∗ are inequivalent
representations of SL(2,C), which means that there are no constant matrices
C satisfying

CΛ(z)C−1 = Λ(z)∗ (24)
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for all z. This is distinct from the subgroup SU(2) (rotations) where for Λ =
R ∈ SU(2)

σ2Rσ2 = R∗. (25)

This observation is related to the appearance of four-component spinors in
Lorentz covariant theories. The reason for this is that

σ2X
∗σ2 =

(
x0 − x3 −x1 + ix2

−x1 − ix2 x0 + x3

)
(26)

represents space reflection in the 2 × 2 matrix representation (5). Because
space reflection (26) involves both a similarity transformation and a complex
conjugation, the space reflected vector transforms under an inequivalent complex
conjugate representation of SL(2,C). In order to realize space reflection as a
linear transformation in Lorentz covariant theories it is necessary to double the
dimension of the representation space by including the direct sum of a space
that transforms with the complex conjugate representation of SL(2,C). These
considerations do not apply to Poincaré covariant representations because the
little group, SU(2), is equivalent (25) to its conjugate representation. This will
be discussed in section 6.

To show (25) note

σ2Rσ2 = σ2e
i
2θθθ·σσσσ2 = e

i
2θθθ·σ2σσσσ2 = e−

i
2θθθ·σσσ

∗
= R∗. (27)

To prove that no matrix C satisfying (24) exists, assume by contradiction that
there is such a matrix. Let z = x be real and then let z = iy be imaginary.
Differentiating both sides of equation (24) with respect to xi and then yi and
setting zi = xi = 0 or zi = yi = 0 gives

CσiC
−1 = σ∗

i and CσiC
−1 = −σ∗

i . (28)

Adding these equations gives CσiC
−1 = 0 which is impossible for product of

three invertible matrices, contradicting the assumed existence of such a C.

3 Operators

Wigner showed that the Poincaré symmetry in a quantum theory is realized
by a unitary ray representation, U(Λ, a), of the Poincaré group. Bargmann [4]
showed that the ray representation can be replaced by a single-valued unitary
representation of inhomogeneous SL(2,C), satisfying

U(Λ2,A2)U(Λ1,A1) = U(Λ2Λ1,Λ2A1Λ†
2 + A2). (29)

The infinitesimal generators of this representation form a source of an irreducible
set of operators on the model Hilbert space.

Because the Poincaré group is a ten parameter group there are ten indepen-
dent unitary one-parameter groups associated with space translations (3), time
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translations (1), rotations (3), and rotationless Lorentz transformations (3).
The ten parameters can be chosen as the space-time translation parameters aµ,
three angles of rotation and the rapidities ρ in three independent directions.
One can see from the inhomogeneous SL(2,C) representation (12) that these
define one-parameter groups:

(I, A2)(I, A1) = (I,A1 +A2) (30)

(ei
θ2
2 ê·σσσ, 0)(ei

θ1
2 ê·σσσ, 0) = (ei

θ2+θ1
2 ê·σσσ, 0) (31)

(e
ρ2
2 ê·σσσ, 0)(e

ρ1
2 ê·σσσ, 0) = (e

ρ2+ρ1
2 ê·σσσ, 0). (32)

The unitary representation of these one-parameter groups have self-adjoint in-
finitesimal generators P, H, J, and K, that can be obtained by differentiating
with respect to the appropriate parameter. Equivalently, the one-parameter
groups can be expressed directly as exponentials of these generators:

U [I, (0, λâ)] = e−iλâ·P (33)

U [I, (a0,0)] = eia
0·H (34)

U [Λ(iλθ̂θθ/2), 0] = eiλθ̂θθ·J (35)

U [Λ(λρ̂ρρ/2), 0] = eiλρ̂ρρ·K. (36)

These generators are the linear momentum operators, P, Hamiltonian, H, an-
gular momentum operators, J, and rotationless Lorentz boost generators, K.
These designations follow from the commutation relations which show that both
the linear momentum P and angular momentum J commute with H and are
thus conserved.

The commutation relations and transformation properties of the generators
follow from the group representation property. To construct the commutator of
the generators of the one-parameter groups g2(λ2) and g1(λ1) with parameters
λ2 and λ1 use the group representation property to express the product as:

U†[g1(λ1)]U [g2(λ2)]U [g1(λ1)] = U [g1(−λ1)g2(λ2)g1(λ1)] . (37)

Taking the second derivative ∂2

∂λ1∂λ2
of this expression and setting λ1 = λ2 = 0

gives the commutator of the generators of the unitary one parameter groups
U [g2(λ2)] and U [g1(λ1)]. For example, to calculate the commutator of P i with
Kj use the group representation property to express the product of the three
transformations as a single transformation:

U(Λ, 0)U(I, (0,a))U(Λ−1, 0) = U(I,Λa). (38)

The commutator between P i and Kj can be determined by considering infinites-
imal transformations

U(Λ, 0)→ eiρρρ·K = I + iρρρ ·K + · · · (39)
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U(I, (0,a))→ e−ia·P = I − ia ·P + · · · (40)

U(Λ−1, 0)→ e−iρρρ·K = I − iρρρ ·K + · · · (41)

Λa = (sinh(ρ)(ρ̂ρρ ·a),a+ ρ̂ρρ(cosh(ρ)−1)(ρ̂ρρ ·a))→ (0,a)+(ρ(ρ̂ρρ ·a),0)+ · · · . (42)

To compute the commutator between P i and Kj expand both sides of (38) using
(39-42) to leading order in ρρρ and a

U(Λ, 0)U(I, (0,a))U(Λ−1, 0) = I − ia ·P− (i)2aiρj(KjP i − P iKj) + · · · =

U(I,Λa) = I − ia ·P + iρjδjia
iH + · · · . (43)

Equating the coefficient of aiρj gives

[Kj , P i] = iδijH. (44)

The 45 commutation relations involving all ten generators can be computed
using different pairs of unitary one-parameter groups.

The group representation property (29) also implies transformation prop-
erties of the infinitesimal generators. For example if we set Λ′ = I the group
representation properties give

U(Λ, a)U(Λ′, a′)U(Λ−1,−Λ−1a) = U(ΛΛ′Λ−1,Λa′Λ† − ΛΛ′Λ−1Λ′†a+ a)

U(Λ, a)U(I, a′)U(Λ−1,−Λ−1a) = U(I,Λa′Λ† − a+ a). (45)

The parameter a′ only appears in the translation generators on both sides of
(45). Differentiating with respect to a′µ and setting a′µ = 0 gives

U(Λ, a)(H,P)µU†(Λ, a) = (Λ−1)µν(H,P)ν = (H,P)νΛν
µ. (46)

It shows that the generators H and P transform like components of a four-vector
under Lorentz transformations. This four vector is the four momentum:

Pµ = (H,P). (47)

Similarly, letting U(Λ′, a′)→ U(Λ′, 0) in the first line of (45) and differentiating
with respect to angle or rapidity shows that the six Lorentz generators transform
as an antisymmetric tensor operator

Jµν =


0 −Kx −Ky −Kz

Kx 0 Jz −Jy

Ky −Jz 0 Jx

Kz Jy −Jx 0

 . (48)

The transformation properties of these operators can be compactly summarized
by the covariant forms of the transformation laws

U(Λ, a)PµU†(Λ, a) = P νΛν
µ (49)
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U(Λ, a)JµνU†(Λ, a) = (Jαβ − aαP β + aβPα)Λα
µΛβ

ν (50)

and the commutation relations for the infinitesimal generators

[Jµν , Jαβ ] = i(ηµαJνβ − ηναJµβ + ηνβJµα − ηµβJνα) (51)

[Pµ, Jαβ ] = i(ηµβPα − ηµαP β) (52)

[Pµ, P ν ] = 0. (53)

The spin is associated with another four vector that is a quadratic polynomial
in the generators, called the Pauli-Lubanski vector [5], defined by

Wµ = −1

2
εµναβPνJαβ . (54)

The commutation relations

[Wµ,W ν ] = iεµναβWαPβ (55)

[Wµ, P ν ] = 0 (56)

follow from (51-53).
The Poincaré Lie-algebra has two independent polynomial invariants [2]

which are the square of the invariant mass (rest energy) of the system,

M2 = −ηµνPµP ν , (57)

and the square of the Pauli-Lubanski vector

W 2 = ηµνW
µW ν . (58)

When M2 6= 0 the spin is related to the invariants M2 and W 2 by

j2 = W 2/M2. (59)

For massive systems (M > 0) the invariant W 2 is replaced by the spin j2 of
the system. The operators are invariant because they commute with all of the
Poincaré generators.

4 Spin and irreducible representations

Wigner [2] classified the unitary irreducible representations of the Poincaré
group. His classification was based on the observation that Lorentz transforma-
tions can be used to transform an arbitrary four vector to one of six standard
forms. This divides the set of four vectors into six disjoint Lorentz invariant
equivalence classes. These familiar equivalence classes are time-like positive
time, time-like negative time, light-like positive time, light-like negative time,
space-like, and zero. Every four vector is a member of one of these six classes.
Standard vectors, which are arbitrary but fixed vectors in each class, are given
in Table 1. For each standard vector there is a little group, which is the sub-
group of the Lorentz group that leaves that standard vector invariant. The little
groups for each of the standard vectors are given in Table 1.
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Table 1: The little groups for each of the standard vectors.

class standard vector little group

P 2 = −M2 < 0;P 0 > 0 pµs = (M, 0, 0, 0) SO(3)
P 2 = −M2 < 0;P 0 < 0 pµs = (−M, 0, 0, 0) SO(3)

P 2 = 0;P 0 > 0 pµs = (1, 0, 0, 1) E(2)
P 2 = 0;P 0 < 0 pµs = (−1, 0, 0, 1) E(2)

P 2 = −M2 = N2 > 0 pµs = (0, 0, 0, N) SO(2,1)
Pµ = 0 pµs = (0, 0, 0, 0) SO(3,1)

In Table 1 SO(3) is the group of rotations in three dimensions, E(2) is the
Euclidean group in two dimensions, SO(2, 1) is the Lorentz group in 2 + 1 di-
mensions, and SO(3, 1) is the Lorentz group in 3 + 1 dimensions. Irreducible
representations of the little groups are used as labels for the irreducible repre-
sentation of the Poincaré group. The treatment of each of the six little groups
is different and is not relevant to our treatment of particle spins. The interested
reader is referred to Wigner’s original paper [2].

For particles the relevant four vector is the particle’s four momentum, which
is a time-like positive-energy four vector for massive particles or a light-like
positive-energy four vector for massless particles.

For a particle of mass m > 0 the most natural choice for the standard vector
ps is the rest four momentum ps = p0 = (m,0). The little group for p0 is
the rotation group. If a particle at rest is observed in a rotated frame, the
particle remains at rest but the spin of the particle will be rotated relative to
the spin observed in the original frame. The particle’s spin degrees of freedom
are associated with irreducible representations of SO(3), the little group that
leaves ps = p0 unchanged.

The treatment of spin in relativistic quantum mechanics is slightly more
complicated than it is in non-relativistic quantum mechanics. The relevant
complication is because the commutator of two different rotationless Lorentz
boost generators, [Kk,Kl] = −iεklmJm, gives a rotation generator. This means
the sequences of rotationless Lorentz boosts can generate rotations. If we define
the spin of a particle to be the spin measured in the particle’s rest frame,
then its spin seen by an observer in any other frame will depend on both the
momentum of the particle in the transformed frame and the specific Lorentz
transformation relating the two frames. To get an unambiguous definition of
a spin observable it is necessary to specify both the frame where the spin is
defined (or measured) and a set of standard Lorentz transformations relating
a frame where the particle has momentum p to the frame where the spin is
defined (or measured). The result is that there are an infinite number of possible
choices of spin observables in relativistic quantum mechanics. Some common
spin observables are the canonical spin, the light-front spin, and the helicity.
While all of the spins that we will consider satisfy SU(2) commutation relations,
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the most useful choices are characterized by different simplifying properties. The
different spin observables are related by momentum-dependent rotations.

In this section we discuss the general structure of spin operators in Poincaré
invariant quantum mechanics. We will define spin operators as operator-valued
functions of the infinitesimal generators. We begin by assuming that we are
given a fixed standard vector ps with p2s = −m2 and p0s > 0. The standard
vector does not have to be the rest vector, p0. We also assume that we are
given a parameterized set of Lorentz transformations, Λs(p), that transform the
standard vector, ps, to any other four vector p with p2 = −m2,

Λs(p)
µ
νp

ν
s = pµ. (60)

The choice of Λs(p) and ps are arbitrary, subject to the constraints p2s = −m2,
p0s > 0 and (60).

For example, one possible choice is ps = p0 and Λs(p) = Λc(p), the ro-

tationless Lorentz transformation (19) with rapidity ρρρ = p̂ sinh−1( |p|
m ), that

transforms p0 to p.
The next step is to make Λs(p) into a Lorentz transformation valued operator

by replacing p in the expression for Λs(p) by the four-momentum operator P (we
use underlines to indicate operators in this section). For example, for Λs(p) =
Λc(p) given in (19), the matrix of operators becomes

Λµ
c ν(P ) :=


H/M P x/M P y/M P x/M

P x/M 1 +
PxPx

M(M+H)

PxPy

M(M+H)
PxP z

M(M+H)

P y/M
PyPx

M(M+H) 1 +
PyPy

M(M+H)

PyP z

M(M+H)

P x/M
P zPx

M(M+H)

P zPy

M(M+H) 1 +
P zP z

M(M+H)

 (61)

More generally we define

Λ0s(P ) = Λs(P )Λ−1
s (p0). (62)

Here the first transformation, Λ−1
s (p0), is a constant matrix that transforms

the constant 4-vector p0 to the constant standard 4-vector ps. The second trans-
form is a matrix of operators that maps ps to the operator P . The first matrix
is the identity when ps = p0. The combined transformation (62) is still a boost
valued operator that transforms p0 to P . The reason for discussing this more
general case of spins with ps 6= p0 is that a similar type of spin arises naturally
in composite systems when spins are coupled in the many-body problem (see
(152)). In the many-body case it is natural to choose ps to be the momentum of
the particle in the rest frame of the system rather than in the rest momentum
of the particle. In the many-body case the constant transformation Λ−1

s (p0) in
(62) is replaced by an operator-valued transformation that transforms a particle
at rest to its momentum in the rest frame of the system. This transformation
is operator-valued because the momentum of the particle in the system’s rest
frame is an independent variable. These spin observables have the advantage
that they can be added with ordinary SU(2) Clebsch-Gordan coefficients. This
will be illustrated in section 6.
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Given the operator Λ−1
0s (P ) we define the s-spin operator

(0, j
s
) =

1

m
Λ−1
0s (P )µνW

ν = − 1

2m
Λ−1
0s (P )µνε

ναβγPαJβγ . (63)

Note that all three components of j are well-defined Hermetian operators because
the mass, all components of the four momentum, and the Pauli-Lubanski vector
are Hermetian and commute, (53,56). The definition (63) of j

s
depends on both

the choice of a standard vector ps and a standard boost Λs(p).
The most familiar choices of s are associated with canonical spin, helicity,

and light-front spin. For the canonical spin the standard boost Λs(p) = Λc(p) is
given by (19). For the helicity the standard boost is Λh(p) = Λc(p)R(p̂← ẑ) =
R(p̂ ← ẑ)Λc(ẑp), where R(p̂ ← ẑ) is a rotation about the axis ẑ × p̂ through
an angle cos−1(ẑ · p̂). For the light-front spin the SL(2,C) representation of the
standard boost is

Λf (p) =

(
a 0

b+ ic 1/a

)
=

 √
p0+p3

m 0
p1+ip2√
m(p0+p3)

√
m

p0+p3

 . (64)

Each of these choices has simplifying features that are advantageous for certain
problems. These examples will be discussed in more detail in the next section.

Note that if the operator js is applied to an eigenstate of the four momentum
with eigenvalue pµ0 = (m, 0, 0, 0) then on this state the operator Λ0s(P ) becomes
the identity and Pα becomes p0. It follows that js becomes jis = 1

2ε
ijkJjk which

is the total angular momentum. This is consistent with the interpretation of the
spin as the angular momentum in the particle’s rest frame. In the relativistic
case different spin operators are distinguished by the transformation used to get
to the particles rest frame. These spins are normally identified in the particle’s
rest frame.

The spin (63) looks like it should be a set of four operators that transform as
the components of a four vector because it has the form of a four-vector operator,
Wµ, multiplied by the product of a Lorentz transformation Λ−1

0s (P )µν and a
scalar, 1/m. Because of this it may be surprising that it has no zero-component.
The reason that the spin is not a four-vector operator is because Λs(P ) is a
Lorentz transform valued operator rather than a Lorentz transformation, so it
corresponds to a different Lorentz transformation for each value of p. To see
explicitly how the zero component vanishes assume that js acts on an eigenstate
of the four momentum. Then the four-momentum P operators are replaced by
the components of the four-momentum eigenvalue, p, including the P in the
definition of the Pauli-Lubanski vector:

(0, j
s
)→ 1

m
(Λ−1

0s (p))µνW
ν = − 1

2m
Λ−1
0s (p)µνε

ναβγpαJβγ . (65)

Using the shorthand notation Λ = Λ−1
0s (p)µν , along with the fact the εραβγ is a

constant tensor,

εραβγ = ερ
′α′β′γ′

Λρ′
ρΛα′

αΛβ′
β′

Λγ′
γ = (Λ−1)ρρ′ερ

′α′β′γ′
Λα′

αΛβ′
β′

Λγ′
γ (66)
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or equivalently
Λµ

ρε
ραβγ = εµρηχΛρ

αΛη
βΛχ

γ (67)

gives
Λµ

ρε
ραβγPαJβγ = εµρηχΛρ

αΛη
βΛχ

γPαJβγ . (68)

Since Λρ
αpα = −mδρ0 = (−m, 0, 0, 0) it follows that

Λµ
ρε

ραβγPαJβγ = mεµ0ηχΛη
βΛχ

γJβγ = m(0, j
s
), (69)

which always has a 0 time component. The index α = 0 arises because the
only non-vanishing component of the transformed four momentum is the zero
component. From this expression we obtain the following equivalent formula for
the s-spin operator:

ji
s

=
1

2
εijkΛ−1

0s (P )jµΛ−1
0s (P )kνJ

µν . (70)

This spin observable is interpreted as the angular momentum measured in the
particle’s rest frame if the particle is transformed to the rest frame using the
boost Λ−1

0s (P ). The index s on the spin operator indicates that it is one of many
possible spin operators that are functions of the Poincaré generators. Spin
operators associated with different choices, s, t, of boosts are related by

(0, j
t
)µ = Λ−1

0t (P )µνΛ0s(P )νρ(0, j
s
)ρ = Rts(P )µν(0, j

s
)µ (71)

where Rts(P ) := Λ−1
0t (P )Λ0s(P ) is a rotation valued function of the momentum

operators. We refer to rotations that relate different spin observables as gener-
alized Melosh rotations. The original Melosh rotation [6] is the corresponding
rotation that relates the light-front and canonical spins.

In what follows we no longer use an underscore to indicate operators. It
follows from (63) that independent of how the individual components of ~js are
constructed they satisfy SU(2) commutation relations because, using (55), we
find

[jls, j
m
s ] =

1

m2
Λ−1
0s (P )lµΛ−1

0s (P )mν [Wµ,W ν ] =

1

m2
Λ−1
0s (P )lµΛ−1

0s (P )mνiε
µναβWαPβ . (72)

Again, because εµναβ is a constant tensor this commutator is equal to

[jls, j
m
s ] =

i

m2
εlmαβΛ−1

0s (P )α
µΛ−1

0s (P )β
νWµPν = −i m

m2
εlmα0Λ−1

0s (P )α
νWν =

i

m
εlmnΛ−1

0s (P )n
νWν = iεlmnjns . (73)

We also have

j2s = ηαβ
1

m2
Λ−1
0s (p)αµΛ−1

0s (p)βνW
µW ν =

1

m2
ηαβW

αW β = j2. (74)
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Thus, no matter which choice of ps and Λ−1
0s (p) are used to define the spin,

the components are always Hermetian functions of the Poincaré generators,
commute with the four momentum, satisfy SU(2) commutation relations, and
the square is always the invariant j2 = W 2/M2.

There are an infinite number of possible spins depending on how one chooses
Λ0s and ps. Which one is measured in an actual experiment is determined by
how the different spins couple to a classical electromagnetic field. If this is
known for one type of spin it is easy to determine the corresponding relations
for any other type of spin. This will be discussed in section 8.

We are now in a position to construct the irreducible representation spaces
that we use to describe the states of massive particles. In addition to the mass
and the square of the spin, three independent components of the four momentum
and one component of any spin vector, for example ẑ · js, define a maximal
set of commuting Hermetian functions of the generators. The simultaneous
measurement of these quantities also determine the state of a particle of that
mass and spin. Once the spin j2 is fixed, the spectrum of both j2 and ẑ · js is
fixed by the SU(2) commutation relations. The SU(2) commutation relations
imply that the eigenvalues µ of ẑ · js range from −j to j in integer steps while
the eigenvalues of j2 are j(j + 1) for j integer or half integer. The spectrum of
the three space components of the linear momentum are fixed to be (−∞,∞) by
the covariance relation (46). The subscript s indicates that µ is an eigenvalue
of ẑ · js. Since j2 = j2s, the total spin does not depend on the choice of js.

For fixed mass m and spin j we define the mass m spin j irreducible repre-
sentation space to be the space of square integrable functions

ψ(p, µ) =s 〈(m, j)p, µ|ψ〉 (75)

with inner product

〈ψ|φ〉 =

j∑
µ=−j

∫
dpψ∗(p, µ)φ(p, µ). (76)

The irreducible basis vectors for this space, |(m, j)p, µ〉s, are the simulta-
neous eigenstates of M , j2, p, and ẑ · js. We use the subscript s on the basis
vectors to emphasize that the magnetic quantum number µ is an eigenvalue of
js · ẑ and js defined in (75) depends on the choice of ps and Λs(p).

To show that this Hilbert space is an irreducible representation space for
the Poincaré group we first calculate the unitary representation of the Poincaré
group on this space.

We begin by considering the action of the little group on the basis vectors
|(m, j)ps, µ〉s when p is the standard vector p = ps.

When ps 6= 0 the representation of the rotation group that leaves ps invariant
is related to the standard SO(3) representations by a constant boost that acts
as a similarity transform:

Rs = Λ−1
s (p0)RΛs(p0). (77)
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We consider the action of U(Rs, 0) on vectors of the form |(m, j)ps, µ〉s. Because
Rs is an element of the little group, it will not change ps. The result of this
operator will be a linear combination of states with the same ps, but different
magnetic quantum numbers. Formally

U(Rs, 0)|(m, j)ps, µ〉s =

j∑
ν=−j

|(m, j)ps, ν〉ss〈(m, j)ν|U(Rs, 0)|(m, j)µ〉ps (78)

where

s〈(m, j)ν|U(Rs, 0)|(m, j)µ〉ps
:=∫

s〈(m, j)p, ν|U(Rs, 0)|(m, j)ps, µ〉sdp =∫
s〈(m, j)p, ν|U(Λ−1

s (p0), 0)U(R, 0)U(Λs(p0), 0)|(m, j)ps, µ〉sdp =∫
m

ωm(ps)
δ(ΛΛΛs(p0)p−ΛΛΛs(p0)ps)D

j
νµ(R)dp =∫

δ(p− ps)D
j
νµ(R)dp = Dj

νµ(R) (79)

with ωm(ps) =
√
p2
s +m2. Dj

νµ(R) are the ordinary finite dimensional unitary
irreducible representations [7] of the rotation group

Dj
µ′µ(R) =

∑
ν

[(j + µ′)!(j − µ′)!(j + µ)!(j − µ)!]1/2

(j + µ′ − ν)!ν!(ν − µ′ + µ)!(j − µ− ν)!
×

Rj+µ′−ν
11 Rν

12R
ν−µ′+µ
21 Rj−µ−ν

22 , (80)

where Rij are the SU(2) matrix elements

R = ei
θθθ
2 ·σσσ =

(
R11 R12

R21 R22

)
. (81)

Equation (78) can also be understood by considering the transformation prop-
erties of js under rotations. Using the definition of the s-spin (63) gives

U†(Rs, 0)(0, js)U(Rs, 0)|(m, j)ps, µ〉s =

1

m
(Λs(p0)Λ−1

s (Rsps)RsW )ν |(m, j)ps, µ〉s. (82)

Using the identities (77) and Λs(Rsps) = Λs(ps) = I, (82) becomes

=
1

m
(Λs(p0)Λ−1

s (p0)RΛs(p0)W )ν |(m, j)ps, µ〉s

= R
1

m
(Λs(p0)Λ−1

s (P )W )ν |(m, j)ps, µ〉s
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= (0, Rjs)|(m, j)ps, µ〉s (83)

where we have replaced I = Λ−1
s (ps) = Λ−1

s (P ) because the operator P acts on
an eigenstate with eigenvalue ps. Equation (83) shows that js transforms like
an ordinary three-vector, U†(Rs)jsU(Rs) = Rjs, under rotations when applied
to |(m, j)ps, µ〉s, which is also consistent with (79).

Equation (78) and (79) lead to the following transformation properties for
states with the standard momentum with respect to the little group

U(Rs, 0)|(m, j)ps, µ〉s =

j∑
ν=−j

|(m, j)ps, ν〉sDj
νµ(R). (84)

We can also calculate the action of spacetime translations on these standard
vectors using (33)

U(I, a)|(m, j)ps, µ〉s = e−ips·a|(m, j)ps, µ〉s. (85)

The last step needed to construct irreducible representations is to compute the
action of U(Λs(p), 0) on the standard states. First we show that U(Λs(p), 0)|(m, j)ps, µ〉s
is an eigenstate of Pµ with eigenvalue pµ. To show this use (47) to get

PµU(Λs(p), 0)|(m, j)ps, µ〉s =

U(Λs(p), 0)U†(Λs(p), 0)PµU(Λs(p), 0)|(m, j)ps, µ〉s =

U(Λs(p), 0)Λs(p)
µ
νp

ν
s |(m, j)ps, µ〉s = pµU(Λs(p), 0)|(m, j)ps, µ〉s, (86)

which is the desired result.
Next we show that U(Λs(p), 0)|(m, j)ps, µ〉s is an eigenstate of ẑ · js with

eigenvalue µ. Using (60) we get

ẑ · jsU(Λs(p), 0)|(m, j)ps, µ〉s =

U(Λs(p), 0)U†(Λs(p), 0)ẑ · jsU(Λs(p), 0)|(m, j)ps, µ〉s =

U(Λs(p), 0)ẑ · ( 1

m
Λs(p0)Λ−1

s (Λs(p)ps)Λs(p)W )ν |(m, j)ps, µ〉s

= U(Λs(p), 0)ẑ · ( 1

m
Λs(p0)Λ−1

s (p)Λs(p)W )ν |(m, j)ps, µ〉s =

U(Λs(p), 0)ẑ · ( 1

m
Λs(p0)W )ν |(m, j)ps, µ〉s. (87)

Inserting Λ−1
s (P ), which is the identity on the standard basis state, (87) becomes

U(Λs(p), 0)ẑ · ( 1

m
Λs(p0)Λ−1

s (P )W )ν |(m, j)ps, µ〉s =

U(Λs(p), 0)ẑ · js|(m, j)ps, µ〉s = µU(Λs(p), 0)|(m, j)ps, µ〉s , (88)

which is the desired result.
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It follows from (86) and (88) that U(Λs(p), 0)|(m, j)ps, µ〉s is a simultaneous
eigenstate of j2, ẑ · js, p, and m. Thus it is proportional to |(m, j)p, µ〉s. The
constant factor is fixed up to phase by the requirement that U(Λs(p), 0) is uni-
tary. If we normalize the states to give Dirac delta functions in the momentum
variables and choose the phase so that the constant factor is real and positive
then the normalization constant is fixed by

δ(p′ − p) =s 〈(m, j)p′, µ|U†(Λ, 0)U(Λ, 0)|(m, j)p, µ〉s

= |c|2δ(ΛΛΛp′ −ΛΛΛp) = |c|2| ∂p
∂ΛΛΛp
|δ(p′ − p) (89)

which gives

c = |∂ΛΛΛp

∂p
|1/2 = |ωm(ΛΛΛp)

ωm(p)
|1/2. (90)

Thus unitarity and an assumed delta function normalization imply the trans-
formation property

U(Λs(p), 0)|(m, j)ps, µ〉s = |(m, j)p, µ〉s

√
ωm(p)

ωm(ps)
. (91)

We see that on these states the little group rotates the spin operator leaving ps
invariant, while Λs(p) changes the momentum from the standard value to any
other value without changing the z-component of the s-spin.

Using the elementary transformations (84,85) and (91), we can construct
the action of an arbitrary Poincaré transformation on any basis state. To do
this note that for any p any Lorentz transformation can be decomposed into the
following product

Λ = Λs(Λp)Λ
−1
s (Λp)ΛΛs(p)Λ

−1
s (p) , (92)

where the s-spin Wigner rotation,

Λ−1
s (Λp)ΛΛs(p) := Rws(Λ, p) (93)

is an element of the little group associated with ps since it maps ps to ps. Thus

U(Λ, a)|(m, j)p, µ〉s = U(Λ, 0)U(I,Λ−1a)|(m, j)p, µ〉s =

e−iΛ−1a·pU(Λ, 0)|(m, j)p, µ〉s =

e−i(Λ−1a)·pU(Λs(Λp), 0)U(Rws(Λ, p), 0)U(Λ−1
s (p), 0)|(m, j)p, µ〉s =

e−ia·ΛpU(Λs(Λp), 0)U(Rws(Λ, p), 0)|(m, j)ps, µ〉s

√
ωm(ps)

ωm(p)
. (94)

Using

|(m, j)ps, µ〉s = U(Λ−1
s (p0), 0)|(m, j)p0, µ〉s

√
ωm(p0)

ωm(ps)
(95)
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and the fact that Λs(p0)Rws(Λ, p)Λ
−1
s (p0) is a rotation, (94) becomes:

j∑
ν=−j

e−ia·ΛpU(Λs(Λp), 0)|(m, j)ps, ν〉sDj
νsµs

[Λs(p0)Rws(Λ, p)Λ
−1
s (p0)]

√
ωm(ps)

ωm(p)

=

j∑
ν=−j

e−ia·Λp|(m, j)ΛΛΛp, ν〉sDj
νµ[Λs(p0)Rws(Λ, p)Λ

−1
s (p0)]

√
ωm(ps)

ωm(p)

√
ωm(ΛΛΛp)

ωm(ps)

=

j∑
ν=−j

e−ia·Λp|(m, j)ΛΛΛp, ν〉sDj
νµ[Λs(p0)Rws(Λ, p)Λ

−1
s (p0)]

√
ωm(ΛΛΛp)

ωm(p)
. (96)

Thus the general form of any finite Poincaré transformation in this representa-
tion of the Hilbert space is

U(Λ, a)|(m, j)p, µ〉s =

j∑
ν=−j

e−ia·Λp|(m, j)ΛΛΛp, ν〉sDj
νµ[Λs(p0)Rws(Λ, p)Λ

−1
s (p0)]

√
ωm(ΛΛΛp)

ωm(p)
. (97)

By construction it is apparent that it is possible to start from the highest weight,
µ = j, spin state with standard momentum p = ps and generate all of the
basis vectors in the Hilbert space using only Poincaré transformations. This
establishes the irreducibility of this representation.

It is useful to introduce for the Wigner functions of the Poincaré group a
notation that is similar to the notation used for Wigner functions of the rotation
group:

Dm,j
s:p′µ′;pµ[Λ, a] :=

s〈(m, j)p′, µ′|U(Λ, a)|(m, j)p, µ〉s =

e−ia·Λpδ(p′ −ΛΛΛp)Dj
µ′µ[Λs(p0)Rws(Λ, p)Λ

−1
s (p0)]

√
ωm(ΛΛΛp)

ωm(p)
. (98)

Note that the Poincaré group Wigner functions are basis dependent.
Using this notation (97) can be written as

U(Λ, a)|(m, j)p, µ〉s =

j∑
ν=−j

∫
dp′|(m, j)p′, ν〉sDm,j

s:p′ν;pµ[Λ, a]. (99)

A consequence of definition (98) is that these Poincaré group Wigner functions
are explicit unitary representations of the Poincaré group. They satisfy the
group representation property∫

dp′′
j∑

µ′′=−j

Dm,j
s:p′µ′;p′′µ′′ [Λ2, a2]Dm,j

s:p′′µ′′;pµ[Λ1, a1] =
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Dm,j
s:p′µ′;pµ[Λ2Λ1,Λ2a1 + a2] (100)

and unitarity∫
dp′′

j∑
µ′′=−j

Dm,j∗
s:p′′µ′′;p′µ′ [Λ, a]Dm,j

s:p′′µ′′;pµ[Λ, a] = δ(p′ − p)δµ′µ. (101)

In dealing with electromagnetic interactions where the coupling of the spin to
a magnetic field is known for one type of spin, say the s-spin, and the dynamics
is given in a basis with a different type of spin, say the t-spin, the transformation
from a basis associated with the standard vector ps and standard boost Λs(p) to
the basis associated with the pair, pt and Λt(p), is needed. The corresponding
spin operators are

(0, j
s
) =

1

m
Λ−1
0s (P )µνW

ν (102)

and

(0, j
t
) =

1

m
Λ−1
0t (P )µνW

ν , (103)

where
Λ−1
0s (P ) = Λs(p0)Λ−1

s (P ) (104)

and
Λ−1
0t (P ) = Λt(p0)Λ−1

t (P ). (105)

When p = p0 (i.e. p = 0) we have the identity Λ−1
0s (p0) = Λ−1

0t (p0) = I. This
means that

js|(m, j)p0, µ〉s = jt|(m, j)p0, µ〉t = (W/m)|(m, j)p0, µ〉. (106)

This is because the spin operators (102) and (103) are defined so they are
identical when they are applied to zero-momentum, p = p0 = 0:

|(m, j)0, µ〉s = |(m, j)0, µ〉t. (107)

It follows that

|(m, j)p, µ〉s = U(Λs(p), 0)|(m, j)ps, µ〉s

√
ωm(ps)

ωm(p)

= U(Λs(p), 0)U(Λ−1
s (p0), 0)|(m, j)0, µ〉s

√
ωm(0)

ωm(p)
=

= U(Λs(p), 0)U(Λ−1
s (p0), 0)|(m, j)0, µ〉t

√
ωm(0)

ωm(p)

= U(Λs(p), 0)U(Λ−1
s (p0), 0)U(Λt(p0), 0)|(m, j)pt, µ〉t

√
ωm(pt)

ωm(p)
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= U(Λs(p), 0)U(Λ−1
s (p0), 0)U(Λt(p0), 0)U(Λ−1

t (p), 0)|(m, j)p, µ〉t
= U(Λs(p)Λ

−1
s (p0)Λt(p0)Λ−1

t (p), 0)|(m, j)p, µ〉t

=

j∑
µ′=−j

∫
|(m, j)p′, µ′〉tdp′Dmj

t:p′µ′;p;µ[Λs(p)Λ
−1
s (p0)Λt(p0)Λ−1

t (p), 0]

=

j∑
µ′=−j

|(m, j)p, µ′〉tDj
µ′µ[Λ−1

0t (p)Λ0s(p)] , (108)

where for the last step we used (98) and Λs(p)Λ
−1
s (p0)Λt(p0)Λ−1

t (p)p = p. This
shows these bases differ by a momentum-dependent generalized Melosh rotation
(71).

The relation (108) is

|(m, j)p, µ〉s =

j∑
µ′=−j

|(m, j)p, µ′〉tDj
µ′µ[Λ−1

0t (p)Λ0s(p)] . (109)

This section illustrated the general structure of positive-mass positive-energy
irreducible representations of the Poincaré group. We started with a complete
set of commuting Hermetian operators constructed as functions of the Poincaré
generators. The spectrum of all of the commuting observables was fixed once
the spectrum of m and j2 was fixed. A representation of the Hilbert space was
defined by square integrable functions of the eigenvalues of these commuting
observables over their spectra. On each space associated with a fixed mass and
spin we constructed an irreducible unitary representation of the Poincaré group.

In this construction we found that there are many different observables that
behave like spins. They are all non-linear functions of the Poincaré generators
satisfying SU(2) commutation relations. It is also possible to change the choice
of independent continuous variables. Different choices of commuting continu-
ous variables (linear momentum, four velocity, light-front components of the
momentum) along with the appropriate choice of spin variable are relevant in
dynamical models based on Dirac’s forms of dynamics [8].

The construction of both the irreducible representation and the represen-
tation space can be done for many-body systems in the same way that it was
done for single particles. The idea is to use the elementary transformations
(84,85) and (91), with eigenstates of commuting observables constructed from
the many-body generators. To do this it is necessary to decompose states with
total p = ps into irreducible representations of the little group. The main differ-
ence is that the mass will generally have a continuous spectrum and there may
be multiple copies of representations of given mass and spin.

5 Examples

In this section we discuss the three most common spin observables and discuss
the properties that distinguish each of them.
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In the previous section we introduced a large number of different types of
observables which we identified as spins. Each of these were functions of the
Poincaré generators satisfying SU(2) commutation relations and commuting
with the linear momentum. All have the same square, which is W 2/M2, the
ratio of the two Casimir operators for the Poincaré group. Each of the spins
used in applications has some particular property that makes them useful. In
general different types of spin are characterized by the choice of boost used to
relate the spin of a particle (system) with momentum p to the spin in a standard
frame. Specifically the magnetic quantum number remains unchanged when this
boost is applied to a standard frame eigenstate of the z-component of spin and
momentum; (91). For the examples in this section we assume that the standard
vector is the rest vector, p0.

5.1 Canonical spin

The boost used to define the canonical spin is the rotationless boost (19). Under
rotations

U(R, 0)|p, µ〉 =

j∑
ν=−j

|Rp, ν〉Dj
νµ[Λ−1

c (Rp)RΛc(p)]. (110)

The special property of the canonical boost is that the Wigner rotation (93) of
any rotation R is R:

Λ−1
c (Rp)RΛc(p) = R. (111)

Using this in (110) gives

U(R, 0)|p, µ〉 =

j∑
ν=−j

|Rp, ν〉Dj
νµ[R]. (112)

where the argument of the D function is independent of p. This is useful when
applied to a system of particles with different momenta. Under rotations all
of the particles transform with the same rotation, independent of their indi-
vidual momenta. This allows the spins to be coupled with ordinary SU(2)
Clebsch-Gordan coefficients. For the other types of spins the arguments of the
D-functions involve Wigner rotations with different values of p. In order to
couple the spins it is normally necessary first to convert them to canonical spins
so all spins rotate the same way.

The identity (111) is most easily proved in the SU(2) representation, (17).

In this representation Λc(p) = e
1
2z·σσσ with z = p̂ sinh−1(|p|/m). For this proof

we let boldface R denote a three-dimensional rotation and R denote the corre-
sponding SU(2) rotation. It follows that

RΛc(p)R
† = Rez·σσσR† = ez·(RσσσR†) = ez·(R

−1σσσ) = eRz·σσσ = Λc(Rp) , (113)

where we have used (7) for rotations (Λ→ R):

xµ(R−1σ)µ = (Rx)µσµ = R(xµσµ)R† = xµR(σµ)R†. (114)

Equation (113) and R† = R−1 imply the desired result (111).
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5.2 Helicity

The helicity [9] is the operator p̂ · jc where jc is the canonical spin. To relate
this to the formalism derived in section 4 we let R(ẑ→ p̂) denote the rotation
about an axis perpendicular to the plane containing ẑ and p̂ that rotates ẑ into
the direction p̂. The helicity boost is defined by

Λh(p) = Λc(p)R(ẑ→ p̂) = R(ẑ→ p̂)Λc(pz) , (115)

where pz is the 4-vector with 3-magnitude |p| in the z direction.
Helicity eigenstates are related to canonical spin eigenstates by

|p, µ〉h := U(R(ẑ→ p̂))||p|ẑ, µ〉c =

j∑
ν=−j

|p, ν〉cDj
νµ[R(ẑ→ p̂)]. (116)

This equation shows that the generalized Melosh rotation (71,109) relating the
canonical and helicity spins is R(ẑ→ p̂).

The helicity spin, jh, defined using the helicity boost in (63) satisfies

ẑ · jh = p̂ · jc , (117)

which means that the z-component of the helicity spin is the helicity.
The helicity-spin Wigner rotation (93) is

Rwh(Λ, p) = R−1(ẑ→ p̂)Λ−1
c (Λp)ΛΛc(p)R(ẑ→ p̂) , (118)

which is a rotation about the z axis. Thus

U(Λ, 0)|p, µ〉h := |ΛΛΛp, µ〉heiµφ
√
ωm(ΛΛΛp)

ωm(p)
, (119)

where φ is the angle of rotation of the Wigner rotation. Thus the helicity
eigenvalue is Lorentz invariant.

The identification of ẑ · jh with p̂ · jc follows from the calculation

p̂ · jc|p′, µ〉h = p̂′ · jcU(R(ẑ→ p̂′))||p′|ẑ, µ〉c =

p̂′ · U(R(ẑ→ p̂′))U(R−1(ẑ→ p̂′))jcU(R(ẑ→ p̂′))||p′|ẑ, µ〉c =

U(R(ẑ→ p̂′))(p̂′ ·R(ẑ→ p̂′)jc)||p′|ẑ, µ〉c =

U(R(ẑ→ p̂′))(R−1(ẑ→ p̂′)p̂′) · jc||p′|ẑ, µ〉c =

U(R(ẑ→ p̂′))|p|ẑ · jc||p′|ẑ, µ〉c =

µU(R(ẑ→ p̂′))||p′|ẑ, µ〉c = µ|p′, µ〉h = ẑ · jh|p′, µ〉h . (120)
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5.3 Light-front spin

In the SL(2,C) representation the light-front boosts are represented by the
three-parameter subgroup of lower triangular matrices with real entries on the
diagonal. Considering the transformation properties (7) for the four momentum(

a 0
b+ ic 1/a

)(
m 0
0 m

)(
a b− ic
0 1/a

)
=

(
ma2 ma(b− ic)

ma(b+ ic) m(b2 + c2)/a2

)
(121)

we can identify the parameters of the light-front boost as follows

ma2 = p0 + p3 a =

√
p0 + p3

m
(122)

ma(b− ic) = p1 − ip2 b− ic =
p1 − ip2

ma
. (123)

Because the light-front boosts form a subgroup, any sequence of light-front
boosts is the unique light-front boost parameterized by the final momentum of
the sequence. This means that the Wigner rotation (93) of a light-front boost is
the identity so the light-front spins remain unchanged under the three parameter
group of light-front boosts.

Unlike helicities, the light-front spin is not invariant with respect to rota-
tions.

6 Adding spins

Multiparticle systems can be described by tensor products of single-particle
systems. The Hilbert space is the tensor product,

H = ⊗iHmiji , (124)

where Hmiji are the mass mi spin ji single-particle irreducible representation
spaces constructed in section 4.

There is a natural representation U0(Λ, a) of the Poincaré group on this
space which is the tensor product of the irreducible representations constructed
in section 4

U0(Λ, a) = ⊗iUmiji(Λ, a). (125)

Dynamically this representation describes a system of free particles. In this
representation the infinitesimal generators are sums of the single-particle gen-
erators. In the s-spin basis this representation has the explicit form

U0(Λ, a)|(m1, j1)p1, µ1〉s ⊗ · · · ⊗ |(mN , jN )pN , µN 〉s =∑
µ′
1···µ′

N

∫
dp′

1 · · · dp′
N |(m1, j1)p′

1, µ
′
1〉s ⊗ · · · ⊗ |(mN , jN )p′

N , µ
′
N 〉s×

Dm1,j1
s:p′

1µ
′
1;p1µ1

[Λ, a] · · · DmN ,jN
s:p′

Nµ′
N ;pNµN

[Λ, a] =
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e−ia·
P

i Λpi

∑
ν1···νN

|(m1, j1)ΛΛΛp1, ν1〉s ⊗ · · · |(mN , jN )ΛΛΛpN , νN 〉s

×
∏
i

Dj
νiµi

[Λs(p0)Rws(Λ, pi)Λ
−1
s (p0)]

√
ωmi(ΛΛΛpi)

ωmi(pi)
. (126)

Just like in the case of ordinary rotations, the tensor product of irreducible
representations of the Poincaré group is reducible. Poincaré group Clebsch-
Gordan coefficients are coefficients of a unitary transformation that transforms
the tensor product into irreducible blocks labeled by many-body mass and spin
eigenvalues. For non-interacting systems the many-body mass is just the in-
variant mass of the many-body system. The structure of the Clebsch-Gordan
coefficients depends on the choice of basis used to define vectors in the irre-
ducible blocks. They are derived below.

We start by evaluating the coefficients of the unitary transformation that
transforms a tensor product of two irreducible representations into a superpo-
sition of irreducible representations.

Basis states for the tensor product state are simultaneous eigenstates of the
mass, spin, linear momentum and magnetic quantum number for each particle

|(m1, j1)p1, µ1〉s ⊗ |(m2, j2)p2, µ2〉s. (127)

As in the previous section the subscript s indicates choice of spin operator.
Infinitesimal generators for the combined system are sums of generators for

the individual constituent particles. The four momentum of the combined sys-
tem is P = p1 + p2. This is a sum of timelike positive-time vectors so it is a
timelike positive-time vector. Following what was done for single-particles we
look at representations of the little group for a standard momentum vector. For
many-body systems we choose the standard vector to be the zero of the total
three-momentum vector.

Tensor product eigenstates with the standard vector for the two-particle
system P = ps = p0 = (M,0) have the form

|(m1, j1)k, µ1〉s ⊗ |(m2, j2)− k, µ2〉s (128)

where p1 = −p2 := k. We also define

k1 = (ωm1
(k),k) k2 = (ωm2

(k),−k). (129)

where ωmi
(k) =

√
k2 +m2

i .
It is useful to decompose the vector k into orbital angular momentum com-

ponents using spherical harmonics:

|(m1, j1,m2, j2)k, l, µl, µ1, µ2〉s :=∫
|(m1, j1)k, µ1〉s ⊗ |(m1, j2)− k, µ2〉s dk̂Y l

µl
(k̂). (130)

To construct irreducible representations consider the transformation properties
of (130) under rotations (the little group associated with p0).
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Let U(R) = U1(R, 0)⊗ U2(R, 0). Applying this operator to (130) gives

U(R, 0)|(m1, j1,m2, j2)k, l, µl, µ1, µ2〉s :=

U(R, 0)

∫
|(m1, j1)k, µ1〉s ⊗ |(m2, j2)− k, µ2〉sdk̂Y l

µl
(k̂) =

∑
µ′
1µ

′
2

∫
|(m1, j1)Rk, µ′

1〉s ⊗ |(m2, j2)−Rk, µ′
2〉s dk̂Y l

µl
(k̂)×

Dj1
µ′
1µ1

[Λ−1
s (Rk1)RΛs(k1)]Dj2

µ′
2µ2

[Λ−1
s (Rk2)RΛs(k2)]. (131)

Changing variables k→ R−1k (131) becomes

=
∑
µ′
1µ

′
2

∫
|(m1, j1)k, µ′

1〉s ⊗ |(m2, j2)− k, µ′
2〉s dk̂Y l

µl
(R−1k̂)×

Dj1
µ′
1µ1

[Λ−1
s (k1)RΛs(R

−1k1)]Dj2
µ′
2µ2

[Λ−1
s (k2)RΛs(R

−1k2)]. (132)

Noting that

Y l
µl

(R−1k̂) = 〈R−1k̂|l, µl〉 = 〈k̂|U(R)|l, µl〉 =
∑
m′

l

〈k̂|l, µ′
l〉〈l, µ′

l|U(R)|l, µl〉 =

∑
m′

l

Y l
µ′
l
(k̂)Dl

µ′
lµl

[R] (133)

Eq. (132) becomes

=
∑

µ′
1µ

′
2µ

′
l

∫
|(m1, j1)k, µ′

1〉s ⊗ |(m2, j2)− k, µ′
2〉s dk̂Y l

µ′
l
(k̂)×

Dj1
µ′
1µ1

[Λ−1
s (k1)RΛs(R

−1k1)]Dj2
µ′
2µ2

[Λ−1
s (k2)RΛs(R

−1k2)]Dl
µ′
lµl

[R]. (134)

The important observation is that the spins and orbital angular momenta all
transform with different rotations so they cannot be consistently added with
ordinary Clebsch-Gordan coefficients. The rotations of the spins are Wigner
rotations of the rotations that appear in the orbital angular momentum. The
canonical spin, that uses the rotationless boost (17,18,19), Λs(p) = Λc(p), with
ps = po has the unique feature, (111), that the Wigner rotations of any rotation
is the rotation. This means that for canonical spins (s = c)

Λ−1
c (Rk1)RΛc(k1) = R

Λ−1
c (Rk2)RΛc(k2) = R (135)

or equivalently
Λ−1
c (k1)RΛc(R

−1k1) = R

Λ−1
c (k2)RΛc(R

−1k2) = R (136)
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so all three SU(2)-Wigner functions in (134) have the same arguments, inde-
pendent of ki. Thus for canonical spin, s = c, we have

U(R, 0)|(m1, j1,m2, j2)k, l, µl, µ1, µ2〉c :=

=
∑

µ′
1µ

′
2µ

′
l

∫
|(m1, j1)k, µ′

1〉c ⊗ |(m2, j2)− k, µ′
2〉c dk̂Y l

µ′
l
(k̂)×

Dj1
µ′
1µ1

[R]Dj2
µ′
2µ2

[R]Dl
µ′
lµl

[R]. (137)

which has the property that the spins and orbital angular momenta all rotate
with the same rotation.

Recall that we initially defined all types of spins so that they agree in the
particle’s rest frame (106). The state (130) is a rest state of the two-body
system. Following what was done in the one-body case we assume all of the
two-body s-spins agree with the canonical spin state (137) in the two-body rest
frame. Since we want to treat the case of coupling any type of spins we use
generalized Melosh rotations (71,109) to express the single-particle canonical
spin state (137) in terms of single-particle s-spin states:

|(m1, j1)k, µ1〉c =

j1∑
µ′
1=−j1

|(m1, j1)k, µ′
1〉sD

j1
µ′
1µ1

[Λ−1
s (k1)Λc(k1)] (138)

|(m2, j2)− k, µ2〉c =

j2∑
µ′
2=−j2

|(m2, j2)− k, µ′
2〉sD

j2
µ′
2µ2

[Λ−1
s (k2)Λc(k2)]. (139)

By using (138) and (139) in (137) the two-body rest canonical spin state can be
expressed in terms of the single-particle s-spin states as

|(m1, j1,m2, j2)k, l, µl, µ1, µ2〉c :=∑
µ′
1µ

′
2

∫
|(m1, j1)k, µ′

1〉s ⊗ |(m2, j2)− k, µ′
2〉sdk̂Y l

m(k̂)×

Dj1
µ′
1µ1

[Λ−1
s (k1)Λc(k1)]Dj2

µ′
2µ2

[Λ−1
s (k2)Λc(k2)]. (140)

This state is identical to the state in (137) and it necessarily has the same
transformation property under rotations.

Using the property∑
µ′
1µ

′
2

Dj1
µ1µ′

1
[R]Dj2

µ2µ′
2
[R]〈j1, µ′

1, j2, µ
′
2|j12, µ12〉 =

∑
j12µ′

12

〈j1, µ1, j2, µ2|j12, µ′
12〉D

j12
µ′
12µ12

[R] (141)
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of the SU(2) Clebsch-Gordan coefficients, the spins and orbital angular mo-
menta can be coupled to a total spin that transform irreducibly under rotations.
Thus we are led to define the rest states of the system by

|k, j(m1, j1,m2, j2, l, s12)0, µ〉c :=

′∑
|(m1, j1,m2, j2)k, l, µ′

l, µ
′
1, µ

′
2〉c〈j1, µ′

1, j2, µ
′
2|s12, µs〉〈l,m, s12, µs|j, µ〉 =

′∑ ′′∑∫
|(m1, j1)k, µ′

1〉s ⊗ |(m2, j2)− k, µ′
2〉s dk̂Y l

m(k̂)×

Dj1
µ′
1µ

′′
1
[Λ−1

s (k1)Λc(k1)]Dj2
µ′
2µ

′′
2
[Λ−1

s (k2)Λc(k2)]×

〈j1, µ′′
1 , j2, µ

′′
2 |s12, µs〉〈l,m, s12, µs|j, µ〉. (142)

It follows from (137) and (141) that these vectors transform as spin-j irreducible
representations with respect to rotations

U(R, 0)|k, j(m1, j1,m2, j2, l, s12)0, µ〉c =

j∑
µ=−j

|k, j(m1, j1,m2, j2)µ′, l, s12〉cDj
µ′µ[R] . (143)

Note that in this expression k is a function of the invariant mass

M0 =
√
m2

1 + k2 +
√
m2

2 + k2 =

ωm1(k) + ωm2(k). (144)

This is an irreducible basis for the rest states. Following again what was done
in the one-particle case, having decomposed the rest states into irreducible rep-
resentations of the rotation group (little group of p0), we define s-spin states
with arbitrary momentum by applying U(Λs(P )) = U1(Λs(P ))⊗ U2(Λs(P )) to
the rest states. Thus we define the s-states of total momentum P following the
construction used in (91)

|k, j(m1, j1,m2, j2, l, s12)P, µ〉s :=

U(Λs(P ), 0)|k, j(m1, j1,m2, j2, l, s12)0, µ〉c

√
M0√

M2
0 + P2

, (145)

where the square root factors (89-90) imply a δ(P−P′) normalization for uni-
tarity. To calculate the Clebsch-Gordan coefficients we express the irreducible
basis state (142) in terms of tensor products of the single-particle basis states.

Using (142) in (145) gives

|k, j(m1, j1,m2, j2, l, s12)P, µ〉s =
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∑
µ′
1,µ

′
2,µ

′′
1 ,µ

′′
2 ,m,µs

∫
U1(Λs(P ), 0)|(m1, j1)k, µ′

1〉s⊗U2(Λs(P ), 0)|(m2, j2)−k, µ′
2〉s dk̂×

Y l
m(k̂)Dj1

µ′
1µ

′′
1
[Λ−1

s (k1)Λc(k1)]Dj2
µ′
2µ

′′
2
[Λ−1

s (k2)Λc(k2)]×

〈j1, µ′′
1 , j2, µ

′′
2 |s12, µs〉〈l,m, s12, µs|j, µ〉

√
M0√

M2
0 + P2

=

∑
µ1,µ2,µ′

1,µ
′
2,µ

′′
1 ,µ

′′
2 ,m,µs

∫
|(m1, j1)p1, µ1〉s ⊗ |(m2, j2)p2, µ2〉s dk̂Y l

m(k̂)×

Dj1
µ1µ′

1
[Rws(Λs(P ), k1)]

√
ωm1(p1p1p1)

ωm1(k)
Dj2

µ2µ′
2
[Rws(Λs(P ), k2)]

√
ωm2(ppp2)

ωm2(k)
×

Dj1
µ′
1µ

′′
1
[Λ−1

s (k1)Λc(k1)]Dj2
µ′
2µ

′′
2
[Λ−1

s (k2)Λc(k2)]×

〈j1, µ′′
1 , j2, µ

′′
2 |s12, µs〉〈l,m, s12, µs|j, µ〉

√
M0√

M2
0 + P2

, (146)

where
pi = pi(P, ki) = Λs(P )ki. (147)

This equation expresses a two-particle s-spin state as a linear combination
of tensor products of single s-spin states. The overlap with the single-particle
s-spin states gives

s〈(m1, j1)p1, µ1(m2, j2)p2, µ2|k, j(m1, j1,m2, j2)P, µ, l, s12〉s =∑
µ′
1,µ

′
2,µ

′′
1 ,µ

′′
2 ,µs,m

∫
δ(p1 − p1(P, k))δ(p2 − p2(P, k)) dk̂Y l

m(k̂)×

Dj1
µ1µ′

1
[Rws(Λs(P ), k1)]Dj1

µ′
1µ

′′
1
[Λ−1

s (k1)Λc(k1)]×

Dj2
µ2µ′

2
[Rws(Λs(P ), k2)]Dj2

µ′
2µ

′′
2
[Λ−1

s (k2)Λc(k2)]×

〈j1, µ′′
1 , j2, µ

′′
2 |s12, µs〉〈l,m, s12, µs|j, µ〉×√

ωm1(p1p1p1)

ωm1(k)

√
ωm2(ppp2)

ωm2(k)

√
M0√

M2
0 + P2

. (148)

This expression is one form of the Poincaré group Clebsch-Gordan coefficient in
the s-basis. Changing variables from p1 and p2 to P and k inverts all of the
Jacobians (square root factors) and eliminates the angular integral

s〈(m1, j1)p1, µ1(m2, j2)p2, µ2|k, j(m1, j1,m2, j2)P, µ, l, s12〉s∑
µ′
1,µ

′
2,µ

′′
1 ,µ

′′
2 ,µs,m

δ(P− p1 − p2)
δ(k − k(p2,p2))

k2
Y l
m(k̂(p1,p2)×
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Dj1
µ1µ′

1
[Rws(Λs(P ), k1)]Dj1

µ′
1µ

′′
1
[Λ−1

s (k1)Λc(k1)]×

Dj2
µ2µ′

2
[Rws(Λs(P ), k2)]Dj2

µ′
2µ

′′
2
[Λ−1

s (k2)Λc(k2)]×

〈j1, µ′′
1 , j2, µ

′′
2 |s12, µs〉〈l,m, s12, µs|j, µ〉×√

ωm1
(k)

ωm1(p1)

√
ωm2

(k)

ωm2(p2)

√√
M2

0 + P2

M0
. (149)

These are the formal expressions for the Poincaré group Clebsch-Gordan coef-
ficients in the s-basis. This construction is based on our convention that all
different types of one-body spins are identified in the one-body rest frame and
the different types of many-body spins are identified in the many-body rest
frame. The quantum numbers l and s12 are degeneracy quantum numbers that
separate different irreducible representations with the same mass and spin.

The Poincaré group Clebsch-Gordan coefficients have the same relations with
the Poincaré group Wigner functions as the rotation group Clebsch-Gordan
coefficients have with the rotation group Wigner functions:∫ ∑

µ′
1,µ

′
2

dp′
1p

′
2D

m1,j1
s:p1µ1;p′

1µ
′
1
[Λ, a]Dm2,j2

s:p2µ2;p′
2µ

′
2
[Λ, a]×

s〈(m1, j1)p′
1, µ

′
1(m2, j2)p′

2, µ
′
2|k, j(m1, j1,m2, j2)P, µ, l, s12〉s =∫ ∑

µ′

dP′k2dks〈(m1, j1)p1, µ1(m2, j2)p2, µ2|k, j(m1, j1,m2, j2)P′, µ′, l, s12〉s×

Dm(k),j
s:P′µ′;Pµ[Λ, a]. (150)

If we compare (142) to (140) we see that they differ by a pair of SU(2)
Clebsch-Gordan coefficients. It has the same structure as a non-relativistic state
where two single-particle spins are added to an orbital angular momentum to
get a total spin. In the relativistic case the spins that are added in this way
differ from the single particle s-spins by the rotations

Rws(Λs(P ), ki)Λ
−1
s (ki)Λc(ki) = Λ−1

s (pi)Λs(P )Λc(ki) , (151)

which are the composition of a Melosh rotation (71,109) from the canonical spin
to the s-spin followed by a Wigner rotation (93) for the s-boost.

It is useful to identify the corresponding relativistic spin operators that can
be added, using the ordinary rules of angular momentum addition, to the orbital
angular momentum to get the total two-body spin. We define the single-particle
s-constituent spin operator for particle i by

jiss := Λ−1
c (ki)Λ

−1
s (P )Λs(pi)jis =

1

mi
Λ−1
c (ki)Λ

−1
s (P )Wi. (152)

These single-particle constituent spin operators are actually many-body opera-
tors because they depend on the total momentum of the system. In Eq. (152)

29



the quantities ki, pi, P , js, W , and mi are interpreted as operators. The trans-
formation Λ−1

c (ki)Λ
−1
s (P )Λs(pi) relating jss to js is a momentum-dependent

rotation.
The transformation Λs(P )Λc(ki) is a boost from the rest frame of particle

i to its final momentum by first boosting to the standard frame of the many-
body system followed by a boost to the final momentum of the particle. It
has the same form as the boost in (62), Λs(P )Λ−1

s (p0), with the constant boost
Λ−1
s (p0) replaced by Λc(ki). This has the consequence that the constituent spins

are defined so that the zero-momentum vector of the many-body system is the
standard vector.

The constituent spin operators defined in (152) have the property that they
can be added to the orbital angular momentum to get the total s-spin of the
combined system:

js = l + j1ss + j2ss = l + Λ−1
c (k1)Λ−1

s (P )Λs(p1)j1s + Λ−1
c (k2)Λ−1

s (P )Λs(p2)j2s ,
(153)

where again the Lorentz transformations above are interpreted as matrices of
operators. These constituent spins add like ordinary non-relativistic spins, how-
ever they differ from the corresponding single-particle spins by momentum-
dependent rotations. The rotations in Eq. (153) can be factored into the product
of a generalized Melosh rotation and an s-spin Wigner rotation:

js = l + [Λ−1
c (k1)Λs(k1)][Λ−1

s (k1)Λ−1
s (P )Λs(p1)]j1s+

[Λ−1
c (k2)Λs(k2)][Λ−1

s (k2)Λ−1
s (P )Λs(p2)]j2s. (154)

This illustrates how to add single particle spins in a composite relativistic sys-
tem. It is more complicated than the way that they are added in non-relativistic
systems.

For the canonical spins basis s = c the Melosh rotations are the identity,
so the combined rotations in (154) reduce to a canonical-spin Wigner rotation.
For light-front spins, since the light-front boosts form a subgroup, the Wigner
rotations of the light-front boosts become the identity and the combined rota-
tions in (154) reduce to a Melosh rotation. This is the origin of introducing the
Melosh rotation. For the helicity basis the Melosh rotation is R(ẑ → p̂) and
the Wigner rotations are diagonal and only contribute a phase. For a general
s-spins the Clebsch-Gordan coefficients have both generalized Melosh rotations
and s-spin Wigner rotations.

It is instructive to examine the transformation properties of the constituent
s-spins under Lorentz transformations. To do this first note the transformation
property of ki := Λ−1

s (P )pi is

U†(Λ, 0)kiU(Λ, 0) = Λ−1
s (ΛP )Λpi = Λ−1

s (ΛP )ΛΛs(P )Λ−1
s (P )pi =

Λ−1
s (ΛP )ΛΛs(P )ki . (155)

This shows that the operators ki are not four-vectors; instead they Wigner
rotate under Lorentz transformations. We compare this to the transformation
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properties of jss given by (152):

U†(Λ)jssU(Λ) =
1

mi
Λ−1
c (Λ−1

s (ΛP )ΛΛs(P )ki)Λ
−1
s (ΛP )ΛW . (156)

Using the property (111) of canonical boosts, (156) becomes

1

mi
Λ−1
s (ΛP )ΛΛs(P )Λ−1

c (ki)Λ
−1
s (P )Λ−1Λs(ΛP )Λ−1

s (ΛP )ΛW =

1

mi
Λ−1
s (ΛP )ΛΛs(P )Λ−1

c (ki)Λ
−1
s (P )W =

Λ−1
s (ΛP )ΛΛs(P )jss. (157)

This is identical to the transformation property (155) of ki. It is precisely
because the constituent spins and relative momentum have the same transfor-
mation properties with respect to rotations that allows them to be combined.
The difference between the constituent spins and the single-particle spins is
that because the standard vector is the zero-momentum vector of the system,
the Wigner rotations all involve the same boost Λs(P ) rather than the different
single-particle boosts, Λs(pi).

It is interesting to compare the constituent spin defined in Eq. (152) to the
spin defined in (62) and (64) for the case that ps is the rest frame of the system:

jss :=
1

mi
Λ−1
c (ki)Λ

−1
s (P )Wi , (158)

js =
1

mi
Λs(p0)Λ−1

s (P )Wi. (159)

We see that both correspond to single-particle spins with a standard vector that
is different than the single-particle rest vector. The only difference is that the
boost from the standard frame to the rest frame, Λ−1

c (ki), involves another
variable, while the corresponding boost Λs(p0) involves a constant.

As a final remark, when coupling spins with Poincaré group Clebsch-Gordan
coefficients, the observation that the spins must be first converted to canonical
spins in the system rest frame before being added means that the Clebsch-
Gordan coefficients in any s-spin basis are related to the Clebsch-Gordan coeffi-
cients in the canonical spin basis by applying generalized Melosh rotations to the
single-particle spins and the total spin. Thus the Clebsch-Gordan coefficients
in different spin bases are related by

t〈(m1, j1)p1, µ1(m2, j2)p2, µ2|k, j(m1, j1,m2, j2)P, µ, l, s12〉t =∑
µ′
1,µ

′
2,µ

′

Dj1
µ1µ′

1
[Λ−1

t (p1)Λs(p1)]Dj2
µ2µ′

2
[Λ−1

t (p2)Λs(p2)]×

s〈(m1, j1)p1, µ
′
1(m2, j2)p2, µ

′
2|k, j(m1, j1,m2, j2)P, µ′, l, s12〉s×

Dj
µ′µ[Λ−1

s (P )Λt(P )]. (160)
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When the spins are successively added using pairwise coupling in any ba-
sis, the intermediate state Melosh rotations all identically cancel. It follows, for
example, if we use s-basis Poincaré group Clebsch-Gordan coefficients to succes-
sively couple products of s-basis unitary representations of the Poincaré group
to a direct integral of s-base unitary representations, the results are identical
to what one would get using c-basis Poincaré group Clebsch-Gordan coefficients
and Melosh rotating the initial and final spin states to the s-basis. Thus the
effect of combining spins in composite systems is independent of the choice of
spin basis up to the initial and final Melosh rotations. For example, this means
that the spin structures of composite systems using canonical spin or light-front
spin are identical up to a trivial overall change of basis.

This means that for systems of free particles there is no loss in generality in
coupling using only canonical spins (or any other type of spin).

7 Two and four component spinors

In Poincaré invariant quantum mechanics spin- 12 particles are described using
two-component spinors while in the Dirac equation they are described by four-
component spinors. In any experiment there are only two spin states that can be
measured. In this section we discuss the relation between these two equivalent
treatments of spin.

The difference between these two treatments of spin is that the two-component
spinor description uses irreducible representations of the Poincaré group to de-
scribe particles while the four-component spinor description uses finite-dimensional
representations of the Lorentz group.

The connection between these two representations is most easily illustrated
by taking apart a Wigner rotation and absorbing the momentum-dependent
boosts into the state vectors. For a spin j particle the action of the Lorentz
group on an irreducible s-basis state is (97)

U(Λ, 0)|(m, j)p, µ〉s =
∑
µ′

|(m, j)ΛΛΛp, µ′〉s

√
ωm(ΛΛΛp)

ωm(p)
Dj

µ′µ[Λ−1
s (Λp)ΛΛs(p)].

(161)
In what follows we use the fact that the SU(2) Wigner functions, Dj

µ′µ[R], which
are 2j + 1 dimensional representations of SU(2) are also 2j + 1 dimensional
representations of SL(2,C) when the SU(2) matrix elements, R, are replaced
by the corresponding SL(2,C) matrix elements, Λ.

To show this first note that the group representation property for theDj
µ′µ[R]

can be written as

0 =

j∑
µ′′=−j

Dj
µµ′′ [e

i
2θθθ1·σσσ]Dj

µ′′µ′ [e
i
2θθθ2·σσσ]−Dj

µµ′ [e
i
2θθθ1·σσσe

i
2θθθ2·σσσ]. (162)

The right hand side of Eq. (162) is an entire function of the three components
of the two real angles, θθθ1 and θθθ2. This is because the Dj

µ′µ[R] are homogeneous
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polynomials in the matrix elements of R with real coefficients (80), so they are

entire functions of R, and the SU(2) rotations, R = e
i
2θθθ·σσσ, are entire (exponen-

tial) functions of the angles. It follows that Dj
µ′µ[e

i
2θθθ·σσσ] is an entire function of

the angles. Since Eq. (162) is identically zero for all real θθθ1 and θθθ2, by analytic
continuation it is identically zero for all complex angles, θθθi → zi. Since the most
general SL(2,C) matrix, Λ = e

z
2 ·σσσ (15), is an analytic continuation, θθθ → −iz,

to a complex angle of an SU(2) matrix, R = ei
θθθ
2 ·σσσ, it follows that

j∑
µ′′=−j

Dj
µµ′′ [e

z1
2 ·σσσ]Dj

µ′′µ′ [e
z2
2 ·σσσ] = Dj

µµ′ [e
z1
2 ·σσσe

z2
2 ·σσσ]. (163)

This shows that Dj
µ′µ[Λ], given by (80), is a 2j + 1 dimensional representation

of SL(2,C). While these representations are irreducible, they are no longer
unitary.

Using the group representation property (163) with respect to SL(2,C) we
can split up the Wigner function in (161) into a product of three distinct parts:

Dj
µ′µ[Λ−1

s (Λp)ΛΛs(p)] =
∑
µ1µ2

Dj
µ′µ1

[Λ−1
s (Λp)]Dj

µ1µ2
[Λ]Dj

µ2µ[Λs(p)]. (164)

If we use (164) in (161) and right multiply by the inverse of the last matrix we
obtain ∑

µ′

U(Λ, 0)|(m, j)p, µ′〉s
√
ωm(p)Dj

µ′µ[Λ−1
s (p)] =

∑
µ′µ′′

|(m, j)ΛΛΛpµ′′〉s
√
ωm(ΛΛΛp)Dj

µ′′µ′ [Λ
−1
s (Λp)]Dj

µ′µ[Λ]. (165)

This is completely equivalent to (161). This leads us to define a Lorentz covari-
ant basis state by

|(m, j)p, b〉 :=
∑
µ′

|(m, j)p, µ′〉s
√
ωm(p)Dj

µ′b[Λ
−1
s (p)]. (166)

Here we use the index notation b to emphasize that it is not a magnetic quantum
number, even though it has 2j + 1 values. The Hilbert space resolution of the
identity in this representation is

I =

∫ j∑
µ=−j

|(m, j)p, µ〉s dp s〈(m, j)p, µ| =

∫ j∑
b,b′=−j

|(m, j)p, b〉 dp
ω(p)

Dj
bb′ [Λs(p)Λ

†
s(p)]〈(m, j)p, b′| . (167)

The matrix Dj
bb′ [Λs(p)Λ

†
s(p)] looks like it depends on s, but because Λs(p) =

Λc(p)Rcs(p) (71,109), the Melosh rotations, Rcs(p), cancel giving

Λs(p)Λ
†
s(p) = Λc(p)Λc(p)

† = Λ2
c(p) =

1

m
pµσµ , (168)
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which is a positive (has positive eigenvalues) Hermetian kernel (for timelike
p) that is independent of s. Here we used the fact that a general boost can
be expressed as a rotation followed by a canonical boost (22), the fact the
canonical boosts are positive Hermetian SL(2,C) matrices and the identity Λ2

c =
cosh(ρ)I + p̂ ·σσσ sinh(ρ) = pµσµ. Using (168) the resolution of the identity (167)
can be expressed in the following manifestly covariant form

I =

∫ ∑
bb′

|(m, j)p, b〉d4pθ(p0)δ(p2 +m2)Dj
bb′ [p

µσµ/m]〈(m, j)p, b′|. (169)

Wightman [10] uses symmetric tensor products of the spin 1/2 representations
of this form as representations of the irreducible representation of the Poincaré
group.

This means that if we define covariant wave functions

ψ(p, b) := 〈(m, j)p, b|ψ〉 (170)

the Hilbert space scalar product is

〈ψ|φ〉 =

∫ ∑
ψ∗(p, b)d4pθ(p0)δ(p2 +m2)Dj

bb′ [p
µσµ/m]φ(p, b′) (171)

and
U(Λ, 0)|(m, j)p, b〉 = |(m, j)ΛΛΛp, b′〉Dj

b′b[Λ] (172)

is unitary with respect to the inner product (171). Here the wave functions
are really equivalence classes of functions that agree on the mass shell. The
presence of non-trivial scalar products is a generic feature of covariant unitary
representations of the Poincaré group. Note the mass is selected by the kernel of
inner product, which carries all of the dynamical information in this represen-
tation. In quantum field theory the kernel of the non-trivial scalar products are
the Wightman functions (i.e. vacuum expectation values of products of fields)
which also carry all of the dynamical information.

While Eqs. (167-172) contain exactly the same information as (161), the
Wigner function of the little group is replaced by a momentum-independent
2j + 1 dimensional representation of SL(2,C). The covariant representation
has the advantage that it is independent of the choice of the standard vector or
standard boost that are used in the construction of irreducible representations of
the Poincaré group. The disadvantage is that the finite dimensional irreducible
representations of the Lorentz group are not unitary and do not admit a linear
representation of space reflection; however the norm associated with the inner
product (171) with the non-trivial kernel is non-negative.

To understand origin of the spin doubling in Lorentz covariant theories recall
that (25) implies R = σ2R

∗σ2 for any SU(2) rotation R. Using this identity the
Wigner rotation R in (161) can be replaced by σ2R

∗σ2. Making this replacement
and repeating steps (164-167) we define a new covariant state

|(m, j)p, ḃ〉 :=
∑
µ

|(m, j)p, µ〉s
√
ωm(p)Dj

µḃ
[σ2Λ−1∗

s (p)σ2] , (173)
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which has the transformation property

U(Λ, 0)|(m, j)p, ḃ〉 =
∑
ḃ′

|(m, j)ΛΛΛp, ḃ′〉Dj

ḃ′ḃ
[σ2Λ∗σ2]. (174)

In SU(2) iσ2 corresponds to a rotation about the y axis by π so (174) can
equivalently be written as

U(Λ, 0)|(m, j)p, ḃ〉 =
∑
ḃ′

|(m, j)ΛΛΛp, ḃ′〉Dj

ḃ′ḃ
[Ry(π)Λ∗R−1

y (π)]. (175)

We use the dot on the b index to distinguish the complex-conjugate repre-
sentation from the original representation. The relevant observation (see the
discussion following (27)) is that while the complex-conjugate representation of
SU(2) is equivalent (related by a constant similarity transformation) to SU(2),
this is no longer true for SL(2,C). The states (166) and (173) transform under
different inequivalent representations of SL(2,C).

From a strictly mathematical point of view it is possible to use either of
the two inequivalent representations, but there is also physical relation between
these two representations. They are related by space reflection as discussed in
(26). The difficulty arises because Dj

bb′ [p
µσµ/m] appears in the kernel of the

scalar product, d4pθ(p0)δ(p2 +m2)Dj
bb′ [p

µσµ/m], rather than in the wave func-
tion. This means that space reflection not only transforms the wave function, it
also changes the scalar product by replacing Dj

bb′ [p
µσµ/m] by Dj

ḃḃ′
[pµσ2σ

∗
µσ2/m]

(which is also positive for timelike p).
The simplest way to allow space reflection to be represented by a linear

operator in the Lorentz covariant representation is to use a Hilbert space repre-
sentation where the kernel of the covariant scalar product contains direct sum
of both representations:

d4pθ(p0)δ(p2 +m2)Dj
bb′ [p

µσµ/m]→

d4pθ(p0)δ(p2 +m2)

(
Dj

bb′ [p
µσµ/m] 0

0 Dj

ḃḃ′
[pµσ2σ

∗
µσ2/m]

)
. (176)

Then space reflection can be represented by a linear operator. This is the origin
of the 4-component treatment of spin 1/2.

The key observation is the identity

ΛΛs(p) = Λs(Λp)Λ
−1
s (Λp)ΛΛs(p) = Λs(Λp)Rws(Λ, p) , (177)

which shows that p-dependent boosts, Λs(p), convert Lorentz transformations,
Λ, to Wigner rotations, Rws(Λ, p).

To relate this to the transformation properties of two-component spinors
under SL(2,C) we define four different types of 2 component spinors

ξa, ξ
a, ξȧ, ξ

ȧ. (178)
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These two component spinors are characterized by their SL(2,C) transformation
properties:

Λa
b = eiz·σσσ (179)

Λȧ
ḃ = (eiz·σσσ)∗ (180)

Λb
a = σ2e

iz·σσσσ2 = ((eiz·σσσ)t)−1 (181)

Λȧ
ḃ = σ2(eiz·σσσ)∗σ2 = ((eiz·σσσ)†)−1 (182)

ξa → ξ′a = Λa
bξb (183)

ξȧ → ξ′ȧ = Λȧ
ḃξḃ (184)

ξa → ξa′ = Λa
bξ

b (185)

ξȧ → ξȧ′ = Λȧ
ḃξ

ḃ (186)

ξa = (σ2)abξ
b ξȧ = (σ2)ȧḃξ

ḃ . (187)

The reason for introducing the upper- and lower-index 2-component Lorentz
spinors is that the products∑

a

ξaχa and
∑
ȧ

ξȧχȧ (188)

are Lorentz invariant. This follows from the identity Λ−1 = σ2Λtσ2 which holds
for any SL(2,C) matrix. The proof is elementary:

Λ−1 = e−z·σσσ = ez·σ2σσσ
tσ2 = σ2(ez·σσσ)tσ2 = σ2Λtσ2. (189)

Using (189)∑
a

ξaχa →
∑
a

ξ′aχ′
a = (Λt)−1ξ · Λχ = ξ · Λ−1Λχ =

∑
a

ξaχa (190)

∑
ȧ

ξȧχa →
∑
ȧ

ξ′ȧχ′
ȧ = (Λ†)−1ξ · Λ∗χ = ξ · (Λ∗)−1Λ∗χ =

∑
ȧ

ξȧχȧ. (191)

The matrix σ2 acts like a metric tensor - it can be used to raise and lower
indices. The sum over an upper and lower undotted or dotted index is Lorentz
invariant.

The difference with an ordinary metric is that σ2 is antisymmetric so the
invariants ξaξa = ξȧξȧ = 0 always vanish. In the literature σ2 is sometimes
replaced by the real antisymmetric matrix ε = iσ2 and its inverse ε−1 = −ε,
which is the SL(2,C) representation of a rotation about the y-axis by π.

To motivate the choice of the spinor representation of space reflection note
the four-vector X transforms like a mixed spin tensor

X→ X′ = ΛXΛ† = (Λ⊗ Λ∗)X , (192)
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which suggests the notation

Xaḃ → X′
aḃ

= Λa
cΛċ

ḋXcḋ , (193)

where we have assumed that repeated spinor indices are summed from 1 to 2.
Space reflection, given by (26), is represented by

X→ X′ = σ2X
∗σ2 = −(σ2 ⊗ σ2)X∗ . (194)

The Lorentz transformation properties of the reflected vector X′ are

X′ → X′′ = −(σ2 ⊗ σ2)(Λ∗ ⊗Λ)X∗ = (σ2Λ∗σ2)⊗ (σ2Λσ2)(−σ2 ⊗ σ2)X∗ . (195)

Eq. (195) shows that the reflected four-vector X′ transforms like a mixed-spin
tensor with upper indices

Xaḃ → X ȧb. (196)

To determine the spinor representation of space reflection we note that a
positive energy light-like four vector can be represented as the tensor product
of a two-spinor and its complex conjugate

Xaḃ = ξa(x)ξ∗
ḃ
(x) , (197)

where

x =
1

2
Tr(σσσξa(x)ξ∗

ḃ
(x)) (198)

are the space components of the light-like four vector. The space reflection
operator on X in (194) on this four vector is

Xaḃ → ξa(−x)ξ∗
ḃ
(−x) = −(σ2ξ

∗(x)ȧ)⊗ (σ2ξ
∗∗(x)b) . (199)

This is consistent with the following spinor representation of space reflection

ξa(x)→ ξa(−x) = (iσ2ξ
∗(x))ȧ (200)

ξȧ(x)→ ξȧ(−x) = (iσ2ξ
∗(x))a. (201)

Because space reflection changes a spinor that transforms under one represen-
tation of SL(2,C) to one that transforms under the conjugate representation it
cannot be represented by a linear transformation in terms of Lorentz covariant
spinors. The two different kinds of Lorentz covariant spinors are called right
and left handed spinors because they are related by space reflection.

In order to represent space reflection by a linear transformation it is enough
to replace a single spinor by the direct sum of a right and left handed spinor.
This 4 spinor has the Lorentz transformation properties:

ξ →
(
ξa
χḃ

) (
ξ
χ

)
→
(

ξ′

χ′

)
=

(
Λ 0
0 (Λ†)−1

)(
ξ
χ

)
. (202)

With this choice both spinors have the same transformation under SU(2) ro-
tations because (R†)−1 = R. Space reflection becomes a linear transformation
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that interchanges the right and left handed spinors and multiplies by ±iσ2 (i.e.
raises or lowers the spin indices). The new components allow for a linear real-
ization of space reflection.

We define the doubled representation of the Lorentz group and space reflec-
tion operator by

S(Λ) =

(
Λ 0
0 (Λ†)−1

)
P =

(
0 I
I 0

)
. (203)

The doubling also occurs for higher spins. For 2(2j + 1) component spinors the
SL(2,C) matrices Λ are replaced by Dj

µµ′ [Λ]:

S(Λ) =

(
Dj [Λ] 0

0 Dj [Λ†]−1

)
. (204)

If we restrict Λ to SU(2) then

S(Λ)→ S(R) =

(
Dj [R] 0

0 Dj [(R†)−1]

)
=

(
Dj [R] 0

0 Dj [R]

)
. (205)

This means that a four-component spin-up state is a direct sum of two identical
SU(2) spin up states, similarly for spin down states.

The structure of field operators is based on the dual roles played by the
Lorentz group and little group of the Poincaré group.

Fields are operator densities that transform linearly with respect to a finite
dimensional representation S(Λ) of the Lorentz group.

U(Λ, a)Ψa(x)U†(Λ, a) = S(Λ−1)aa′Ψa′(Λx+ a). (206)

Free fields are linear in operators that create and/or annihilate particles.
The operator a†s(p, µ) creates the one-particle state with s-spin, |(m, j)p, µ〉s,
out of the vacuum

a†s(p, µ)|0〉 = |(m, j)p, µ〉s. (207)

The creation operator has the same Poincaré transformation properties as the
single-particle basis states; the spins transform with a representation of the little
group of the Poincaré group:

U(Λ, a)a†s(p, µ)U†(Λ, a) = e−iΛp·aa†s(ΛΛΛp, ν)

√
ω(ΛΛΛp)

ω(p)
Dj

νµ(Λ−1
0s (Λp)ΛΛ0s(p)) =

e−iΛp·a

√
ω(ΛΛΛp)

ω(p)
Dj

µν(Λt
0s(p)Λ

tΛ−1t
0s (Λp))a†s(ΛΛΛp, ν). (208)

Taking adjoints gives the transformation properties of the annihilation operator

U(Λ, a)as(p, µ)U†(Λ, a) = eiΛp·aas(ΛΛΛp, ν)

√
ω(ΛΛΛp)

ω(p)
Dj∗

νµ(Λ−1
0s (Λp)ΛΛ0s(p)) =
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eiΛp·aDj
µν(Λ−1

0s (p)Λ−1Λ0s(Λp))as(ΛΛΛp, ν)

√
ω(ΛΛΛp)

ω(p)
. (209)

Note that for the equations with the Wigner functions on the left, the ar-
gument of the Wigner function in the creation operator is Λt

0s(p)Λ
tΛ−1t

0s (Λp)
while the argument of the Wigner function in the annihilation operator is
(Λ−1

0s (p)Λ−1Λ0s(Λp)). If we use (189) we have

Λt
0s(p)Λ

tΛ−1t
0s (Λp) = σ2(Λ−1

0s (p)Λ−1Λ0s(Λp)σ2. (210)

In general the field has a representation of the form

Ψa(x) =

∫
dp(Us(p, µ)as(p, µ)e−iω(p)t+ip·x + Vs(p, µ)b†s(p, µ)eiω(p)t−ip·x).

(211)
The structure of the complex coefficients Us(p, µ) and Vs(p, µ) are determined
by comparing the coefficients of the creation and annihilation operator in

U(Λ, a)Ψa(x)U†(Λ, a) = S(Λ−1)aa′Ψa′(Λx+ a) =∫
dp[Us(p, µ)eiΛp·aas(ΛΛΛp, ν)

√
ω(ΛΛΛp)

ω(p)
Dj

νν′(Ry(π))×

Dj
ν′ν′′(Λ

−1
0s (Λp)ΛΛ0s(p))D

j
ν′′µ(R−1

y (π))e−iω(p)t+ip·x+

Vs(p, µ)e−iΛp·ab†s(ΛΛΛp, ν)

√
ω(ΛΛΛp)

ω(p)
Dj

νµ(Λ−1
0s (Λp)ΛΛ0s(p))e

iω(p)t−ip·x] , (212)

where we have used (210) in (212). Comparison of these equivalent expressions,
after the variable change p′ = Λp in equation (212), including the Jacobian from
the change of variables in the momentum integral, gives

S(Λ)abUb(p, µ)
√
ω(p) = Ua(ΛΛΛp, ν)

√
ω(ΛΛΛp)Dj

νµ(Λ−1
0s (Λp)ΛΛ0s(p)) (213)

S(Λ)abVb(p, µ)
√
ω(p) = Va(ΛΛΛp, ν)

√
ω(ΛΛΛp)Dj∗

νµ(Λ−1
0s (Λp)ΛΛ0s(p)) . (214)

It is useful to define new quantities

ua(p, µ) := Ua(p, µ)
√
ω(p) (215)

va(p, µ) := Va(p, ν)Dj
νµ(Ry(π))

√
ω(p) . (216)

In terms of these new quantities the covariance relations take on the form

S(Λ)abub(p, µ) = ua(ΛΛΛp, ν)Dj
νµ(Λ−1

0s (Λp)ΛΛ0s(p)) (217)

S(Λ)abvb(p, µ) = va(ΛΛΛp, ν)Dj
νµ(Λ−1

0s (Λp)ΛΛ0s(p)). (218)

To determine the p dependence of ub(p, µ) or va(p, µ) we set p = p0, Λ = Λ0s(p).
In this case the Wigner rotation is the identity

Λ−1
0s (Λp)ΛΛ0s(p)→ Λ−1

0s (Λ0s(p)p0)Λ0s(p)Λ0s(p0) = I , (219)
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which gives
ua(p, ν) = S(Λ0s(p))abub(0, µ) (220)

va(p, ν) = S(Λ0s(p))abvb(0, µ). (221)

From these expressions we see that ua(p, ν) and va(p, ν) are representations
of an s-boost from the rest frame, multiplied by a constant matrix that maps
the 2(2j+1) component spinors to (2j+1) component spinors. It is instructive
to note the similarity with equation (177), which also uses a Lorentz boost to
intertwine finite-dimensional representations of the Lorentz group with unitary
representations of the rotation group. In the field theory case, when Λ is a
rotation

S(Λ) =

(
Dj(Λ) 0

0 Dj(Λ†)−1)

)
→
(
I 0
0 I

)
Dj(R), (222)

both the left and right handed spinor have identical transformation properties
and can be factored out. Similarly the spin operator becomes

J = −i d
dλ

(
Dj(eiλσσσ/2) 0

0 Dj(eiλσσσ/2)

)
λ=0

→
(
I 0
0 I

)
(−i d

dλ
Dj(eiλσσσ/2))λ=0.

(223)
Using these relations we get a standard looking representation for a free field

Ψa(x) =

∫
dp√
ω(p)

(ua(p, µ)as(p, µ)e−iω(p)t+ip·x+

va(p, µ)D1/2
µν (R−1

y (π))b†s(p, ν)eiω(p)t−ip·x) =∫
dp√
ω(p)

(S(Λ0s(p))abub(0, µ)as(p, µ)e−iω(p)t+ip·x+

S(Λ0s(p))abvb(0, µ)D1/2
µν (R−1

y (π))b†s(p, ν)eiω(p)t−ip·x). (224)

This has the standard form of a free Dirac field operator, up to normalization,
except normally the y-rotation is absorbed in the definition of the vb(0, µ).

In this section we started from a Poincaré covariant description of a particle
as developed in section 4, absorbed the momentum-dependent boosts from the
Wigner rotation into the wave function, doubled the representation of SL(2,C)
to represent space reflection linearly, constructed fields that transform covari-
antly under the same doubled representation of the Lorentz group and arrived
at the standard form of a free Dirac field. The Dirac equation was never used
in this derivation, even though the resulting free field is a solution of the Dirac
equation. The Hilbert space in this case has scalar product with a momentum-
dependent kernel. This same construction trivially generalizes to higher spin
fields and states.

The important observation is that Poincaré covariant two-component spinors
contain exactly the same information as Lorentz covariant 4-component spinors.
In the field theory the boosts in (166) and (173) appear in the spinors ua(p, µ)
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and va(p, µ) which intertwine finite dimensional representations of the Lorentz
group with irreducible representations of the little group of the Poincaré group.
By using the Lorentz covariant representations all of the dependence on the spin
(s) representation of the particle states disappears. This is because s-dependence
in the creation and annihilation operators cancels with the s-dependence in the
coefficient functions ua(p, µ) and va(p, µ).

8 Spin and dynamics

The N -particle representation of the Poincaré group given in (125-126) describes
the dynamics of a system of N free particles. The mass operator for this rep-
resentation is the invariant mass of N free particles and the spin is the s-spin
of N free particles. These are both functions of the Poincaré generators, which
are sums of the one-body generators.

In a dynamical model one expects that both the mass and spin will be
interaction dependent. This is because the mass and spin operators are functions
of the generators, some of which are interaction-dependent [8] in dynamical
models. Because

M2 = H2 −P2 (225)

it is clear that the mass operator acquires an interaction dependence through
the Hamiltonian.

The s-spin (65) is a function of the mass, Λs(P ), and the Pauli-Lubanski
vector, Wµ. Each of these terms also involves interactions, and while it is
possible to satisfy the commutation relations with interactions that lead to a
non-interacting spin (they are called generalized Bakamjian-Thomas models [1]
[11]), for systems of more than two particles this condition is not compatible
with the additional requirements imposed by cluster properties of the genera-
tors. The origin of this problem is the treatment of the relative orbital angular
momentum of two interacting subsystems. The dynamical and kinematic masses
of these subsystems are different (in fact they are represented by non-commuting
operators) which implies a dynamical dependence on the relative orbital angular
momentum of these subsystems. The interaction dependence in the orbital an-
gular momentum leads to an interaction dependence in the spin. This leads to
the question of how to understand the relation between the spin of an interacting
system and the spin of the constituent subsystems.

In this section we argue that it is enough to understand how the total and
single-particle spins are related in a non-interacting system. To establish this
result we show that it is always possible to find a unitary transformation, A,
that (1) preserves the S matrix and (2) leads to an equivalent model with a
non-interacting spin. While the transformed Poincaré generators will no longer
satisfy cluster properties, the transformed S-matrix must satisfy cluster proper-
ties and in this transformed model the relation between the single-particle spins
and the system spin is the same as it is for a system of N free particles. Since
the S-matrix is the only observable, there is no loss of generality in working with
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models where the spins are coupled as they are in a non-interacting relativistic
system.

The same unitary transformation must be applied to operators for the equiv-
alence to hold for matrix elements of operators, like current matrix elements.
Furthermore, as we have argued in section 6, in the process of adding the spins
and angular momenta with Poincaré group Clebsch-Gordan coefficients, the in-
termediate generalized Melosh rotations (71,109) all cancel up to the overall
single-particle and system Melosh rotations, so there is no loss of generality in
using the canonical (or any other type of) spin to add the single-particle spins
and orbital angular momenta to get the system spins. The generalized Melosh
rotations can be used to transform the system spin and single-particle spins to
any other type of s-spin.

This means that in order to understand the relation between single-particle
spins and the system spin in S-matrix or bound states observables in dynamical
models, it is sufficient to study dynamical models where the system spin is the
canonical spin of the corresponding non-interacting system. When this system
is embedded in a larger system there will generally be violations of cluster
properties with observable consequences.

To construct the desired unitary transformation we introduce another func-
tion of the Poincaré generators that is conjugate to the linear momentum and
commutes with the canonical spin. We first consider the case of a single-particle
in a canonical spin basis. In this representation the desired operator is repre-
sented by Xc = i∇∇∇p where the partial derivative with respect to the linear mo-
mentum is computed by holding the canonical spin constant (because different
spins are related by momentum-dependent Melosh rotations (71,109), holding
different spins constant leads to different “position” operators).

In this single-particle (irreducible) representation we define the operator Xc

by the equation

c〈(m, j)p, µ|Xc|ψ〉 := i
∂

∂p
c〈(m, j)p, µ|ψ〉. (226)

This looks like a non-relativistic position operator except in the relativistic case
the partial derivative is computed holding the z-component µ of the canoni-
cal spin constant. In addition it has no simple transformation properties with
respect to the Poincaré group. Since the single-particle representation is irre-
ducible, the operator Xc is expressible as a function of the infinitesimal gener-
ators.

To determine the relation of Xc to the infinitesimal generators we consider
the action of Lorentz transformations on states in this single-particle basis. Since
both boosts and rotations change the momenta, the operator Xc will appear in
expressions for both the boost and rotation generators:

c〈(m, j)p, µ|Ki|ψ〉 =

−i ∂
∂ρ c

〈(m, j)p, µ|eiKiρ|ψ〉ρ=0 =
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−i ∂
∂ρ

(

∫ ∑
µ′

dp′Dm,j
c:p,µ;p′,µ′ [Λc(ρx̂i), 0)]dp′ψ(p′, µ′))ρ=0 (227)

c〈(m, j)p, µ|J i|ψ〉 =

−i ∂
∂θ c
〈(m, j)p, µ|eiJiθ|ψ〉θ=0 =

−i ∂
∂θ

(

∫ ∑
µ′

dp′Dm,j
c:p,µ;p′,µ′ [(R(θx̂i, 0), 0)]dp′ψ(p′, µ′))θ=0. (228)

Specifically, using the chain rule, the derivatives with respect to the rapidity or
angle can be replaced by derivatives with respect to the momentum, which in
this representation is identified with the operator, Xc. Straightforward calcula-
tions lead to the following relations between Xc, K and J:

J = jc + Xc ×P (229)

and

K =
1

2
{H,Xc}+

1

M +H
(p× jc) . (230)

The second equation can be inverted to express the operator Xc in terms of the
Poincaré generators:

Xc =
1

2
{ 1

H
,K} − P× (HJ + P×K)

MH(M +H)
. (231)

The operator Xc is called the Newton-Wigner [12] position operator. There are
similar operators [11] that are partial derivatives with respect to momentum
holding various s-spins constant. All of these “position operators” are well-
defined functions of the Poincaré generators, but none of them have the physical
interpretation of a position observable.

Equation (231) leads to the following expression for the canonical spin jc in
term of P, J and Xc.

jc = J−Xc ×P. (232)

This looks just like the standard non-relativistic expression showing that the
total angular momentum is the sum of an orbital part angular momentum and
a spin.

While we derived these formulas by considering properties of a single par-
ticle, because both Xc and jc are functions of the infinitesimal generators, re-
lations (230) and (231) between Xc and the Poincaré generators hold for any
representation of the Poincaré group.

For a system of N non-interacting particles equation (232) is replaced by

jc0 = J0 −Xc0 ×P0 , (233)

where the 0 means that the operators are functions of the non-interacting gen-
erators, which are sums of the single-particle generators.
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Next we consider an interacting system, and to be specific we assume an
instant-form dynamics where both the linear, P, and angular momentum, J, do
not have interactions. In an instant form dynamics the interactions appear in
the Hamiltonian and rotationless boost generators. For a system with interac-
tions X defined by (231) becomes interaction dependent due to the interactions
in H, M , and K unless we carefully engineer the interactions to cancel in (231).
This will be done in what follows. More generally (232) implies that the canon-
ical spin of this system becomes interaction-dependent when Xc is interaction
dependent. When the system is at rest the orbital angular momentum con-
taining the interaction dependence disappears - however for a system satisfying
cluster properties, subsystems move relative to each other and the system. In
these cases the relative orbital angular momenta of the subsystems acquire an
interaction dependence. This is the origin of the interaction dependence of the
spins.

The desired unitary transformation is constructed from multichannel wave
operators. We briefly summarize the construction of these operators; a more
complete discussion can be found in [13]. Asymptotically a scattering state in a
channel α looks like a number of mutually non-interacting bound clusters. Each
bound cluster will have a mass, spin, total momentum, and spin projection.
Relativistically these clusters transform like free particles with the mass and
spin of the bound subsystem. We write these states in the form

|φαi,mi,sipi, µi〉c , (234)

where αi is a label for the ith bound cluster in scattering channel α.
The vector (234) can be considered as a mapping from the square integrable

functions of pi and µi, called Hαi
to the Hilbert space for the particles in the

bound cluster. Here Hαi is a mass mi spin si irreducible representation space
for the Poincaré group. The asymptotic states in a reaction with nα asymptotic
clusters having wave packets fi(pi, µi) have the form

|Ψα〉 =
∏
i

∫
dpi

∑
µi

|φαi,mi,sipi, µi〉cfi(pi, µi). (235)

We write (235) formally as
|Ψα〉 := Φα|fα〉, (236)

where Φα is a mapping, called the channel injection operator, from the channel
Hilbert space

Hα := ⊗Hαi
(237)

to the N -particle Hilbert space.
The non-interacting dynamics of the bound clusters is given by the tensor

product of the irreducible unitary representations of the Poincaré group associ-
ated with mass and spin of each cluster:

〈p1, µ1, · · · ,pnα , µnα |Uα(Λ, a)|fα〉 =
∏∫ ∑

Dmi,ji
µipi;νip′

i
[Λ, a]dp′

i〈p′
i, νi|fi〉 ,

(238)
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which in the notation (236) becomes

ΦαUα(Λ, a)|fα〉 . (239)

To treat multichannel scattering and bound states on the same footing we define
the asymptotic Hilbert space as the direct sum of the channel spaces, including
the N -body bound state channels,

Has := ⊕Hα. (240)

The asymptotic injection operator that maps the asymptotic Hilbert space
Has to the N-particle Hilbert space H is defined by

Φ =
∑
α

Φα (241)

and the free asymptotic dynamics by

ΦUas(Λ, a) =
∑
α

ΦαUα(Λ, a) . (242)

In this notation scattering states, |Ψ±〉, are defined by the strong limits

lim
t→±∞

‖U(I, (t,000))|Ψ±〉 − ΦUas(I, (t,000))|f〉‖ = 0, (243)

where |f〉 represents a wave packet in the asymptotic Hilbert space, Has.
Wave operators are mappings from the asymptotic Hilbert space to the N -

particle Hilbert space defined by

Ω± := lim
t→±∞

U(I, (−t,000))ΦUas(I, (t,000)). (244)

The wave operators are asymptotically complete when they are unitary map-
pings from Has to the N -particle Hilbert space (recall that the asymptotic space
includes system bound states.) The wave operators are relativistically invariant
when they satisfy

U(Λ, a)Ω± = Ω±Uas(Λ, a). (245)

Wave operators that do not satisfy these properties are considered pathological,
and in what follows we assume that the wave operators are both asymptotically
complete and relativistically invariant.

The scattering operator is defined as the unitary mapping

S = Ω†
+Ω− (246)

on Has. In an instant-form dynamics P = P0. It follows from (245) that

P0Ω± = Ω±Pas (247)

XΩ± = Ω±Xas. (248)
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The first equation means that the mixed-basis matrix elements of the wave
operators in eigenstates of P0 and Pas have the form

〈P, · · · |Ω±|Pas, · · · 〉 = δ(P−Pas)〈· · · |Ω̂±(P)| · · · 〉. (249)

Equation (248) means that if 〈P, · · · | =I 〈P, · · · | are irreducible eigenstates
associated with the dynamical representation U(Λ, a), then the reduced matrix
elements I〈· · · |Ω̂±(P)| · · · 〉 are independent of P.

Since in an instant form dynamics P0 is also the translation generator for
the non-interacting system, if 〈P, · · · | =0 〈P, · · · | are irreducible eigenstates
associated with the non-interacting representation U0(Λ, a), then equation (247)
still holds, but in this case the reduced matrix elements of the wave operators
will have an explicit momentum dependence. On the other hand, since the S
matrix only depends on the asymptotic momentum we have

〈Pas, · · · |S|P′
as, · · · 〉 =

δ(Pas −P′
as)〈· · · |Ŝ(P)| · · · 〉 =

〈Pas, · · · |Ω†
+Ω−|P′

as, · · · 〉 =∫
δ(Pas −P′

as)〈· · · |Ω̂
†
+| · · · 〉II〈· · · Ω̂−| · · · 〉 =∫

δ(Pas −P′
as)〈· · · |Ω̂

†
+(P)| · · · 〉00〈· · · Ω̂−(P)| · · · 〉 , (250)

where we used both the interacting and free-particle irreducible bases as inter-
mediate states. The S matrix elements are independent of the choice of basis
used in the N -particle Hilbert space. The third line of equation (250) implies
that 〈· · · |Ŝ(P)| · · · 〉 is independent of P:

〈· · · |Ω̂†
+(P)| · · · 〉00〈· · · Ω̂−(P)| · · · 〉 =

〈· · · |Ω̂†
+(0)| · · · 〉00〈· · · Ω̂−(0)| · · · 〉. (251)

Given this information we define new wave operators Ω̄± in a free-particle irre-
ducible basis by

0〈P, · · · |Ω̄±|Pas, · · · 〉 = δ(P −Pas)0〈· · · |Ω̂±(0)| · · · 〉 , (252)

where we have set P to zero in the reduced matrix element in the mixed repre-
sentation involving a non-interacting irreducible basis and the asymptotic basis.

These new wave operators have the following important properties

S = Ω̄†
+Ω̄†

− = Ω†
+Ω†

− (253)

and
X0Ω̄†

± = Ω̄†
±Xas. (254)
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The unitarity of the wave operators means that

A = Ω̄†
−Ω− = Ω̄†

+Ω+ (255)

is an S-matrix preserving unitary operator. Using the unitary operator (255)
we define the equivalent dynamical representation of the Poincaré group by

Ū(Λ, a) := AU(Λ, a)A†. (256)

Because the dynamics is instant form we have

P0A = AP0 J0A = AJ0 (257)

and by construction
X0A = AX. (258)

It follows that the transformed canonical spin

j̄c = J0 −X0 ×P0 = jc0 (259)

has no interactions. This shows that Ū(Λ, a) is a dynamical unitary represen-
tation of the Poincaré group that gives the same S-matrix and bound state
observables as the original representation U(Λ, a), and in addition has a non-
interacting spin.

This is the desired result. To see that this also applies to other forms of the
dynamics we note that once we have a mass operator that commutes with P0,
Xc0 and jc0, the kernel of that operator in an irreducible free particle basis is the
product of three momentum conserving delta functions, a delta function in the
total canonical spin, a delta function in the z-component of the total canonical
spin, an a reduced kernel in the non-interacting mass and kinematically invari-
ant variables. These kinematically invariant variables are just the degeneracy
variables that appear in the various Clebsch-Gordan coefficients. Replacing in
the delta functions linear momentum and canonical spin by the four-velocity and
canonical spin or light-front components of the four momentum and light-front
spin, give S-matrix equivalent models in each of Dirac’s forms of dynamics. A
similar construction can be used to prove the existence of scattering equivalent
dynamical models in each of Dirac’s forms of dynamics.

The conclusion of this section is that if one wants to understand the relation
between the spins of single particles and spin of the system there is no loss
of generality with treating the spins as non-interacting spins. This provides
a justification for a number of applications of the Bakamjian-Thomas type of
dynamics [14] [15] [16] [17] [18] [19].

9 Few-body problems

Generalized Bakamjian-Thomas models are a class of relativistic quantum me-
chanical models of interacting particles where the spin is identical to the spin of
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a system of non-interacting particles. In the previous section we demonstrated
that any relativistic dynamical model was related to an equivalent Bakamjian-
Thomas model by an S-matrix preserving unitary transformation. While the
equivalent Bakamjian-Thomas unitary representation of the Poincaré group will
not asymptotically break up into tensor-product representations, the S matrix,
which is unchanged from the original model, must satisfy cluster properties if the
original model satisfies cluster properties. Thus, for the purpose of understand-
ing bound-state or S-matrix observables, there is no loss of generality in using
Bakamjian-Thomas models of the system. The important consequence is that
in these models the relation of the total spin of a composite system to the spins
of its constituent particles is identical to that relation for N non-interacting
relativistic particles.

For this reason it is instructive to consider the structure of Bakamjian-
Thomas few-body models. The important property of this class of models is that
the two and three-body interactions must commute with the non-interacting
three-body spin. This ensures that the dynamical spin has no interactions. The
simplest way to realize this property is to couple the spins and orbital angu-
lar momenta using the Poincaré group Clebsch-Gordan coefficients (148-149)
to construct a Poincaré irreducible free-particle basis. In this basis the inter-
actions must be diagonal in the square of the spin and commute with and be
independent of the magnetic quantum number.

By inspecting the structure of the Poincaré group Clebsch-Gordan coeffi-
cients (148-149) one can see that the spin is constructed using ordinary SU(2)
Clebsch-Gordan coefficients; but the angular momenta being added are the con-
stituent spins (152) and orbital angular momenta in relative momentum opera-
tors (155) that Wigner rotate with the constituent spins (152). If the potential
is expressed in a basis of eigenstates of the constituent spins, the projection of
these spins on an axis, and the orbital angular momentum three vectors that
Wigner rotate with the constituent spins, then all that is required is that the
potential be a rotationally invariant in this basis.

In this basis the dynamical problem can be solved using standard methods
that take advantage of the rotational invariance; either using standard partial-
waves methods or direct 3-dimensional integration in the same manner that they
are used in non-relativistic calculations [20] [21].

The relevant momenta and constituent spins variables are related to the
single-particle spins and momenta by boosting all of them to the rest frame of the
non-interacting system, and then converting the resulting s spins to canonical
spins. The relevant momentum variables (155) are

qi = ΛΛΛ−1
c (P )pi (260)

and the relevant spins (152) are

jiss = Λ−1
c (qi)Λ

−1
s (P )Λs(pi)jis . (261)

These identifications are important for the relativistic transformation properties
in the Bakamjian-Thomas representation. If one works in the three-body rest
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frame then the qi are just the single-particle momenta and the constituent spins
become the single particle constituent spins. In this frame the relativistic invari-
ance requirement on the spins reduces to the requirement that the potentials
are rotationally invariant functions of the three momenta and single-particle
canonical spins. To transform out of the rest frame it is necessary to make the
identifications (260) and (261).

It is interesting to note that the desired rotational covariance can be re-
alized by treating the spins and orbital angular momenta in a purely non-
relativistic manner in the rest frame, constructing two-body relative momenta
using Galilean boost to two body-rest frames. It is equally possible to realize
the rotational invariance by adding the spins and orbital angular momenta us-
ing successive coupling with the Poincaré group Clebsch-Gordan coefficients of
section 6. In both cases, if one starts with the momenta and spins in (260) and
(261), these choices amount to a variable change. These choices have nothing to
do with relativity - they are simply alternative variable choices that make the
rotational invariance of the interactions easy to recognize.

This is consistent with the observation that the only symmetry that needs to
be respected in the rest frame is the symmetry associated with the little group,
which is the rotation group for positive mass systems.

However, there are other considerations that go beyond the Poincaré sym-
metry. Most notably are cluster properties. Cluster properties provide the jus-
tification for tests of special relativity on isolated subsystems. In the three-body
problem it is natural first to treat the two-body problem using the Bakamjian-
Thomas method. A spectator particle can be included by taking the tensor prod-
uct of the two-body Bakamjian-Thomas representation of the Poincaré group
with the one-body irreducible representation associated with the spectator. The
resulting tensor-product unitary representation of the Poincaré group does not
have a kinematic spin, but it does satisfy cluster properties. A scattering equiva-
lent three-body Bakamjian-Thomas model is obtained by considering this model
in the non-interacting three-body rest frame, replacing all of the single-particle
momenta and spins by the momenta (260) and constituent spins (261). This
implies a specific and simple relation between the two-body Bakamjian-Thomas
interactions in the two-body problem and the corresponding Bakamjian-Thomas
interactions in the three-body problem. This connection is realized by embed-
ding the two-body interactions in the three-body problem using Poincaré group
Clebsch-Gordan coefficients. While similar considerations apply to larger sys-
tems, for these systems the equivalent Bakamjian-Thomas model that satisfies
S-matrix cluster properties necessarily includes many-body interactions that are
generated from the subsystem interactions [13].

10 Coupling to electromagnetic fields

Given all of the different kinds of spin operators introduced in this paper, one
has to confront the question of relating theory to experiment. Normally the spin
is measured by considering how it couples to a classical electromagnetic field.
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Formally, in the one-photon-exchange approximations this involves a coupling
of the form

e

∫
dxJν(x)Aµ(x)dx. (262)

The connection with the theory is through matrix elements of the current of the
form

s〈(m′, j′)p′, µ′, · · · |Jµ(x)|(m, j)p, µ, · · · 〉s. (263)

The Poincaré transformation properties of this matrix element means that it can
be expressed in terms of invariants and geometric quantities that arise strictly
from the transformation properties of the current and initial and final states.
Once this operator is known in one basis the relations between the different
bases discussed in this paper can be used to calculate the current in any other
basis. It is only necessary to know the generalized Melosh rotations relating two
different spin bases. Thus using (71,109) we get

s〈(m′, j′)p′, µ′, · · · |Jµ(x)|(m, j)p, µ, · · · 〉s =∑
Dj

µ′µ′′ [Λ
−1
s (p′)Λt(p

′)]t〈(m′, j′)p′, µ′′, · · · |Jµ(x)|(m, j)p, µ′′′, · · · 〉t×

Dj
µ′′′µ[Λ−1

t (p)Λs(p)]. (264)

11 Summary

In this paper we presented a general discussion of the treatment of spin in rela-
tivistic few-body systems. The goal of this work was to understand the relation
between the spin of a dynamical system and the spin of its elementary con-
stituents. This is relevant for understanding scattering experiments where, for
example, a polarized target breaks up into constituents and one is interested
in the relation of the polarization of the target to the polarization of the con-
stituents. Other examples involve using electromagnetic probes that interact
with the currents of the individual constituent particles. Our intention is to
include sufficient generality so models with different treatments of spin can be
compared.

There are many good references on single-particle spins for relativistic sys-
tems, and also many references on Clebsch-Gordan coefficients for the Poincaré
group [22][23][11], which can be used to add spins and orbital angular momenta
in relativistic systems, but most of them focus on the canonical spins, and are
relevant for a system of two free particles. This work discusses the addition of
a more general class of spins along with the impact of the dynamics on the spin
coupling. We also discussed the connection between two and four component
spinors in this context.

The new feature of spin in relativistic quantum mechanics is that spins un-
dergo momentum-dependent rotations under the action of Lorentz transforma-
tions. This means that there is no unambiguous way to compare the spins
of particles with different momenta and the addition of spins becomes more
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complicated than it is in non-relativistic quantum mechanics. In section 4 we
pointed out that one way to define a spin operator is to use an arbitrary but
fixed set of Lorentz transformations to refer the particles to a common frame
where the spins can be compared. We constructed a number of functions of the
single-particle Poincaré generators corresponding to different arbitrary but fixed
Lorentz transformations and showed that the resulting spin operators all sat-
isfied SU(2) commutation relations. We also showed that the different choices
of spin operators were related by momentum-dependent rotations, which we
called generalized Melosh rotations. The exercise is not academic - at least
three different kinds of spins are commonly used in applications. These include
the canonical spin, the light-front spin, and the helicity spin and they are all
related by different generalized Melosh rotations.

We then showed that the canonical spin played a special role in adding spins.
This is because only for the canonical spins are Wigner rotations of rotations
equal to the original rotation. This means that particles with different mo-
menta have identical rotational properties when rotated which allowed them to
be added using ordinary SU(2) Clebsch-Gordan coefficients. The coupling coef-
ficient for other types of spins are constructed by first using generalized Melosh
rotations to convert to canonical spins. Next the canonical spins are added us-
ing SU(2) Clebsch Gordan coefficients, and finally the resulting canonical spin
is converted back to the initial type of spin using another generalized Melosh
rotation. The different generalized Melosh rotations used in this construction
involve different momenta (i.e the momentum of each particle and the total mo-
mentum of the subsystem). We also remarked that in the process of successive
pairwise coupling all of the intermediate generalized Melosh rotations cancel. All
that remains are the generalized Melosh transformations on the single-particle
spins and the final total spin. This led us to point out that there is no loss
of generality in performing all of the spin additions using canonical spins. The
resulting coupling coefficients can then be converted to coupling coefficients for
any other type of spin using the appropriate generalized Melosh rotation. An
important observation resulting from this construction is that there are a num-
ber of intermediate spins that couple to the final total spin using ordinary SU(2)
Clebsch-Gordan coefficients. We called these spins constituent spins. It is im-
portant to note that the constituent spins are actually many-body operators
that are related to the true single-particle spins by dynamical rotations (both
Winger rotations and generalized Melosh rotations). The angles of these rota-
tions depend on the momentum distribution of the composite system as well as
on the total momentum of the system.

All of this discussion assumed that all the spins are associated with a non-
interacting systems of particles. For interacting systems the internal orbital
angular momenta associated with subsystems depend on the mass eigenvalues
of the subsystems, rather than the invariant mass of the constituents in each
subsystem. This would suggest that modifications are required to couple the
particle spins and internal orbital angular momenta in interacting systems. In
section 8 we argued that this was not the case. We showed that is was always
possible to find an S-matrix preserving unitary transformation that removes the
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interactions from the spin at the expense of modifying the internal momentum
distribution of the wave function. In general we do not know the momentum
distribution of the wave function without doing a full dynamical calculation,
however it follows that there is no loss of generality in coupling the spins, treating
them all as kinematic quantities. Quantitative predictions will be sensitive to the
momentum distribution in the wave functions due to the presence of dynamical
rotations in the spin and orbital angular momentum coupling coefficients.

We also considered the choices of vectors that should be used to describe
the internal relative orbital angular momenta for systems of particles. The
most important requirement is that they must be defined by boosting the single
particle momenta to a common frame - normally the rest frame of the non-
interacting system. The resulting vectors are no longer 4-vectors, but they have
the desirable property that they all can be Melosh rotated (if necessary) so
they undergo the same Wigner rotations as the constituent spins. This allows
them to be coupled with the constituent spins using ordinary Clebsch-Gordan
coefficients to get the total spin. When everything is expressed in terms of
these momentum vectors and the corresponding constituent spins the coupling
proceeds as in the non-relativistic case.

In relativistic quantum theory both two and four component spinors arise
in applications. In section 7 we pointed out that two component spinors arise
by considering positive mass-positive energy irreducible representations of the
Poincaré group while four-component spinors are associated with finite-dimensional
representations of the Lorentz group. We demonstrated the relation between
these two groups by taking apart a Wigner rotation, thus removing the momentum-
dependent boosts. The resulting spin no longer depends on the choice of boost,
but because the SL(2,C) representation of the boosts and their complex conju-
gates are inequivalent, and both representations are related by space reflection,
it is natural to use a doubled representation when space reflection is an impor-
tant symmetry. In making contact with the particle spins the boosts must be
reintroduced - this choice appears in both the Dirac spinors and the creation
and annihilation operators.

This work was supported in part by the U.S. Department of Energy, under
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