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Abstract. I outline the construction of exactly Poincaré invariant quantum models that satisfy cluster separa-
bility but do not conserve particle number.

1 Introduction

Few-body physics has been transformational in terms of
how we understand low-energy nuclear physics. The suc-
cess is largely due to the existence of uncoupled few-body
problems that are directly related to experiment and cluster
properties that relate the few and many-body Hamiltoni-
ans. Thus, nucleon-nucleon interactions are fine tuned by
comparing cross sections calculated using numerically ex-
act solutions of the Lippmann-Schwinger equation to ex-
perimental nucleon-nucleon cross sections. Cluster prop-
erties fix how these nucleon-nucleon interactions appear in
N>2-body Hamiltonians. Small corrections due to three-
body interactions can also be fine tuned by comparing nu-
merically exact solutions of the Faddeev equations with
experiment. Cluster properties again fix how the two and
three-body interactions appear in the N>3-body Hamilto-
nians. The saturation of nuclear binding energies suggests
that at nuclear densities two, three and possibly four-body
interactions are sufficient to construct Hamiltonians that
provide an accurate description of most nuclei. The level
of success achieved in low-energy nuclear physics has not
been duplicated for energy scales above the threshold for
the production of pions.

There are a number of reasons for the increased diffi-
culty:

1.) For energies approaching or above the GeV scale
the Poincaré group must be a symmetry of the theory so
calculations in the laboratory and center of momentum frame
are consistent. Cluster properties become more difficult to
satisfy in Poincaré invariant models. While cluster prop-
erties can be satisfied for fixed number of particles[1][2],
there is no known systematic treatment of cluster prop-
erties for few-body systems where particle number is not
conserved.

2.) A consistent treatment of particle production also
requires a Poincaré symmetric treatment. Particle produc-
tion violates Galilean invariance; momentum conservation
cannot be simultaneously satisfied in two frames related by
Galilean boosts.
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3.) There is no few-body problem directly related to
experiment. Even the one-nucleon problem involves an in-
finite number of bare pions. This makes it difficult to con-
struct phenomenological few-body interactions by com-
paring numerically exact calculations to experiment.

4.) Even if one can satisfy cluster properties, asymp-
totically separated clusters still involve infinite numbers of
bare particle degrees of freedom.

The few-GeV scale is an important energy scale. It is
the scale where it is possible to study the sensitivity of
the dynamics to sub-nucleon degrees of freedom. Also,
even though the physics involves an infinite number of bare
particle degrees of freedom, we expect that the dynamics
should be dominated by a finite number of suitably chosen
degrees of freedom; it is hard to believe that a small change
in energy would require the number of degrees of freedom
needed to describe nucleon-nucleon scattering to suddenly
jump from two to infinity.

In this talk I discuss a strategy to address all of the dif-
ficulties discussed above, extending the few-body program
so it can be used to make realistic models of systems with
invariant energy above the pion-production threshold that
preserve the properties that have made few-body methods
transformational below the pion-production threshold. The
physics motivation for doing this is to extend the success of
few-body methods to energy scales where sub-nucleon de-
grees of freedom become relevant. This is also relevant be-
cause it is now possible to solve relativistic Faddeev equa-
tions at the GeV scale [3][4][5].

To treat this problem it is useful to consider the struc-
ture of low-energy few-body models. In principle, from the
point of view of perturbative field theory, even low-energy
nucleon-nucleon scattering involves an infinite number of
bare meson degrees of freedom. Physical nucleons can also
be understood as bare nucleons with a cloud of virtual
mesons. However, in low-energy nuclear physics one never
deals with the bare nucleon degrees of freedom; instead the
relevant degrees of freedom are taken as physical nucleons.
Their masses are not calculated, they are measured. Even
though the structure of the nucleons cannot be calculated, it
can still be probed using scattering experiments. For exam-
ple, electron proton-scattering suggests that the proton has



EPJ Web of Conferences

a non-trivial electromagnetic structure. The fundamental
vertex involving bare mesons and nucleons is replaced by
a phenomenological nucleon-nucleon interaction between
physical nucleons. While the Lippmann-Schwinger equa-
tion with realistic nucleon-nucleon interactions can be solved
at all energies, it is only designed to be taken seriously for
energies where the dominant degrees of freedom are two
physical nucleons. This means that the number of relevant
degrees of freedom is dictated by the energy scale of in-
terest. All of this can even be done relativistically using
Poincaré symmetric versions of the two-nucleon problem.

The observations in the previous paragraph suggest how
to proceed. Building on the what was successful in the low-
energy case, we formulate the theory using only physical-
particle degrees of freedom. Thus, nucleons, deuterons, and
pions will all be taken as physical particles. Since physical
particles have no-self interactions, a theory formulated in
terms of physical particle degrees of freedom cannot have
elementary vertices, otherwise there would be mass renor-
malizations. Interactions must be short-ranged, involving
two or more initial and two or more final particles. The
simplest interaction that changes particle number is a short-
ranged 2 ↔ 3 interaction. Even if the theory is formu-
lated using physical particle degrees of freedom, if there is
real particle production, the theory still involves an infinite
number of degrees of freedom. To have few-body prob-
lems directly constrained by experiment it is necessary to
replace a single theory that is applicable at all energy scales
by an ordered sequence of effective theories with succes-
sively more degrees of freedom that are relevant over dif-
ferent energy scales. When a system of physical particles
is broken up into asymptotically separated subsystems, the
subsystems will involve lower-energy scales. Cluster prop-
erties can be realized if these lower energy sub-systems are
constrained by the lower-energy effective theories.

In what follows I use the example of nucleon-nucleon
scattering between the one and two pion-production thresh-
old to illustrate the structure and construction of such a
theory.

2 Hilbert space

Minimally, the model Hilbert space must have enough struc-
ture so that it is possible to compute probability ampli-
tudes for any experiment of interest. For experiments at
a fixed energy scale, it is possible to measure the momenta
and spin projections of every particle that can appear in
an initial or final state. This motivates the choice of model
Hilbert space as the direct sum of tensor products of single
physical-particle Hilbert spaces, where the particle content
corresponds to the particles that can be experimentally ob-
served at the given energy scale. This space has enough
degrees of freedom to describe the results of any experi-
ment that can be performed at the given energy scale.

Complete experiments on isolated physical particles mea-
sure their mass, linear momentum, spin, and spin polariza-
tion with respect to some axis in a given frame. A suitable
representation of the one-particle Hilbert space,H1, is the

space of square integrable functions, ψ(p, µ), of these ob-
servables

ψ(p, µ) = 〈(m, j)p, µ|ψ〉 (1)

〈ψ|ψ〉 =

∫ j∑
µ=− j

|ψ(p, µ)|2dp < ∞ (2)

where (m, j) are the physical mass and spin of the particle.
The formulation of cluster properties works best when

the theory is formulated in terms of tensor products. In or-
der to preserve the tensor product structure in models with
particle production, it is useful to replace the single particle
Hilbert space by the direct sum of a single particle Hilbert
space and a zero dimensional no-particle space:

H1 → H1 ⊕ {0}. (3)

These doublet spaces were first introduced by Sokolov[1].
The tensor product of doublet spaces can be decomposed
as a direct sum of tensor products. For example, if the sys-
tem has particles of type b,c,and d, the tensor product of
the three doublet spaces can be expanded into a direct sum
of subspaces with all particle contents involving particles
b, c, and d.

(Hb ⊕ {0}) ⊗ (Hc ⊕ {0}) ⊗ (Hd ⊕ {0}) =

(Hb ⊗Hc ⊗Hd) ⊕ (Hb ⊗Hc) ⊕ (Hc ⊗Hd)⊕

(Hd ⊗Hb) ⊕Hb ⊕Hc ⊕Hd ⊕ {0}. (4)

In specific models some of these combinations do not ap-
pear because of super-selection rules, energy considera-
tions, or properties of the interactions. In what follows,
we construct our models assuming that the particles are
initially distinguishible, and then treat the particle identity
when computing the cross sections.

The single-particle spaces are also irreducible repre-
sentation spaces for the Poincaré group. The unitary irre-
ducible representation, U1(Λ, a), of the Poincaré group on
the single particle Hilbert spaceH1 is

〈(m, j)p, µ|U1(Λ, a)|ψ〉 =∫ j∑
µ′=− j

〈(m, j)p, µ|U1(Λ, a)|(m, j)p′, µ′〉dp′×

〈(m, j)p′, µ′|ψ〉 =∫ j∑
µ′=− j

D
m j
p,µ;p′,µ′ [Λ, a]dp′ψ(p′, µ′) (5)

where the Poincaré group Wigner function is

D
m j
p,µ;p′,µ′ [Λ, a] := 〈(m, j)p, µ|U1(Λ, a)|(m, j)p′, µ′〉 =

eip·a

√
ωm(p)
ωm(p′)

δ(p − Λp′)Di
µµ′ [B

−1(p/m)ΛB(p′,m)] (6)

with
ωm(p) =

√
p2 + m2 (7)
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and B(p/m) is a Lorentz boost

B(p/m)(m, 0, 0, 0) = p (8)

that depends on the choice of spin polarization observ-
able (helicity, canonical spin, null-plane spin). The quan-
tity B−1(p/m)ΛB(p′/m) is a Wigner rotation.

The direct sum of tensor products of these single-particle
unitary irreducible representations, where the representa-
tion acts like the identity on the zero dimensional no-particle
state, defines the non-interacting representation, U0(Λ, a),
of the Poincaré group on the model Hilbert space. On the
tensor product of the three doublet spaces (4) it has the
form

U0(Λ, a) = [Ua(Λ, a) ⊗ Ub(Λ, a) ⊗ Uc(Λ, a)]⊕

[Ua(Λ, a) ⊗ Ub(Λ, a)] ⊕ [Ub(Λ, a) ⊗ Uc(Λ, a)]⊕

[Uc(Λ, a) ⊗ Ua(Λ, a)] ⊕ Ua(Λ, a)⊕

Ub(Λ, a) ⊕ Uc(Λ, a) ⊕ I. (9)

3 Nucleon-nucleon scattering model

Consider nucleon-nucleon scattering for invariant energy
between 2mN +mπ and 2mN +2mπ. In this energy range the
possible baryon number two states are (NN), (NNπ), (Dπ),
(Dππ) . Using Sokolov’s doublet formalism and treating
the nucleons and pions as distinguishible, the model Hilbert
space is the following direct sum of tensor products of two
and three particle spaces:

H = HN1N2 ⊕HN1N2π1 ⊕HN1N2π2⊕

HDπ1 ⊕HDπ2 ⊕HDπ1π2 . (10)

Vectors in this space are represented by six-component wave
functions:

Ψ (· · ·) =



ψNN(pN , µN ,pN′ , µN′ )
ψDπ(pD, µD,pπ)
ψDπ′ (pD, µD,pπ′ )

ψNNπ(pN , µN ,pN′ , µN′ ,pπ)
ψNNπ′ (pN , µN ,pN′ , µN′ ,pπ′ )

ψDππ(pD, µP,pπ,pπ′ )


. (11)

The kinematic unitary representation of the Poincaré
group is

U0(Λ, a) = [UN(Λ, a)⊗UN′ (Λ, a)]⊕ [UD(Λ, a)⊗Uπ(Λ, a)]⊕

[UD(Λ, a)⊗Uπ′ (Λ, a)]⊗ [UN(Λ, a)⊗UN′ (Λ, a)⊗Uπ(Λ, a)]⊕

[UN(Λ, a) ⊗ UN′ (Λ, a) ⊗ Uπ′ (Λ, a)]⊕

[UD(Λ, a) ⊗ Uπ(Λ, a) ⊗ Uπ′ (Λ, a)]. (12)

4 Dynamics

In a quantum mechanical model a Poincaré symmetry is
implemented by a unitary representation of the Poincaré
group[6]. The representation is necessarily dynamical[7].

The free-particle representation, U0(Λ, a), is reducible
on the model Hilbert space H . Poincaré group Clebsch-
Gordan coefficients [8][9][10] can be used to decompose
the Hilbert space into a direct integral of invariant sub-
spaces on which U0(Λ, a) acts irreducibly. The Clebsch-
Gordan coefficients have the form

〈(12)|3〉 =

〈(m1, j1)p1, µ1(m1, j2)p2, µ2|(k2, j3)p3, µ3, d〉 (13)

where k2 is a more convenient label for the invariant mass
m3 of the combined system

m3 =

√
m2

1 + k2 +

√
m2

2 + k2. (14)

In what follows we use m3 and k2 = k2 interchangeably.
Multiple copies of invariant subspaces with the same mass
and spin are separated by invariant degeneracy parameters
d. The parameters d are related to the squares of spin s2 and
orbital angular momentum l2 of the 12-pair. Three particle
irreducible representations can be constructed by succes-
sive pairwise coupling.

The irreducible basis states are labeled by the same
quantities that are used to label the single-particle states;
linear momentum, mass, spin, spin projection, as well as a
number of Poincaré invariant degeneracy parameters which
we label by dn, where n ∈ {NN,NNπ,NNπ′,Dπ,Dπ′,Dππ} .
These eigenstates are complete on the model Hilbert space.
A basis of non-interacting Poincaré irreducible states con-
sists of the generalized vectors

|(m, j)p, µ, dn, n〉 =



0
...

|(m, j)p, µ, dn〉
...
0


. (15)

The non-interacting invariant mass operator, M0, is the mass
Casimir operator of U0(Λ, a). It has a continuous spectrum
and is a multiplication operator in the representation (15).
Interactions of the form [11]:

〈(m′, j′)p′, µ′, d′n′ , n
′|V |(m, j)p, µ, dn, n〉 =

δ(p′ − p)δ j′ jδµ′µ〈m′, d′n′ , n
′‖V j‖m, dn, n〉 (16)

are added to the non-interacting mass operator, M0, to con-
struct a dynamical mass operator:

M = M0 + V. (17)

Simultaneous eigenstates |(λ, j)p, µ, d〉 of M, j,p, µ are com-
plete. The dynamical problem is to solve the eigenvalue
problem

(M0 + V)|(λ, j)p, µ, d〉 = λ|(λ, j)p, µ, d〉 (18)
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in the non-interacting irreducible basis. The eigenfunctions
in the non-interacting irreducible representation can be ex-
pressed in terms of wave functions Ψλ, j,d(m′, d′n′ , n

′):

〈(m′, j′)p′, µ′, d′n′ , n
′|(λ, j)p, µ, d〉 =

δ(p′ − p)δ j′ jδµ′µΨλ, j,d(m′, d′n′ , n
′). (19)

There is a natural dynamical unitary representation of the
Poincaré group defined on these eigenstates by

〈(m′, j′)p′, µ′, d′n′ , n
′|U(Λ, a)|(λ, j)p, µ, d〉 =

Ψλ, j,d(m′, d′n′n
′)Dλ j

p,µ;p′,µ′ [Λ, a] (20)

where λ the eigenvalue of M. Completeness of the eigen-
states ensures that this representation is defined on any
state. The dynamics enters through the appearance of the
mass eigenvalue, λ, in the Poincaré group Wigner function
D
λ j
p,µ;p′,µ′ [Λ, a].

This construction can be done for any finite number of
degree of freedom system. What is relevant in this con-
struction is that the spin j in the dynamical model is the
same as the spin j in the non-interacting model. We re-
fer to this construction of dynamical representation of the
Poincaré group as the generalized Bakamjian-Thomas[11]
construction.

Three different two-body models are needed as input
to the full dynamical model. These two-body models are a
π − N model, a π − π model and a coupled channel NN ↔
Dπ model. In what follows we replace the invariant mass
m3 by the relative momentum variable k =

√
k2. For the

coupled channel model the non-interacting invariant mass
operator has the form

M0 :=

2
√

k2
NN + m2

N 0

0
√

k2
Dπ + m2

D +

√
k2

Dπ + m2
π

 . (21)

The interaction V is defined by the kernel in the irreducible
two-body variables

δ(p′ − p)δ j′ jδµ′µ× 〈k′nn, l
′, s′|v j

NN;NN |knn, l, s〉 〈k′nn, l
′, s′|v j

NN;Dπ|kDπ, l, 1〉
〈k′Dπ, l

′, 1|v j
Dπ;NN |knn, l, s〉 〈k′Dπ, l

′, 1|v j
Dπ;Dπ|kDπ, l, 1〉

 .
(22)

The dynamical mass operator onHNN ⊕HDπ is M = M0 +
V , where V is the interaction defined by the kernel (22). Si-
multaneous eigenstate of M, j, p, and ẑ · j from a complete
set of basis vectors that transform irreducibly with respect
to a dynamical representation UNN−Dπ(Λ, a)

〈(λ′, j′)p′, µ′, d′|UNN−Dπ(Λ, a)|(λ, j)p, µ, d〉 =

δ j′ jδ(λ′ − λ)δd′dD
λ j
p,µ;p′,µ′ [Λ, a] (23)

where λ is the eigenvalue of the dynamical mass operator
M. A similar construction can be done for the π−π and π−
N systems, resulting in the representations UNN−πD(Λ, a)
onHNN ⊕HDπ, UN−π(Λ, a) onHNπ and Uππ(Λ, a) onHππ.
These models are only required to fit scattering below the
pion-production threshold. Because the bound states are
treated as physical degrees of freedom, the spectrum of the
mass operator in these two-body models is continuous.

5 Algebraic cluster properties

Cluster properties dictate how two-body interaction are em-
bedded in the three-body sectors of the model Hilbert space.
Cluster properties are normally implemented by transla-
tions. In this framework translations used to separate sub-
systems only operate on subspaces of the Hilbert space
were the translations make sense; for example it makes no
sense to separate nucleons on a subspace containing the
deuteron. Translations that asymptotically separate subsys-
tems ensure that the short-ranged interactions between par-
ticles in separated clusters vanish, however the difficulty in
Poincaré invariant quantum mechanics is that the transla-
tions can cause interactions that should not vanish to van-
ish in the cluster limit. This will not happen if result of sim-
ply turning-off interactions results in a tensor product of
subsystem unitary representations of the Poincaré group.
We call this type of clustering algebraic clustering and use
it in what follows.

Consider the problem of nucleon-nucleon scattering for
invariant energies between the one and two pion-production
threshold. The model Hilbert has six orthogonal sectors
with different particle contents. There are three three-body
sectors, each having at least one pion. If we translate one
of the particles away from an interacting pair in one of the
three-body sectors, then the invariant energy remaining for
the interacting pair is insufficient to produce another pion.
Algebraic cluster properties requires that in this limit the
Poincaré generators in this sector should become the sum
of one-body generators corresponding to the spectator par-
ticle and dynamical two-body generators associated with
an interacting two-body systems having insufficient invari-
ant energy to create an additional pion. This is equivalent to
the dynamical unitary representation of the Poincaré group
becoming a tensor product. In each of these sectors there
are three different two-body interactions that arise from
cluster properties, depending on which particle is asymp-
totically separated.

These are the only constraints that cluster properties
place on this model. The two-body sectors are relevant for
invariant energies above the threshold for the production
of a pion and in principle do not have to be related to the
lower-energy two-body Hamiltonians.

The problem of two interacting particles and a specta-
tor can be solved using two different methods. The first one
is to construct the two-body unitary representation of the
Poincaré group, UNN−Dπ(Λ, a), UNπ(Λ, a), Uππ′ (Λ, a) and
then take the tensor product with the spectator represen-
tation

UNN−Dπ(Λ, a) ⊗ Uπ′ (Λ, a), (24)

UNπ(Λ, a) ⊗ UN′ (Λ, a), (25)

Uππ′ (Λ, a) ⊗ UD(Λ, a). (26)

The second method uses the standard construction where
we first use Poincaré Clebsch Gordan coefficients to de-
compose the non-interacting three-body representations into
a direct integral of non-interacting irreducible representa-
tions. Interactions of the from (16) are added to the non-
interacting mass, which is then diagonalized to construct
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U(Λ, a). We refer to these two representations as the ten-
sor product representation and the Bakamjian-Thomas rep-
resentation respectively. I denote the Bakamjian-Thomas
representations by

UNN−Dπ;π′ (Λ, a), (27)

UNπ;N′ (Λ, a), (28)

Uππ′;D(Λ, a). (29)

These operators do not act on the full Hilbert space. They
act on a subspace of the full Hilbert space. They can be ex-
tended to operators on the full Hilbert space by extending
them to be the identity on the orthogonal complement of
the subspace.

The kernel of the two-body interaction in the two-body
kinematic irreducible representation (16) depends on the
kinematic two-body relative momentum and kinematically-
invariant two-body degeneracy parameters. By coupling ir-
reducible representations in the appropriate order, the same
variables also appear in the three-body kinematic irreducible
basis. Using the same kernel, with different delta functions,
it is easy to show that the tensor product and Bakamjian-
Thomas representations of the dynamics of two interact-
ing particles and a spectator give the same 2 + 1 S-matrix.
This follows because the delta functions that multiply the
interaction also appear in the S -matrix, and they become
equivalent when the S -matrix is evaluated on-shell. While
the 2 + 1 unitary representations of the Poincaré group are
not-equivalent, a theorem of Ekstein [12] implies that each
representation is related by a unitary transformation, W,
that also preserves the S matrix.

Thus these two representations are related by

WNN−Dπ;π′UNN−Dπ;π′ (Λ, a)W†NN−Dπ;π′ =

UNN−Dπ(Λ, a) ⊗ Uπ′ (λ, a) (30)

WNπ;N′UNπ;N′ (Λ, a)W†Nπ;N′ = UNπ(Λ, a) ⊗ UN′ (Λ, a) (31)

Wππ′;DUππ′;D(Λ, a)W†ππ′;D = Uππ′ (Λ, a) ⊗ UD(Λ, a). (32)

Because the interactions in the Bakamjian-Thomas repre-
sentation commute with the kinematic spin, they can be
combined with the remaining short-ranged interactions in
a manner that leads to an overall interaction of the form
(16). The Bakamjian Thomas construction then be used to
construct a dynamical representation of the Poincaré group
on the model Hilbert space.

The unitary operators Wx operate on a subspace of the
Hilbert space. They can be extended to unitary operators
onH by setting them equal to the identity on the orthogo-
nal complement of the space on which they are defined.

6 Construction of the dynamical mass
operator

The dynamical mass operator for our model in the Bakamjian-
Thomas representation has three distinct types of contribu-
tions

The first is the mass operator M0 for the non-interacting
system

M0 =



M0NN′ 0 0 0 0 0
0 M0Dπ 0 0 0 0
0 0 M0Dπ′ 0 0 0
0 0 0 M0NN′π 0 0
0 0 0 0 M0NN′π′ 0
0 0 0 0 0 M0Dππ′


(33)

where the non-zero entries in this matrix are the invariant
masses of the systems of particles on each subspace. This
is the limiting form of this mass operator when all interac-
tions are switched off.

Next we add lower-energy two-body interactions in each
of the three-particle sectors:

V2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 vNN′ + vNπ + vN′π 0 vNN;πD

0 0 0 0 vNN′ + vNπ′ + vN′π′ vNN;π′D

0 0 0 v†NN;πD v†NN;π′D vDπ + vDπ′ + vππ′


.

(34)

These are the interactions that come from the two-body
Bakamjian-Thomas representations. They are related to the
tensor product representations by the unitary transforma-
tions W. For example:

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 vNN′ 0 vNN;πD

0 0 0 0 0 0
0 0 0 v†NN;πD 0 vDπ


=

W†

NN↔Dπ′



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 mNN′⊗π 0 mNN;π′D⊗π

0 0 0 0 0 0
0 0 0 m†NN;π′D⊗π 0 mDπ′;⊗π


W†

NN↔Dπ′−



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 m0NN′π 0 0
0 0 0 0 0 0
0 0 0 0 0 m0Dπ′π


. (35)

The third class of operators, V3 are fully connected opera-
tors. These are two-body interactions in the two-body sec-
tors, three-body interactions in the three-body sectors, 2−2
interactions coupling different two-body sectors and 2 −
3-body interactions coupling two and three-body sectors.
All of the two-body interactions in V3 describe physics
above the pion-production threshold and thus do not have
to be related to the interactions below the pion-production
threshold. In addition to being connected, all of these in-
teractions must have kernels of the form (16) in the non-
interacting Poincaré irreducible representation. These con-
nected operators do not contribute to the cluster limit asso-
ciated with lower energy subsystems.
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In this way the operator MBT = M0 + V2 + V3 com-
mutes with j and commutes with and is independent of
p and j · ẑ. Simultaneous eigenstates of these operators are
complete and transform irreducibly as mass λ = eigenvalue
of MBT , spin j, irreducible representations of the Poincaré
group. We denote the resulting unitary representation of
the Poincaré group by UBT (Λ, a). When interactions be-
tween cluster b and c in one of the three-body sectors are
turned off, UBT (Λ, a) fails to break up into a tensor product.
Instead it becomes:

UBT (Λ, a)→ Wbc[(Ub(Λ, a) ⊗ Uc(Λ, a)) ⊕ · · ·]W†bc (36)

This can be repaired defining a symmetric product of
the W operators

W := e
∑

ln Wa (37)

where the sum runs over

a ∈ {[(NN − Dπ); π′], [(NN − Dπ′); π], (ππ′; D), (Dπ; π′),

(Dπ′; π), (Nπ; N′), (N′π; N), (Nπ′; N′), (N′π′; N)}. (38)

This operator is designed so

U(Λ, a) :=

W†UBT (Λ, a)W → [(Ub(Λ, a) ⊗ Uc(Λ, a)) ⊕ · · ·] (39)

when the interactions between particles in cluster b and c
are turned off. This shows that it satisfies algebraic cluster
properties. Because W is unitary, U(Λ, a) := W†UBT (Λ, a)W,
is also a dynamical representation of the Poincaré group.

The completes the construction of the dynamics for the
two-nucleon system of energies between the one and two-
pion production threshold. Thus we have a two-particle
model that describes nucleon-nucleon scattering below the
one-pion-production threshold, and we have a second model
that described nucleon-nucleon scattering for invariant en-
ergies between the one and two-pion-production thresh-
olds. While the models are uncoupled, interactions from
the lower energy two-body model appear in the three-body
sector of the higher-energy model. Both models are ex-
actly Poincaré invariant with interactions that can be di-
rectly constrained by few-body experiments.

This general construction can be repeated inductively
at higher energy scales. By using the doublets the entire
inductive construction used in the fixed number of particle
case [2] can be generalized to this setting.

7 Outlook

This work demonstrates that it is possible to overcome all
of the difficulties in needed to extend the successful low-
energy few-body program to higher energy scales. In this
formalism the independent degrees of freedom are taken as
physical particles. This also applies to bound states. This
is not a problem in principle, but it does mean that much of
the work done in constructing realistic few-body interac-
tions needs to be repeated in this setting. Another new fea-
ture is that the many-body interactions of the non-relativistic

theory are replaced by both many-body interactions and
hard (high-energy) two-body interactions. At each succes-
sive energy scale it is necessary to introduce new hard two-
body interactions. In most cases these interactions appear
in the entrance channel and thus cannot be ignored. An in-
dependent method for constructing these hard interaction
would prove to be very useful in this framework. Still, a
good part of the high-energy dynamics is strongly con-
strained by the few-body dynamics through cluster prop-
erties.

This work was performed in part under the auspices of
the U. S. Department of Energy, Office of Nuclear Physics,
contract No. DE-FG02-86ER40286 with the University of
Iowa.
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