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Background: Exact numerical treatments of nuclear reactions are not feasible, except for the
simplest systems. Few-Body models are justified when the reactions are dominated by a small
number of scattering channels.

Purpose: To discuss a method for constructing few-body models from a given Hamiltonian where
all of the scattering is into a chosen set of important channels and corrections due to eliminated
channels can be systematically computed.

Method: The method uses cluster decompositions and spectral expansions of proper subsystems
to control the absolutely continuous spectrum of the many-body Hamiltonian.

Results: The result is a decomposition of the exact Hamiltonian into two parts, one that satisfies
an optical theorem in a chosen set of important channels and one that satisfies an optical theorem
in the complementary channels. When the reaction has a small number of dominant channels, the
dominant channel part of the Hamiltonian is an effective few-body Hamiltonian. The decomposition
has the property that the scattering wave functions from the dominant channel Hamiltonian agree
with the exact scattering wave functions up to, but not including, N-body correlations.

I. INTRODUCTION

The exact solution of the many-body scattering problem is an intractable numerical problem due to the large number
of degrees of freedom. This is a relevant issue in nuclear reactions because a nuclear reaction can have many possible
final states for a given initial state. For a given reaction, while many channels may be energetically open, often most
of the scattered flux is in a subset of important channels. If the number of these important channels is small, then it is
useful to start with a first approximation where the part of the dynamics that scatters into the open but unimportant
channels is turned off. The expectation is that in this first approximation all of the incident flux scatters into the
chosen subset of important channels, and it is desirable to do this in a manner where the corrections due to the
initially excluded channels can be systematically included. This problem was formally solved in [1], but the interest
at the time was largely academic due to computational limitations. Since that time, computational resources have
improved considerably, and there is a renewed interest in nuclear reactions because they can help to better understand
the reactions that are responsible for the origin of the elements.

The result of [1] was a decomposition of the many-body Hamiltonian as a sum of two parts, distinguished by
important and unimportant sets of scattering channels, with the property that each part has a scattering theory
that satisfies an optical theorem in the chosen set of scattering channels. The decomposition only requires input
from solutions of proper subsystem problems. An advantage of this approach is that there are no limitations on the
choice of important scattering channels, and the method can be applied equally to theories with two-body and many-
body interactions. This is relevant because Hamiltonians generated using effective field theory [2][3] or scattering
equivalences [4][5][6][7] generally have many-body interactions. Since it is a decomposition of the exact Hamiltonian
of the system, corrections can be precisely identified and defined. The decomposition is motivated by Faddeev’s
approach to the three-body problem [8], which utilizes the solution of two-body (subsystem) problems as input to the
three-body problem. The key observation was that Faddeev used subsystem solutions to derive a scattering integral
equation with a compact iterated kernel that could be uniformly approximated by a finite matrix. A consequence of
this was that the solution of the integral equation could only perturb the discrete spectrum [9], while the absolutely
continuous spectrum (associated with scattering) was already built into the kernel.

This work provides an alternate treatment of the method that appears in [1], and it provides an alternate proof
of the optical theorem that demonstrates that the resulting approximate scattering wave functions in the important
(or dominant) scattering channels agree with the exact scattering wave functions up to, but not including, N-body
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correlations. This work also includes discussions of the application to bound systems and to relativistic systems that
is relevant for hadronic reactions.

In [1], the solutions of the dynamics of all proper subsystems are used to formulate the important-channel dynamics
of the N-body system. This will be used to demonstrate that the exact and approximate scattering solutions differ
by a fully connected perturbation of the identity, which implies that the approximation includes all but the N-body
correlations that appear in the exact solution. The effective interactions that appear in the Hamiltonian decomposition,
while precisely defined, depend on solutions of proper subsystem problems. This means that except for the simplest
systems, where the effective interactions can be computed numerically, the effective interactions need to be modeled.

The truncation is systematic in the sense that the corrections are precisely defined. This provides a flexible
framework that can be used to treat resonances and optical potentials in a many-body framework. For example,
resonances can be treated by discarding decay channels and then turning them back on to calculate a shift and width.
The contributions from each eliminated channel to the optical potential can be identified and turned on or off as
desired. The method can also be used to study the role of reaction channels in bound systems.

The next section discusses time-dependent many-body scattering. General cluster expansions and their relation to
expansions in subsystem Hamiltonians are discussed in section three. The channel decomposition is introduced in
section four. The optical theorem for the dominant set of scattering channels is proved in section five. Section six
discusses a formulation of the time-independent treatment of many-body scattering using the coupled equations of
Bencze, Redish and Sloan, which can be applied to the dominant channel Hamiltonian. The treatment of identical
particles is discussed in section seven. An example illustrating the structure of the dynamical equations is given
in section eight. Section nine discusses the application to bound states. The treatment of relativistic reactions is
explored in section ten. A summary and conclusion is given in section eleven.

II. SCATTERING CHANNELS

The decomposition in [1] uses spectral expansions of the Hamiltonians for all proper subsystems as input. These
expansions involve complete sets of subsystem bound states and scattering states. This section defines what is meant
by a scattering channel in the context of this work.

Let H be the Hamiltonian for a system of N particles with short-range interactions. In general, the Hamiltonian
H will have both two-body and many-body interactions. The notation a denotes a partition of the N particles into
n, non-empty disjoint subsystems, labeled by a;, and H,, is the part of H involving only the particles in the 7"
subsystem of the partition a.

In this work, scattering channels will always be associated with the N-particle system. There is a scattering channel,
o, associated with the partition a if each subsystem Hamiltonian, H,,, has a bound state or is a single particle. The
bound state associated with H,, is denoted by

|(Es, §i) Pis 1i) where 1<i<ng.

In this notation, j; is the total intrinsic angular momentum of the i** bound state, y; is the magnetic quantum number
of the i*" bound state, p; is the total momentum of the i** bound state, and
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is the total kinetic energy minus the binding energy e,, of the i*" bound subsystem (M; is the total mass of the i*"
bound subsystem). In general, for a given partition a of the N particles into n, subsystems, there may be one or
more scattering channels or zero channels associated with the partition a. The notation A is used to denote the set
of all scattering channels of the N-body system, which by convention also includes the one-body channels (N-body
bound states). Except for the one-body channels, the set A of scattering channels is determined by the solution of
proper subsystem problems.

The notation discussed so far can be illustrated by considering the subsystem Hamiltonians for a seven-particle

system associated with the partition a = (135)(27)(46). There is a scattering channel associated with this partition
if each of the three subsystem Hamiltonians can form bound states:

a = (135) (27) (46

=
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where k; are the single-particle momenta, K; are the single-particle kinetic energies, V;; are two-body interactions,
Vi35 is a three-body interaction, and e135, es7 and e4q are the binding energies of the bound states.

For a given scattering channel «, there are scattering states associated with two different asymptotic conditions. The
different asymptotic conditions replace the initial conditions of the scattering states with conditions that relate the
scattering states in the asymptotic past (—) or asymptotic future (+) to states of non-interacting bound subsystems.

The scattering states, \\I&(f)% associated with the channel a are defined by strong limits:

lim_[|[w(®)) - Z / HitemtHat @e) |(Ey, i) Pis ) ¢i(Pis 1) dpi| = 0, (1)
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where the partition Hamiltonian, H,, is the sum of subsystem Hamiltonians

Hy=Y» H,  with H,
and satisfies
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The operator H, is the part of the Hamiltonian with all of the interactions between particles in the different clusters of
the partition a turned off, and ¢;(p;, ;) are wave packets in the total momentum and magnetic quantum numbers of
each bound subsystem in the channel a. The variables in the wave packets are the experimentally detectable degrees
of freedom (momentum and spin polarization) of the bound subsystems.

The limit in (1) is a strong limit, and this means that the integral over the wave packets must be computed before
taking the limit. If this is done in the correct order, then putting an extra factor of e¥¢¢ and taking the limit as ¢ — 0
after performing the integral does not change the result. This makes it possible to define the limit using “plane wave”
states where the ¢ — 0 limit can be taken at the end of the calculation after integrating against the wave packets.
After including the factor of e¥¢¢, the channel « scattering states
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can be expressed in terms of the channel a “plane wave” scattering states defined by
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The operator H® := H — H, is the sum of interactions between particles in different clusters of a, and
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is the total energy of the system (1, is the total mass of the subsystem). The above expressions are only defined when
they are applied to products of wave packets which are functions of the momenta and magnetic quantum numbers of
each bound cluster.

The tensor product of the wave packets span a channel Hilbert space H,. The operator, ®,, that maps the channel
« Hilbert space H,, to the N-body Hilbert space H is defined by

Balboo) = 32 [ GBI i) 6x(pi ) (7)
M1 sBng

where |¢on) € Ho represents the product of wave packets given by

<p17,U’17"' apnavﬂna|¢oa> = H(bq(pq),uq)' (8)
qg=1

The wave packets describe the experimentally accessible momentum and spin distributions for the reaction. The
mapping, ®, : Ho — H, is called the channel injection operator, and it includes the internal variables of the bound
state wave functions for each bound subsystem. In this two-Hilbert space notation, the channel o “plane wave”
scattering states are expressed in terms of channel wave operators [10]:

|\IJ£X:|:) (ph M, 7pnaa,una)> = t—lggloo etheiiHatq)a|¢oa> = Q(i)(a)¢a‘¢oa>a (9)
where
Q(i)(a) = t_l)igloo etHtp—iHat (10)

only makes sense as a strong limit applied to the normalizable vector ®4|¢oq). The advantage of the notation in (9)
is that it separates the part of the scattering state that depends on the partition a from the part that depends on the
associated scattering channel a, and the operators Q(*)(a) act on the N-body Hilbert space.

The probability amplitude density for a transition from an initial channel state « to a final channel state 8 (the
scattering matrix) is
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where the channel scattering operator, Sgo = @};Q(*’)T(b)Q(_)(a)(I)a, allows one to express the scattering matrix
in terms of the non-interacting bound subsystems in the channels o and S (the channel § is associated with the
partition b). The channel scattering operator, Sgq, is a mapping from #,, to Hg, and the advantage of expressing the
scattering matrix in terms of the non-interacting bound subsystems is that it has a simple form that is independent
of the interaction.

In a scattering process, the incoming (—) states look like free bound clusters long before the collision, and the
outgoing (+) states look like free bound clusters long after the collision. Since there can be scattering from the channel
a to the channel 3, the incoming and outgoing scattering states for different channels with different asymptotic
conditions (+) are not orthogonal; however, the scattering states for different channels with the same asymptotic
condition (+) are orthogonal and complete if the bound state channels are included. This assumes that the theory is
asymptotically complete, which is an assumption that the original Hamiltonian is not pathological.

While the scattering matrix is the inner product of states satisfying incoming (—) and outgoing (+) asymptotic
conditions, it can be expressed in terms of only the incoming scattering states
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This is because Q) (a) and Q) (a) both involve limits of e~*1* with ¢ — 4-00. The resulting expression is
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where H® := H — H, is the part of H that only has interactions between particles in different clusters of b. For
short-range interactions, the operator H® will vanish as the clusters of b are asymptotically separated. Equation (12)
can be expressed in operator form using the notation in (9):

Spa = I0g0 — 2mi 6(E) — Eo)®LH Q) ()@, (13)
where
75 = oL H'Q() ()2, (14)

is the right half-shell transition matrix element. The presence of the energy conserving delta function §(Ej — Eq)
ensures that the scattering matrix is only defined for on-shell values of the energy.

Assuming that the Hamiltonian commutes with the total linear momentum, the differential cross section for scat-
tering from a 2-cluster channel « to a general channel 5 can be expressed in terms of the above quantities as
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In the above expression, v, is the relative speed of the incoming pair of particles and s = [] p k%;' is a statistical
normalization factor for identical bound states in the final state, with k, denoting the number of identical bound
states of type ¢ in the final state. In (15), the || - - - || indicates that a momentum conserving delta function has been
factored out of the expression so that
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The differential cross section in (15) contains several independent variables, but in an experiment one chooses the
variables that will be measured and integrates over the remaining variables in order to eliminate the delta functions.
The differential cross section is only defined for on-shell matrix elements.

III. CLUSTER EXPANSIONS

Cluster expansions play an important role in understanding many-body reaction mechanisms and constructing ap-
proximations [11]. For scattering, it is useful to keep track of operators that satisfy or break translational invariance of
subsystems. This is because momentum-conserving delta functions are broken up by short-range interactions. In this
section, cluster expansions are treated abstractly, and the abstraction provides a powerful framework for managing
cluster properties. Much of this section is based on [12], see also [13] [14].

A partition a of NV particles is an assignment of the N particles into distinct non-empty equivalence classes called
clusters. The following notation will be used is this paper:

P is the set of all partitions for a system of N particles;
ng is the number of equivalence classes of a;

a; is the set of particles in the i*" equivalence class of a;



Na, is the number of particles in the i*" equivalence class of a;

i

1 ~, j means that particles ¢ and j are in the same equivalence class of a;
0:={(1)(2)---(N)} is the unique N-cluster partition (each particle in a different class);
1:={(1---N)} is the unique 1-cluster partition (all particles in the same class).

It follows from the definitions that
Z nai = N? (17)
i=1

and the number of classes n, for a given partition a satisfies 1 < n, < N. In order to demonstrate the use of partitions,
here is a list of all the partitions of four particles:

1234) is the unique 1-cluster partition;

(
(1)(234), (2)(134), (3)(124), (4)(123), (12)(34), (13)(24), (14)(23) are all of the 2-cluster partitions;
(12)(3)(4), (13)(2)(4), (14)(2)(3), (23)(1)(4), (24)(1)(3), (34)(1)(2) are all of the 3-cluster partitions;
(1)(2)(3)(4) is the unique 4-cluster partition.

The above list exhausts all possible partitions of four particles. The order of a particle within an equivalence class (or
cluster) does not matter. In this example, there are two types of 2-cluster partitions, (ij)(kl) and (¢)(jkl), with each
type involving partitions that are related by permutations, and all of the 3-cluster partitions, (ij)(k)(l), are related
by permutations. Distinct partitions that are related by permutations are called permutation equivalent partitions,
and this is important when dealing with systems of identical particles.

In what follows, partitions will be used to label parts of operators that have no interactions between particles in
different clusters (equivalence classes) of the partition. The interactions between particles in the same cluster of a
partition are “turned on”, while the interactions between particles in different clusters are “turned off”. All of the
partitions in the prior example satisfy (17), and the notation so far can be illustrated by considering the four-particle
partition a = (12)(3)(4):

a = (12) (3) (4) Ng = 3 N =4 = Na, + Tay —+ Nagy
al a as

where this is the same notation that was used in the seven-particle example from the previous section.
There is a natural partial ordering on the partitions a and b given by

a2b, (18)

if every particle that is in the same b-equivalence class is in the same a-equivalence class (i ~p j — @ ~4 7). The
partial ordering for a system of particles is illustrated by the following example:

a = (12)(34)
b=(1)(2)(34) p =>a2b,cPb
= (123)(4

In this example, there is a partial ordering on partitions a and b because particles 3 and 4 are in the same cluster in
both partitions (with partition a only including the additional interaction between particles 1 and 2). There is not a
partial ordering on partitions ¢ and b because particles 3 and 4 are not in the same cluster in both partitions.

For two partitions, a and b, the union a Ub is the least upper bound of a and b with respect to the partial ordering,
and the intersection a Nb is the greatest lower bound of a and b with respect to the partial ordering. The union and
intersection are formally defined by

aUb: (aUb) Da, (aUb) Db, and if ¢ D a, ¢ 2 b then ¢ D (aUb)

anb: a2 (and),bD(and),and if a D¢, bDe, then (aNbd) Dec.



The union and intersection for a system of particles is illustrated by the following example:

" gggigi‘gggggg } => aUb = (1234567)(89),a Nb = (123)(4)(567)(89).
This example demonstrates how the union and intersection of the partitions a¢ and b can be used to construct new
partitions that set a least upper bound and greatest lower bound, respectively, on the partial ordering of the partitions
a and b. It can be seen from the definitions and the above example that every partition a satisfies 1 2 a D 0.

This structure for the partial orderings on partitions is called a partition lattice. Some important tools, that will
be utilized in what follows, are the incidence function and its inverse. These functions are also called the Zeta and
Mobius functions on the partition lattice, respectively. The Zeta function is defined in [12][13][14] as

1ifadd
Radb ':{0 ifazb (19)

Since this is upper triangular with 1’s on the diagonal, it necessarily has an inverse given by

A;le = { (_)na Hi:al<_0)nbi (nbi - 1)' ﬁ: Z % Z ’ (20)

where ny, is the number of clusters of b in the i*" cluster of a. Note that both the Zeta function, Agop, and Mébius
function, A;éb, vanish when a 2 b. The Zeta and Mdébius functions are matrix operators that satisfy

Z Aggch@b = Oap and Z O =1 for aDb, (21)
ceEPN a

and this follows from the definitions of the Zeta and Mobius functions.

Partitions can be used to classify operators on the N-particle Hilbert space. The starting assumption is that the
Hamiltonian H is translationally invariant and commutes with the total momentum operator. Each cluster a; of the
N-body system represents a subsystem, and the total momentum p,, of the particles in the cluster a; is

Pa, = »_Kkj. (22)
Jj€a;

The quantity k; denotes the single-particle momenta, and the total momentum p,, is the generator of translations of
the subsystem of particles in the cluster a;. The operator that independently translates each cluster a; of the partition
a by a vector x; is

To(X1, X, ) 1= € 21 %Py (23)

This is a 3n, parameter unitary group of translations. An operator O that commutes with T,(xy,- -, %y, ), and
satisfies

[0, T, (%1, ,%xp,)] =0 (24)

for all x;, is called an a-invariant operator.
For any partition a of the particles into non-empty disjoint subsystems, a general operator can be expressed as the

sum of an operator that commutes with T,(x1,- - ,X,,) and a remainder. This is represented by the notation
0 =0,+ 0, (25)
where O, is the a-invariant part of O and O := O — O, is the remainder that breaks the T, (x1,- - ,x,,) translational

invariance. It follows from the definitions that

T8 (1, %0, ) (O = Oa) Tu(x1, -+ X0, )| = |0 Tu(x1, -+, X0, ) [9) | (26)

for the state [¢)). For an operator O that is overall translationally invariant, O% involves operators that only contain
interactions between particles in different clusters of the partition a. If these are all short-range interactions, then as



all of the clusters of a are asymptotically separated O® should vanish. A mathematical formulation of this condition
is

lim  ||O*T,(x1,--- ,%Xn,)|t)] = 0. (27)

|x; —x;|—00

Many-body operators O that can be decomposed as O = O, + O* with O, satisfying (24) and O® satisfying (27) will
be called translationally fibered operators. The types of operators considered in this work are interactions, projections
on bound subsystems, resolvents of the form in (5), wave operators, and time evolution operators. For suitable short-
range interactions, limits of the form (27) are expected to vanish. For translationally fibered operators, it follows from
(24) and (27) that O, can be constructed from O using

O,= lim  TI(xy, - ,%n,)OTu(x1, - ,Xn,), (28)

Xi—Xj|—o00
J

which shows that O, can be obtained by asymptotically separating the different clusters of the partition a. This
notation can be illustrated by considering the four-particle Hamiltonian associated with the partition a = (1)(2)(34):

H=K +Ky+ K3+ K4+ V3 +Vig + Vis 4+ Vig + Voz 4 Vou + Viog + Viog 4 Viss + Vazg + Viosa,
H1y2)(30) H(1)(2)(34)

where K; are the single-particle kinetic energies, V;; are two-body interactions, V;;; are three-body interactions, and
Viaaq is a four-body interaction. In this example, HM(2(34) vanishes when all of the clusters of a = (1)(2)(34) are
asymptotically separated, and one is left with the a-invariant operator H(yy(2)(34). The interactions in H SUSICORI|
involve particles in different clusters of a.

For b D a, Tp(X1, - ,Xy,) is a subgroup of T, (X1, - , Xy, ), and it follows that

O, = lim TJ(X1,~~ Xny ) Oa Tp(X1, -+ ,Xn,) for b D a. (29)

|x;—xj| =00

This means that O, is invariant with respect to translations that separate the clusters of b when b D a. As an example,
consider the partitions a = (1)(2)(34) and b = (12)(34) which satisfy b O a. The operator H(1)2)(34) from the previous
example is invariant with respect to translations that asymptotically separate the clusters of b = (12)(34) because
these translations do not separate particles 3 and 4.

On the other hand, if b 2 a, then O, has the decomposition

O4 = (0a)p + (0,)° = Ogpy + 0. (30)

In this decomposition, O,y is invariant with respect to both Ty (x1,- -+ ,Xp,) and Ty(X1, " - ,Xp, ), and O vanishes
as the clusters of the partition b are asymptotically separated. Using (27),

lim Og To(x1, -+ X, )[9)]| = 0, (31)

|x; —x;|—00
which means that

Ourb = lim Tg(xl, c Xy ) O Tp(X1, -+, Xny) for b2 a. (32)

X;—X;|—00
J

Therefore, O,np can be obtained from O, by asymptotically separating the clusters of b when b 2 a. As an example,
consider the partitions a = (1)(2)(34) and b = (123)(4) which satisfy b 2 a. The operator H(y)(2)(s4) from the prior
examples can be written as

H(l)(2)(34) =K+ Ko+ Ks+Kyg+ Vay

H (123)(4)
(1)(2)(3)N(128)(4) H{SON

In this example, H, ((11)2 (32))((43)4) vanishes when the clusters of b = (123)(4) are asymptotically separated, and one is left with

H1y2)34)n123)4) = H(1)(2)(3)(4)- It should be noted that a translationally fibered operator can always be decomposed

as (30), but the term O° vanishes whenever b O a (this is because Ty (X1, - ,Xp, ) is a subgroup of T, (X1, -+ ,Xn, ).
For applications, it is useful to define [O],, the a-connected part of O, by the conditions

[[Ola, Ta(x1,- ,Xn,)] =0 and ([0la)s =0 for b2 a. (33)



This means that [O], is invariant with respect to the translations T,(x1,- - , Xy, ), but it is not invariant with respect
to the translations Ty (X1, - ,Xy,) when b 2 a (these translations necessarily break up at least one of the clusters of
a). For b D a, it follows that the b-invariant part of O is a sum of the a-connected parts of O that commute with
Ty(x1,- -+ ,Xp,). This means that

Oy = [0la= Y Ay2a[Ola, (34)

bDa a€PN

where Oy, is expressed in terms of the Zeta function on the partition lattice. This expression can be inverted using
the Mobius function on the partition lattice such that

b= > A;3,0 (35)

a€EPnN

It can be seen from (34) and (35) that the Zeta and Mobius functions on the partition lattice provide a direct relation
between Op and [O],. Additionally, an operator O is said to be completely connected if O = [O];, and this means
that O vanishes in the limit that any pair of particles are asymptotically separated. It follows from these expressions
that

Ol = Z AlDa 13101+ Z AlDaO =0+ Z AlDaOm (36)

aEPN a€Py a€Py

where P} is the set of all partitions of NV particles excluding the 1-cluster partition. This means O has the decompo-
sition

=[0h - > A3,0.. (37)

a€P),

It is useful to define the coefficient appearing in (37) as

Cot=—AD3, =(=)"(n,—1)!  with Y C,=1, (38)
a€PYy,

which is a combinatoric factor that ensures that the decomposition has the correct overall counting. The sum in (38)
follows because

Z A5, = -4 + ZADQ =-AD + ZABa Agoo=-140.
a€Py, a ‘Z’

An important consequence of the invertibility of the incidence matrix is that a general translationally fibered operator
can be expressed in two equivalent ways:

O= > [0la=[0li+ Y CiOu. (39)

a€PnN a€Py

The first sum is the cluster expansion of O, and the second sum is the operator decomposition of O in terms of
proper subsystem operators. This is a generalization of the linked cluster theorem for identical particles. The cluster
expansion is a sum over the a-connected parts of O, and the operator decomposition consists of the completely
connected part of O (the N-body interaction) and a linear combination of the a-invariant parts of O. For an operator
like a Hamiltonian, the cluster expansion is a linear combination of interactions, while the sum over the a-invariant
parts of the Hamiltonian in the operator decomposition corresponds to a linear combination of proper subsystem
Hamiltonians. As an example, a three-body Hamiltonian with two-body and three-body interactions can be expressed
as a cluster expansion or as a sum of proper subsystem Hamiltonians:

H=K+Ky+Ks+ Vis + Viz + Vo3 + Vios =
—_— <~ — — -~
[Hlo=[H]1)2y3) [Hlazyi) [Hlasyey [Hlesya) [Hli=[H]z2s)

—2(K1+K2+K3)+K1+K2+K3+V12+K1+K2+K3+V13+K1+K2+K3+V23+ Viog

Ho=H (1) (2)(3) H(12)(3) Has)(2) Has)1) [H]1=[H](123)




10

where K; are the single-particle kinetic energies, V;; are two-body interactions, Viz3 is the three-body interaction
(completely connected part), and H;jy) is a sum of subsystem Hamiltonians. The coefficients in the second line
correspond to the combinatoric factors C,, and they ensure that the cluster expansion and operator decomposition
are equal to one another. In this example, the three kinetic energy terms appear in each of the three 2-cluster
partition Hamiltonians, and the (—2) in front of the 3-cluster Hamiltonian corrects for this overcounting of the three
kinetic energy terms. This example demonstrates how the operator decomposition in (39) is used to express the
cluster decomposition of the N-body Hamiltonian in terms of a linear combination of subsystem Hamiltonians. The
decomposition in (39) is useful for identifying the parts of the Hamiltonian that are responsible for the different
channel asymptotic states in a manner that treats all scattering channels democratically.
In general, if A and B are bounded operators, then

ITS ABT,|9) || = TS (Aa + A*)(Ba + BO)Tu|9)|| <
1AaBal) || + I TIA*Ta Bal ) || + [ AaTd B Tulth) || + |1 TH AT, T3 B Tulw) | <
1AaBal )| + IT§ A*Ta Bal o) | + 1Al T B Tul )| + | A*Tul || T3 B Tulh) | <

[AaBa|h) || + [|A*Ta Bal) || + [[Aall| B*Tal) | + | A“Tall[| B*Tal)|-

If A and B are translationally fibered operators, then the last three terms in the fourth line vanish in the limit that
all of the clusters of a are asymptotically separated. This means that translationally fibered operators satisfy

(AB), = A,B,. (40)

It follows from (37) and (38) that

Z CoAaBo = AB — [AB]l = Z CoAy + [A]l (Ba +Ba) - [AB]I =

a€Py a€Py,

Z CoAuBa + Z CoA,B® + [A]1 B — [AB];.

a€Py a€Py

Canceling ZaGP}\, C,A.B, on both sides of this equation gives

> CaAuB® = —[A]\B + [AB], (41)

a€Py

where the terms on the right are connected. This means that sums of the form

> C.ALB" (42)

a€Py

are either 0 or connected.

For an N-particle system, the dynamics is given by the unitary time evolution operator U(t) = e where H is
the N-particle Hamiltonian. By turning off the interactions between particles in different clusters of the partition a, H
becomes H,, and this is the infinitesimal generator of U, (). In general, due to the kinetic energy terms, Hamiltonians
are not bounded operators, but Hunziker in [15] proved that U(t) satisfies (27) for Hamiltonians with square integrable
interactions (i.e., the Hamiltonian is a translationally fibered operator). This means that

—iHt

lim U (#) Ta(x1, -+ %Xn, )|} | = 0. (43)

|x;—x;| =00

He also proved that, under the same assumptions, the wave operators are translationally fibered. In everything that
follows, it will be assumed that these properties are satisfied.
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IV. CHANNEL DECOMPOSITION

The set of scattering channels A can be separated into a set of important channels A; and a remainder A’ [1].
This section will show how to use a channel decomposition to separate a general N-particle Hamiltonian H into a
Hamiltonian H 4, that depends on the channels A; and a Hamiltonian H 4 that depends on the complementary set

of channels A’.
For a general many-body Hamiltonian, the exact spectral decomposition has the form

H=> WiHwDH=> PH  with  I=Y» P, (44)
acA acA acA
where
P =0 (a)®, 0L QT (a) (45)

is the orthogonal projection on the subspace spanned by the (—) scattering states in the channel a. By convention,
the channel sum in (44) includes the one-body channels (N-body bound states). The notation in (45) is shorthand
for

P(E;)H:: Z /dpl"'dpna |(aaplvﬂ'17"' 7pnaa//'na)(7)>Ea<(aap17M17'" 7pnaa.una)(7)|v
K15 sHng

where F,, is the total energy eigenvalue defined in (6). Both the Hamiltonian H and the channel projection operator
PS™) have cluster expansions of the form in (39):

H= [H], = [Hi+ > CH, and  P{)=> [P{],, (46)
bEPN bePy, bDa

where H, is the infinitesimal generator of Uy(t). The product of the Hamiltonian H and the channel projection
operator Po(t_)
obtain

also has a cluster expansion. One can use the expansions of these operators in addition to (40) to

-y Y PO, )

a€A{bePn|bDa}

where [P(Ef)H]b is the b-connected part of P\ H = Q) (a)®,®L Q)T (a)H. Using (37) and (38), (47) can be
decomposed into a linear combination of its b-invariant parts and a completely connected part:

H=> [[PTHL+ > CGP)WH, |, (48)
acA {bePy|bDa}

where [Pé_)H |1 is the completely connected part of the product PC(E_)H and a is the partition associated with the
bound clusters of the channel a. For b 2 a, translating the clusters of b will separate particles in at least one of the
bound clusters of a in the channel a. Therefore,

(Dad])y = ([®a®l])y =0 for  bZa, (49)

which means that
(P =0 for  bPa. (50)
This means that the sum over the b-invariant parts of P,gf)H is zero when b 2 a.
Since the interactions between particles in different clusters of a that are in the same clusters of b are short-range,

the wave operators satisfy a chain rule [16][17] that allows successive interactions to be turned on. This same result
follows from the analysis in [15]. For any b satisfying b D a, the chain rule for wave operators gives

Q(_)(a)q)a = lim eMtem oty =
t——o0
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. iHt —iHyt tHpt —1Hgt — : iHt —iHypt (—) — (—) (—)
tl}r_nooe € Ie e D, t_l)uinooe e (' 7(a)p®e = QD)2 (a)pPq.- (51)

Here (Q2(7)(a)),®, replaces ®,, when computing Q2(7)(b). Since Q(7)(b) turns on the interactions between particles in
different clusters of the partition b, then when b O a one can write

(@) @a = (7 (0))5(Q7(a))sRa)s- (52)

This shows that (Q(7) (b)), acts like the identity on (Q()(a))®,, and this means that

Q7 (@))s®a = (27(a))pPa)s

is the b-invariant part of Q(~)(a)®, for b O a. The important point is that this involves solutions of the scattering
problem in the channel « for the Hamiltonian H, = Z?:bl Hy,, which is a sum of proper subsystem Hamiltonians Hj,.
It also implies that every Hj for b O a has channel a scattering states. The operator (Q(7)(a)),®,®], (2 (a)), is
the part of the exact spectral projection that remains after turning off the interactions between particles in different
clusters of b (there are still remaining interactions between the asymptotically bound subsystems in the different
clusters of a that are in the same clusters of b).

It follows that the exact projection of the Hamiltonian on the channel a subspace has the decomposition

POH=[POHL+ > GP ) Hy=[POHL+ Y C(Q7(a)y@a®l (27 () Hy  (53)
{(bePy [bDa} {bePy [b2a}

Up to this point, everything is exact. The cluster properties imply that the terms (=) (a)),®,®} () (a)),H, in
(53), for b € P}, can be computed using only proper subsystem solutions. The assumed asymptotic completeness
implies that the sum over all channel projectors is the identity

I=> P (54)

acA

It follows that the Hamiltonian can be expressed as

H=[H)+ Y CH,=
beP),

S POHL Y G E, | =

acA {bePy|bDa}

SPTHL+ D> Q7 (0)y@a®l () (a)H, | - (55)
acA {beP |bDa}

Comparing these expressions, the completely connected parts on both sides of (55) must be the same and are given
by

[H]y = > [PV H]. (56)

acA

This means that they add up to zero if H does not have an N-body interaction.

The next step is to introduce the channel decomposition, and this is the main result of [1]. This is done by
decomposing the collection of channels into two disjoint sets A = A;UA’, where Aj represents the selected important
channels that are responsible for most of the scattered flux and A’ represents the remaining unimportant channels.
There are no restrictions on how to choose the set A;.

It is useful to define the orthogonal projectors

P«(L\;) = Z P) and P,(L\T) = Z P, (57)
a€Ar ac A’
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where by convention the one-body (N-body bound state) channels are in A’.
If follows from (54) that they satisfy

PO+ P =1 (58)
This leads to the exact decomposition of the Hamiltonian given by

H=PH+POH=> POH+ Y POH=

aEAf acA’
SAPTHL+ Y GPTH |+ > [[POHEL+ Y G(PC)H | (59)
a€A;f {beP} |bDa} acA’ {beP) |bDa}

From (56), all of the completely connected parts in (59) add up to [H];, and this vanishes if there are no N-body
interactions (note that the N-body bound state channels only contribute to the completely connected parts of the
expression). It follows that

H=[Hh+ > > CPIRH+ Y > C(PL))H,. (60)

a€Ar {beP)[bDa} a€A’ {beP) |bDa}

If there are no N-body interactions in the Hamiltonian, then the contributions from the N-body bound states cancel
with the completely connected contributions from the scattering channels.
Channel truncated Hamiltonians are defined by

Haoi= ) > G(P))H, (61)

a€Ar {beP)|bDa}

and

Hy = [H]l + Z Z Cb(PQ(L_))leN (62)

ac A’ {beP), |bDa}

where the completely connected part [H]; (the N-body interaction) is included in the unimportant channels. This
decomposition has the feature that both of these Hamiltonians are expressed in terms of solutions of proper subsystem
problems and a possible N-body interaction. (Pé_))b is the projection on the scattering states of H; if Hj; has
scattering states in the channel «. These scattering states are constructed from the exact channel « scattering states
by “turning off” the interactions between particles in different clusters of b for b O a. It is always possible to add
additional N-body operators to (61) provided that they are subtracted from (62).

Since both Hj and (Pc(f))b are Hermitian and commute with one another, it follows that both H4, and H 4 are
Hermitian. Also, since

S Y aPH, = > POOH- > [POH], (63)

a€Ar {beP)y|bDa} aEAr aE€Af

H 4, differs from the exact spectral projection of the Hamiltonian, P,(LG)H , on the channels A; by the connected
operator

Wy = [P H = 7 [P H. (64)
acAr
It follows from (63) that
PH = Ha, + Wi (65)

The channel « scattering states of H 4, are defined using wave operators given by

04 ()0 = lim eartemiHate,, (66)

t——o0
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Note that for the exact spectral projectors one has, for a € Ay,

im ([P e M b, g0 || = [P P, |é0a) | =0,

since PJ(L‘T) and Pf{l) project on orthogonal subspaces.
Using (66), it follows that

QE;I) (a)®, =
lim eiHAIte—iPﬁ‘?Hteipf(G)Ht e~iHatd — lim eiHAIte—ipj(I)Ht (P,(c\?) n P,(L\T)) (ethe—iHat(I)a) —
t——o0 Y t——o00
I
, ip(—) o . , _ip) _
tiir_noo eiHart =P, HtPJ(clI) (ethe—zHat(I)a) — t_ljr_noo ety = iPu, HtPJ(L\ ) (Q(_)(a)fba) , (67)

where P«(L\;) (Q(_)(a)@a) = Q) (a)®, is the exact channel wave operator for the a scattering states projected on the
subspace of important channels A;. This shows, using the chain rule for wave operators, that the channel « scattering

states of H 4, are related to the exact channel « scattering states by the wave operator

i oy (=) ()
Qg/;) = lim etHarte=Pay A iy ez(PAI a Wl)te Par Ht7 (68)
t——00 t——o0

which is a connected perturbation of the identity. It transforms channel « eigenstates of the exact Hamiltonian (for
states in the set Ay) to channel eigenstates of H 4, :

%) (@@ = 04 P (2 (@)a). (69)
Treating W; as a connected perturbation of H 4, allows one to write the inverse relation given by
P (m*)(a)cba) — 04,10 ()P (70)

It is important to note that although Q%,; ) depends on Ay, it is independent of the specific channel o € A;. While
determining W involves solving the N-body problem, the observation that the scattering states of H 4, are related
to the scattering states of the exact Hamiltonian, projected onto the subspace of important channels, implies that the
spectral resolution of both operators are related by Qg;). This also means that the incoming scattering eigenstates
of H and H 4, in the channels A; are identical up to fully connected parts. This does not require the full N-body
solution. This observation will be used in the next section to show that H 4, satisfies an optical theorem with the
channels o € Aj.

(=)

The operator {1y’ also satisfies the intertwining relation:

. (=)
eMfars Q) = ol ) e Par i, (71)
This follows from

, B , ] () (o)
ezHAIs Q%/V) — ezHAls (t lim eZ(PAI H WI)te zPAI Ht) _
——00

. ; (=) g _ _ip(=) _p(=) i p(—)
ezHAIs ( lim el(PAI H Wl)te Py Ht) e Py HsezPAI Hs _
t——o0

(p(o) (=) () ()
lim ez(PAI H—WI)(s+t)e—1PAI H(t+s) | iPL) Hs _ (=) (iPi s
(t+s)——o0 W

where the limit ¢ — —oo can be replaced with (¢ + s) — —oo because the limit is the same for any fixed s.
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It follows from the intertwining relation that

% /ds e~ f(2) e Har Q) = o) /ds JSPH %e—iszf(m>. (72)
This means that
F(HA) O =0y f(PL, ). (73)
For functions of the form f(z) = -, this gives
(E—Ha, +i07) 7 0, =af,) (EfPJE‘_I)HJriO*)_l (74)
or
(E—Ha, +i07) " =0 (E ~PUH+ i0+) Tt (75)

In the next section, this will be used to prove the optical theorem.

V. OPTICAL THEOREM

This section will show that H 4, satisfies an optical theorem with the channels o € Ay, which shows that all of the
scattered flux is in the channels Aj.
The Aj-transition operator for 2 — 2 forward scattering in the two-body channel S, using (5) and (14), is
T30 (B + i€) = O T, (B + ie) 0 = @ (HA, + HY, (Bg — Ha, +i€)”" HY, ) @5 (76)

Taking the difference with ¢ — —i leads to

—2i€e
O (TP (Bg +ie) — T (B4 — i€)) &5 = O HY HY &g, 77
ﬁ( .A[( ﬂ ) .AI< B )) ﬂ ﬂ Ar (EB—HAI)2+62 Ar ﬁ ( )

Using (75), one can write

—21€

ol (TY (Es + ie) — TY (B — i€)) @5 = ®,HY Q) Y O THY @5,
(Bs - PH) + e
and this means that
lim ®f, (T, (Ej +ic) — T, (B — ic)) @5 = —2mi ol 1Y Q) 6(PH — Eg) Q4 THY, @5 (78)

The advantage of expressing this in terms of the PJ(L;)H is that the completeness relation for the exact projected
Hamiltonian, which only involves states in the chosen set of important channels A;, can be used to evaluate the delta
function so that (78) becomes

—2mi > @LHY Q) Q) ()4 8(Ea — Bs) of, Q) () QT HY, 5. (79)
acAr

The exact channel o € Aj scattering states can be expressed in terms of the channel « eigenstates of H 4, using the
relation in (69):

)P (Q(_)(a)©a> — 0,0 (@), = Q) (a) ., (80)
which means that (79) becomes

—2mi > @LHY Q) (0)®0 6(Es — E) @), Q) () HY, @5, (81)
aEAg
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Taking the imaginary part of both sides gives

2Im {cb}, T (Ep +i07) <1>ﬁ} = —2r 3 ®LHY Q) ()80 6(E. — Ep) ®), Q%) (a)HY, 05 =
acAr

=21 Y [ @l TY (Es +i0") @3° 6> Ea, — Ep)dp1 -+ dp;, (82)
aEAg 7

where the limit ¢ — 07 has been taken. The right hand side of (82) is related to the total cross section o by

RHS = —(QW)L)N% (83)

(2w

where v is the relative velocity. This means that the total cross section can be expressed as

()P t b ot G W
or = 2Im {fbﬁ T4, (Eg +10 )‘I’ﬂ} - k (2m)?p

v
where Fgp := —(27)%u <I>E Tfj‘bl (Eg+i0™") @5 is the scattering amplitude for 2 — 2 forward scattering for the two-body

channel 3, k is the center-of-mass momentum, and p is the reduced mass. Equation (84) gives the familiar form of
the optical theorem:

) I Essl = Frmim), (6)

4
or = %Im{Fﬁﬁ}. (85)

This means that all of the scattered flux is in the channels A;. It is important to note that, in this case, the
discontinuity across the scattering cuts in the resolvent does not receive contributions from discarded channels. An
identical analysis also applies to the Hamiltonian H 4/ by interchanging the channels A; with the discarded channels

A

VI. BENZCE-REDISH-SLOAN EQUATIONS

While the properties of H 4 and the associated scattering theory were derived using time-dependent methods, compu-
tations normally utilize time-independent methods. For many-body reactions, differential cross sections are expressed
in terms of transition operators, 7°(z), which are operators on the N-particle Hilbert space. They are related to the
two-Hilbert space channel transition operators by

TR0 (E + ie) = ®LH Q) (a)0, = OLT(E + i) D,

where z = E + ie and FE is the on-shell energy. These are solutions of linear integral equations. By manipulating the
equations so that they have a compact iterated kernel, which can be uniformly approximated by a finite dimensional
matrix, the solution involves solving a large linear system. The equations derived by Bencze, Redish and Sloan
[18][19][20] have this property and are sufficiently flexible to be applicable to the dynamical models governed by
Hamiltonians of the form H4,. A short derivation of these equations following [21] is given below.

The transition operator for multichannel scattering in the notation of this paper is

T (2) = H* + H°G(2)H*®, (86)

where G(z) = (2 — H)f1 is the resolvent operator (or Green’s operator) and z = E + ie is the complex energy. If one
assumes that the completely connected part of H® is zero (it doesn’t contain any N-body forces), then the operator
decomposition of H? is

H*= " C.H!. (87)

cEPY

This means that the transition operator can be expressed as

T"(2) = H*+ Y C.H)G(2)H". (88)
cEPY
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Using the second resolvent identity

the transition operator becomes

T (2) = H*+ > C.HY (Ge(2) + Ge(2)H°G(2)) H* =

cEPY

H+ Y CH!Go(2) (H* + H'G(2)H") = H* + Y C.H!Go(2)T*(2), (89)

c€Py ceEPy
where Go(z) = (z — H,)". Therefore, the transition operator T%%(z) satisfies

T (2) = H* + Y CHIG.(2)T*(2), (90)

cEPY

and these are the equations derived by Bencze, Redish and Sloan. These equations are coupled integral equations,
and they become coupled Lippmann-Schwinger equations when only 2-cluster channels are included in the initial and
final states. It follows from (90) that the iterated kernel,

> > CCaHGo(2) HiGa(2), (91)

ceP) deP),

is connected since . C.HPG.(2)HS is connected or zero by (42). Everything above holds if H is replaced by H 4.
cEPy c d

VII. IDENTICAL PARTICLES

For systems of identical nucleons, the Hilbert space is the antisymmetrized subspace of the N-nucleon Hilbert space,
and the exchange symmetry can be used to reduce the number of coupled scattering integral equations. In this section,
the method in [22] is applied to treat integral equations of the form in (90) involving identical particles.

In multichannel scattering theory, permutation operators are used to construct the projection on the symmetrized
(antisymmetrized) subspace of the Hilbert space. Let P(NN) be the set of permutations on N objects. For a given
permutation o € P(N), let P, be the operator acting on a N-particle basis vector |ky, p1, -+, kn, un) defined by

Po|k1a,u17"' akNa,uN> = (—)‘0”1{0(1)7/,[,0_(1),”- 7ko’(N)a,ua'(N)>7 (92)

where |o] = 0 for integer spin particles as well as even permutations of half-integer spin particles and |o| = 1 for odd
permutations of half-integer spin particles. For a partition a, the notation P, is used to denote any P, satisfying
o(a) = a’. It is important to note that these types of permutation operators are not unique and can be either even or
odd, since o(a) = a’ is preserved under transpositions that leave a invariant on the right or ¢/ invariant on the left.
For each partition a of N particles, there is a subgroup of the permutation group that leaves the partition a
unchanged, and this is denoted by P,(NN). Elements of this subgroup either permute particles that are in the same
cluster of a or permute clusters of a that contain the same number of particles. Permutations of this type satisfy

ola)=a  YVo&P,(N)CP(N). (93)

The subgroup Py (V) has N, = [[; na,![]; k;! elements, where n,, is the number of particles in the ith cluster of a
and k; is the number of clusters with j particles. For a given partition a, let [a] denote the set of distinct partitions
that are related to a by a permutation. The number of partitions in [a] is Njg = N!/N,.

Symmetrizers (antisymmetrizers) are defined by

1
Ri= Z P,. (94)
oc€P(N)

The symmetrizer (antisymmetrizer) R is an orthogonal projection operator on the N-particle Hilbert space that
satisfies

R=R*=R' and R=P,R=RP, VocP(N). (95)
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The first relation in (95) can be obtained using

1 1 1 1
P B3 ) B (5 )

ceP(N) \o’eP(N) oeP(N) \o”eP(N)
—_——

where ¢’ = oo’ for a fixed 0. The adjoint simply replaces P, by P,-1, which results in the same operator when
summed over all permutations. The second relation in (95) can be obtained from the definitions of R and P,, which
simply relabels the permutations in the sum of (94).

Symmetrizers (antisymmetrizers) constructed from permutations in the subgroup that leaves the partition a un-
changed are defined by

1
Ra = E Z Pg‘~ (97)
ocEP(N)

These symmetrize the particles in each cluster of a and identical clusters of a. Therefore, for any partition a, the
symmetrizer (antisymmetrizer) in (94) can be expressed as

1 1
R=5 > PuaRo = N > RoPua, (98)
a’€lal a’€lal

where the first sum corresponds to R, acting on a ket and the second sum corresponds to R, acting on a bra. The
physical Hilbert space for a system of IV identical particles is the range of R on the N-particle Hilbert space, and the
initial and final scattering states need to be projected on this subspace so that

__mw AW
) R = RTRIT T R T )

The denominator ensures that the state is properly normalized.
For distinguishable particles, if |«) and |8) are sharp-momentum initial and final channel states, respectively, with
energy E, then

H'la) = (H" + H, — E) o) = (H — E) |a) (100)

(BIH" = (8| (H* + H, — E) = (8| (H — E), (101)

where (H, — E)|a) = (Hy, — E)|8) = 0. Therefore, it follows that

(BIT™(E + ic)|o) = (5] (H n Hblﬂa) o) =

1 E —H + e ) (102)
(BI(H = E) + (H = B) m—p—— (H = E) |a) = (BIT(E + i€) o),
where T(E + i€) is defined as
T(E +ic) = (H—E)+(H—E)ﬁ(H—E). (103)

If the Hamiltonian H is invariant with respect to the interchange of identical particles, then so is T'(E + i€) because it
is a function of H. The channel matrix elements of T'(E + i€) agree with the channel matrix elements of T°*(E + ie)
provided that they are evaluated on-shell. The symmetrized (but un-normalized) sharp momentum 7T-matrix is
obtained by symmetrizing the initial or final states. It follows from the properties of R in (95) that

(B|RT(E + ie)R|a) = (B|IT(E + i€)R|a) = (B|RT(E + ic)|a) = (B|RT(E + i€) Py|a). (104)

It is useful to use the expressions in (104) because it allows one to put all of the symmetrization in the transition
operator, while keeping the initial and final states fixed.
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For the channel state |a), that corresponds to the partition a, one has

Z Pa’aRa|O‘>a (105)

[a] a’€lal
and this can be used to express the T-matrix in terms of a symmetrized final state as
~ ) 1 ~ )
(BIRT(E + ie)|c) Ny > (BIRyPo T(E + ic)|ar)
b’ €[b]

1 , )
= 2 (BIR P TV (B + ie)]a).
[b] ble[b]

(106)

The second line in (106) expresses the transition operator in terms of partitions, and the first and second lines of
(106) agree as long as the energy is evaluated on-shell since

Hy|B) = E|B) HyRy|B) = RyHy|B) = ERp|B) Hy Pyy|) = PyyHp|B) = EPy|B).

Since R = RP,, the symmetrized T-matrix can be written as

(B|RP,T(F +ic)|a) = (B|RT(E + i€)P,|a) = (B|RT(E + ic)|o(a)). (107)
Using (106) gives
— Z (B|Ry Py TV *(E + i€)|a) = —— Z (BIRyPoy T"'* (E + i€)| ), (108)

where ¢/ = o(a) and o is the permutation associated with Pyy. Normally, |«) is internally symmetrized so that
R,|a) = |a), but it is not fully symmetrized. So while the sum in (108) takes care of the symmetrization, the initial
and final states will not be normalized to unity. This can be fixed by multiplying (106) by the factor /NNy, which
means that the properly normalized symmetrized transition matrix elements are

. N , ,
(BIT(E + ie)loeym = 4ot 3 (BIRs Py T ( -+ i0)0). (109)
b’ eb]

For identical particles, the number of coupled integral equations can be reduced by constructing equations for the
symmetrized transition operator defined by the right hand side of (109):

TV (E +ie) := Y RyPoy T"*(E + ic). (110)
b’ €lb]

For each permutation equivalent set of partitions, let a, and b, denote arbitrary but fixed elements of the sets [a,]
and [b,], respectively. This means that (110) can be written as

T (B +ie) = Y Ry, Py, T (E + ie). (111)
bElbo]

Using the Benzce-Redish-Sloan equations from (90) in this expression gives

o (B + je) = Z Ry, Py, s H + Z Z CeRy, Py H' G (E + i€)T% (E + ic). (112)
bE[bo] be[bo] cEPYy

The sum over partitions ¢ can be broken up into a sum over the set [c] of partitions related to ¢ by a permutation
followed by a sum over the partitions ¢ in the set [¢]. The coefficients C. only depend on the number of clusters in ¢
which is the same for all elements of [¢]. This means that the second term on the right side of (112) can be expressed
as

> > CeRo, Py HIGA(E +ie) T (E +ie) = Y > CigRo,Pop Y HGo(E +ie)T° (E +ie).  (113)
bE[bo] cEPY be[bo] [c] celd]
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Now, for a fixed P,.., and its inverse, one can use the identity

HYG.(E +i€) = P, H G.,(E +ic)P.,. (114)
to express (113) as
> S ClaRu o D Pee, HE G, (E + i) Pe, [ T (E + ic), (115)
belbo] [c] c€ld]

where b/ = P, .bP,., for a fixed P..,. Since Py, P.., relates b, to some b’ € [b,]:
bo Py, Pec, = Po,b b Pec, = Po,p Pec, V', (116)
it is useful to define
Py = Pp,pPec,- (117)
Using (117) in (115) gives

3N CuRu oy S P, HY Goy(E + i€) P, T (E + i) =

be[bo] [c] c€ld]
S > CaBe, Y Poy HY Ge, (E + i€) P, T (E + ie). (118)
bE[bo] [c] c€ld]

Since b and b’ are related by a fixed permutation ¥’ = P, . b P, , summing over b € [b,] is equivalent to summing over
b’ € [by]. This means that the sum over b can be replaced by a sum over b’ so that (118) becomes

> > CyR, D Poy HE Ge, (B +i€) P, T (E + ie). (119)
b’ €by] el c€lc]

Since P. . is any permutation that transforms ¢ to ¢,, P, . can be replaced with R, P, . in (119). This means that
(119) becomes

Z ZC[C]Rbo Z Pbongo Ge,(E +i€)Re, Pe, T (E + i€) =
bE[bo] [c] c€[c]

S S € R, Py HY, G, (E +ie) T (E + ic), (120)
be([bo] [c]

where the definition of the symmetrized transition operator in (110) was used in the last line of (120) and the b’ label
was replaced with b.
Using (120) in (112) results in the following dynamical equations for symmetrized transition operators:

T (B +ie) = > Ry, P, H* + Z > Cly Ry, PopHY, Ge, (E + ie)TI% (B + ic), (121)
be[bo] belbo] [d]

where ¢ is an arbitrary but fixed element of [¢]. The sum is over the distinct classes of permutation equivalent
partitions [c], which reduces the number of equations.

After solving the system for T1% (E 4 ie), if it is evaluated between internally symmetrized channel states, |a) and
[a]

|3), then the matrix elements need to be multiplied by to get the correct normalization. Since the normalization

factors only depend on the partitions, they can be absorbed into the equations by replacing T'° }%(E + i€) by the
symmetrized transition operator defined by

. N(l a .
oo (B 4+ ie) =, | ﬁﬂbl *(E +ie). (122)

9D S™ Ry, PoyH + N = S ClRe, PobHL G, (E + ie) T (B +ie).  (123)
Nl &) B bebo] [e]

This gives the equations

[b]“" (E + ie)

Equations (121) and (123) are for a general permutation-symmetric N-body Hamiltonian, and they are also valid for
the truncated Hamlltonlan H 4, provided Aj contains all channels related by permutations.
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VIII. THE STRUCTURE OF THE TRUNCATED EQUATIONS

The dynamical equations in (121) are abstract. This section considers the structure of the simplest approximation,
where only 2-cluster channels are retained, in more detail.
In general, the truncated Hamiltonian in (61) has the form

A=Y Ca(Ha,)a
When A; only includes 2-cluster channels, (H4,), = 0 unless a is a 2-cluster partition. For 2-cluster partitions,
C, = 1 and, given partitions a and b,
(Ha, )y = (Ha;)a = (Ha)arb:

If a # b, then a N b will have more than two clusters. This implies that

(Ha;)arb =0 when a #b.
It follows that

(Ha,)% = (Hay)abab = [H;]abab,
where

Sab =1 — 6ap.
The channel « eigenstates of (H 4, ), have the form
) := a1, 51, 1, P1) @ |2, 52, 12, P2),

where the «; labels the bound subsystems. The energy of this state is

. p?
= — e
« 90, oM,

Eq

and this is the sum of the kinetic energy minus the binding energy of each bound cluster (M; is the total mass of each
bound cluster).
The terms in the kernel and driving term of (121) become

(HAI)EC) = SbC[HAI]C = e / [Ve) By dye (el (124)
and
. = E. _d~,
b _ v @Ye
(Ha )G (B 10) = e [ 1) s el (125)
where

d’Yc = dpcl dpc2 .

In this case, the symmetrized equations in (121), with C. = 1 for 2-cluster partitions, are

(B |T[b]a°(E—|-Z€ ‘OLO Z Z/ 50|Rb Pb b|’7c>E'ycd'Yc<70|ao>

belb,] c#b

(126)
dry
’Yco Co [clao :
Y ZZ/ﬁoin Pshe) g o e 119 (B -+ ) ).
be[bo] co#b [c] oo
If |8,) is internally symmetrized, |3,) = Rg,|5,), then (126) becomes
(BolT(B + i0)las) = 32 3 [ (B} Byl
be[bo] c#b
€[bo] c# (127)

30 25 [ (B g e e T (B )

be[bo] co#b [c]
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These solutions need to be multiplied by \/% in order to get the properly normalized transition matrix elements.
What is needed as input are the overlap matrix elements

<BO‘Rbonobwco>

for all b € [b,]. Each one has an overall momentum conserving delta function with a rotationally covariant kernel that
depends on one initial and one final relative momentum variable. They have the general structure

/Z<I:)bonboﬁo|Rbonob|I~)bnbﬁ>df’b(f’bnb6|f)conco'7<:o>7
ny

where the p, are the relative momenta between the clusters of a. For each fixed pp, the remaining independent
variables are integrated out.

IX. BOUND STATES

While the main goal of this work is to isolate dominant scattering channels using reaction mechanisms, the result is
a truncated Hamiltonian that may also have bound states. If the original Hamiltonian has no N-body interactions,
then the projection of the exact Hamiltonian on the bound states must exactly cancel with the connected part of
the projection of the Hamiltonian on the scattering states (using the equation in (59)). The dominant part of the
projection of the Hamiltonian on the bound states may be due to N-body contributions from a limited number of
important incoming or outgoing scattering channels. If these limited scattering channels are major contributors to
the connected part of the exact scattering states, then they should provide major contributions to the bound states
of the system.

The decomposition in (60) can be used to determine which scattering channels are most responsible for the binding.
An interesting example is the system consisting of two protons and four neutrons. This system has a bound state,
6He, which is a halo nucleus. The expectation is that this system can be modeled as an alpha particle interacting
with two loosely bound halo neutrons. The six-body bound state arises from the connected part of the complete set
of scattering states. An interesting question is how much of the binding is due to the subset of & — n — n scattering
channels. This can be investigated by searching for bound states of the truncated Hamiltonian H 4,, where Aj consists
of all of the  — n — n scattering channels. The interesting thing about this system is that there are no bound states
consisting of two protons and three neutrons, > He, and there are no bound states consisting of two neutrons. The
interactions for this reaction mechanism are constructed from the o — n and n — n scattering states where the third
“particle” acts as a non-interacting spectator.

There are six equivalent scattering channels that differ by which pair of neutrons are bound in the alpha particle.
These channels can be labeled by the pair of neutrons in the alpha particle:

Qijs oy, = (P1p2ming) () ()
J

where p and n are the protons and neutrons, respectively. Here i and j label the neutrons in the alpha particle
and k and [ label the asymptotically free neutrons. There are 6 permutation equivalent channels and partitions:
12, 13, (14, 23, Qiag, (34. The partitions that appear in the Hamiltonian

Ha, = > Ca(Ha,)a

a€Ply,
are the 3-cluster partitions, (pipanin;)(ng)(n;), and the 2-cluster partitions that include
(prpzningng)(ma), (prpzningng) (ny) and (pipaning) (ngm),

where there are six combinations of j.
The following short hand notation will be used in what follows:

loij) = |o, Pij) @ |Prs i) @ |Prs i)
|y k) -) = (0, Pijs Prs bik) ™) @ |Prs 1)

liymy-) = (o Pij, PL 1) ™) @ [Pk, k)
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loijy-) = la, Pig) @ |(Pks ke P1> 1) ™)

Py | P} | D}
B = — 4
8my  2mp  2my

dai; = dpijdprdp;

where p;; = p; + p; and e, is the binding energy of the o particle. The kinetic energy and interaction terms are
defined by

Kij 2/ D laig)da; Eij o]

12237221

Hijp = / > (lagiw - dai; Biglag o -| = lagg))dai; By ag)|)

HisHEk

Hij :/ > (lagpyw- Yo Eij(agay- | = ) dei; Big {a)|)

HisPk

Hiy :/ > (lags)-)dai; Big(aggy-| = ) dei; By (o)) -

KBk
Using this notation, the Hamiltonian for the a,n,n channels is
Hu, =) (Kij+ Hiji + Hijo + Hya),
j

where the sum is over all six pairs of 7j corresponding to 24 partitions. The input are nn and na scattering states.
Mathematically, this is a coupled three-body system. This Hamiltonian can be diagonalized to determine if this
reaction mechanism is sufficiently rich to support a bound state.

Using

(B = (Ha,)a) V) = (Ha,)" V)

and

it follows that the six-body bound state is a solution of the generalized eigenvalue problem

W) =D CalE — (Hay)a) ™" (Ha,)*|¥),

where the right hand side of this equation is connected by (42). The sum only involves 2-cluster and 3-cluster
partitions. Note that this particular form of the equation is known to have spurious solutions [23], so any solutions
need to be checked to make sure that they also satisfy the Schrédinger equation.

X. THE RELATIVISTIC CASE

The same analysis can be applied to a relativistically invariant quantum theory, with some non-trivial differences.
Relativistic invariance in a quantum theory requires that quantum observables cannot be used to distinguish inertial
coordinate systems. This implies that the dynamics of the system is given by a unitary representation, U(A, a), of
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the Poincaré group [24] (semi-direct product of the Lorentz group (A) and spacetime translation group (a)). Unitary
transformations preserve quantum probabilities, expectation values and ensemble averages.

The Poincaré group is a ten parameter group (three translations, three rotations, three rotationless boosts and
time translation). The infinitesimal generators of U(A, a) are the Hamiltonian, H, the linear momentum operator, P,
the angular momentum operator, J, and the rotationless boost generator K. These are self-adjoint operators. They
satisfy the Poincaré commutation relations:

[PH, P =0  [J, P =ielkpk (g0 9] = ik gk (128)
[J4, K9] = ieFKP  [K' K| = —iedh gk (129)
[K', Pl =i6“H  [K' H]=iP" (130)

The relativistic analog of diagonalizing the Hamiltonian is to decompose U(A,a) into a direct integral of irreducible
representations. This is equivalent to simultaneously diagonalizing the invariant mass and the spin Casimir operators
of the Lie algebra defined by

M?=H?-P* and S*=W?/M? (131)
where W* is the Pauli-Lubanski vector
Wkt =P -J,HI + P x K). (132)

Once the eigenvalues of M? and S? are fixed, the representation of U(A, a) on the fixed M? and S? subspaces of the
Hilbert space is determined by group theoretical considerations.

For this section, it is useful to define the following functions of the generators: The Newton-Wigner position operator
[25] is

1 P x (HJ+P xK)

X = 5{%’K} T T MHM+H) (133)
and the spin is
S=J-XxP. (134)
These operators satisfy
(X', Pl =4ds;  [X',87) =[P S =0. (135)

Equations (131), (133) and (134) can be inverted to express the ten Poincaré generators as functions of {M?2, P, X, S}:

H = /P2 + M? (136)

J=XxP+S8S (137)
1 P xS
Kfi{H,X}f Tl (138)

The Poincaré commutation relations follow from (135), and the requirement that M and S? commute with these
operators.

Bound states of the N-particle system are simultaneous eigenstates of the mass M, linear momentum P, the square
of the spin S2, and the projection of the spin on an axis, S -2, where the mass eigenvalue my, is discrete . These states,
denoted by

|[(mb, 8) P, 1), (139)

E, =\/p?+m}. (140)

are eigenstates of H with eigenvalue
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Poincaré transformations on these states leave m; and s unchanged:
U(A, a)|(ma, s) p, 1) :Z/I(mb,S)p’,u’> dp’ ((my, ) p', 1'|U (A, @) |(mw, 5) P, 1), (141)
'

where the matrix

((ma, 8) P', WU (A, @)| (mp, 8) P, 1)

is a representation of a mass my; and spin s irreducible representation of the Poincaré group. It is the Poincaré group
analog [26] of the Wigner D-function for the rotation group:

DZM’(R) = <Sa H/'U(R)|Sa :U//>
In a relativistic quantum theory, the cluster condition

lim TPt %0, ) U Tty 1 %n,) = @72, Uy (8) (142)

|x; —xj|—00
is replaced by
lim TT(Xla e ,an) U(A7 a) T(X17 e 7xnb) = ®?:blsz (Av a’) = Ub(A7 a)a (143)

|x; —xj| =00

where Uy, (A, @) are unitary representations of the Poincaré group for the subsystem of particles in the i*? cluster of b
and the limit is a strong limit. This condition means that it is possible to test special relativity on isolated subsystems
of particles.

The new complication in the relativistic case is that interactions necessarily appear in more than one of the
generators [27]. This is a consequence of the commutators

[K', P =Y H (144)

that have the Hamiltonian on the right side. If H includes interaction terms, then they must also appear in the terms
on the left hand side of these commutators. This impacts (143) since the translation generators P, for the it cluster
of a do not commute with the corresponding boost generator K.

The cluster condition in (143) will be satisfied for short-range interactions provided that each Poincaré generator
G; has a cluster expansion of the form

G; = Z Gila = [Gi]1 + Z Ca(Gi)as (145)

a€EPN a€Py

where (G;)q = D1, (Gi)a,- Each (G;)g, has the form (G;)q, ® I where (G;)q, only acts on the Hilbert space associated
with the particles in the [** cluster of @ and satisfies the Poincaré commutation relations for each cluster of the partition
a. I is the identity on the rest of the Hilbert space. The construction of unitary representations of the Poincaré group
consistent with the cluster condition in (143) is non-trivial and can be found in [28][29).

The construction in [29] is recursive on number of particles. It uses sums of proper subsystem generators to
construct the Poincaré generators (G;),. These are used in equations (131), (133) and (134) to construct the operators
M., P,,X,, and S,. For each partition a, a S-matrix preserving unitary transformation, V'(a), is constructed that
transforms

P,,X,, and S, (146)
to
Py, Xg, and Sop. (147)
The operators with 0 subscripts have no interactions, and V' (a) is recursively constructed to satisfy
(V(a))y =V(anb). (148)
The resulting transformed mass operators

Vi(a) M,V (a) (149)
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for each partition commute with the operators in (147). If these are combined using

M= " CVi(a) My V(a), (150)

a€Py
then M also commutes with the operators in (147). The generators G; can be constructed as functions of
M,Py, X, and S (151)

using relations (136)-(138) to express the generators in terms of the operators in (151). This gives a dynamical
representation of the Poincaré Lie algebra. The problem is that if the interactions between particles in different
clusters of a are turned off, then

Gi — Vi(a) (Gi)a V(a).

This means that it will violate cluster properties. The violation of cluster properties typically involves interactions
disappearing that should not disappear when subsystems are separated.

In order to restore cluster properties without breaking the commutation relations, one defines the Cayley transform,
K(a), of V(a) by

K(a)=i(V(a) = )T +V(a))™" with V(a) = (I —iK(a))(I +iK(a))™". (152)

One can define the unitary operator V in terms of these Cayley transforms by

Vi=(T—i Y CuK(a)I+i ) CuK(a)™" (153)

a€PYy a€Py
This operator has the property that when the interactions between the clusters of a are turned off, it becomes V' (a):
Vo =V(a). (154)
Since V is unitary, it follows that
Gi=ViG,V (155)

satisfies the Poincaré commutation relations and satisfies the cluster properties in (143)-(145). It also follows that

U(A,a) := VIU(A, a)V (156)
satisfies the cluster properties
Ll T ) U0 Ta -+ x0,) = 87200 (M) (157)
One consequence of this construction is that
Gi=[Gili+ Y Ca(Gi)a, (158)
a€Ply

where the connected term is generated by the operator V and is needed to restore the commutation relations.
The construction of the operators V(a) in [29] uses the same methods discussed in section 3. The construction
outlined above can be performed by replacing

{MaP07XOaSO} (159)
by
{M; =VIMV,Py,X; =VIXV,8; = VIS V1. (160)

As in the non-relativistic case, the starting point is the construction of channels. Given a partition a, there is a
scattering channel « if there are bound states in each cluster of the partition a. In the relativistic case, the states in
(5) are replaced by

®ZL:(11 (mblasl)pl7ul>7 (161)
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where the m;, are discrete mass eigenvalues of the bound state in the it cluster of a. Note that these states transform
like (141).

Given U (A, a) satisfying cluster properties, the construction in the relativistic case is identical to the construction
in the non-relativistic case. The exact projection operator on the A; scattering channels is

Py =Y Q9(a)2,0f 0 (a), (162)
aEAL

where the wave operators are the same functions of the Hamiltonian as in the non-relativistic case. Cluster properties
of U(A,a) imply that the Hamiltonian and all of the generators have cluster expansions of the type discussed in
section ITI. The wave operators satisfy the general intertwining relations

U(A,b) Q) (a) = Q) (a) Uy (A, b).
The projection of the exact generators on the channel subspace are
P4, Gi. (163)

These projected Poincaré generators satisfy the Poincaré commutation relations because the channel projection op-
erators are Poincaré invariant. The projected generators have cluster expansions of the general form

Pia,Gi = [Pia,Gilh + Z Co(Giay)a- (164)

a€EPy

The term Zaep& Ca(Gia;)a can be constructed from all proper subsystem problems. While it satisfies cluster prop-

erties, it does not satisfy the commutation relations. The operators V(a) and V in (156) are also constructed from
proper solutions of proper subsystems.

While the (G;4,)q for a € P) can be constructed from solutions of proper subsystem problems, without the
connected term these operators will not satisfy the Poincaré commutation relations. Connected operators [Gia,]1
that restore the commutation relations can be constructed directly from the (G;4,), for a € Pj. The construction is
the same as the one used in the exact case except the subsystem mass operators are replaced by the channel projected
subsystem mass operators.

Formally,

Gia; = Gi:= V(Y CaV(a) Gia, V@)V = [Gia i + D Ca(Giny)as (165)

a€Py a€Py

where the connected term is generated by the construction. The resulting important channel generators satisfy the
Poincaré commutations relations. The operator [G;.4,]1 is not equal to the operator [P;4,G;]1 in (164), which requires
the full solution of the problem. The proof of the optical theorem is identical to one in the non-relativistic case.

These G; 4, generators can be used to construct the corresponding unitary representation of the Poincaré group.
In this construction the required part of the N-body interaction is frame dependent. Note that while the connected
term is required, it is not unique. Different constructions of the operators V(a) can result in different [G;4,]1. This
is related to the fact that cluster properties only fix the dynamics up to a N-body interaction.

XI. CONCLUSIONS

This work was motivated by the current interest in understanding nuclear reactions and the role played by few-body
correlations in modeling these reactions, specifically when the physics is dominated by a small number of few-body
scattering channels. The key decomposition in (60) was already obtained in [1], using solutions of proper subsystem
problems to construct a cluster expansion of the exact Hamiltonian by scattering channels.

This presentation develops the approximations by considering their relation to the spectral representation of the
exact Hamiltonian. Also, it utilizes the chain rule for wave operators that was presented in [16][17]. Hunziker’s
treatment of cluster properties in scattering [15] provides a framework for relating the exact and subsystem channel
states without having to use cluster properties of unbounded operators. The approach in this work has the advantage
that the optical theorem in the important (or dominant) channels can be understood from the solved form of the
optical theorem for the exact channel projected Hamiltonian.

The advantage of using this framework to model nuclear reactions is that there are no restrictions on the choice
of dominant channels (these can be dictated by physical considerations). The key properties that are special about
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this decomposition are 1) that both the dominant and discarded channel Hamiltonians satisfy optical theorems in
complementary sets of channels and 2) the scattering wave functions for the dominant set of channels differ from the
exact scattering wave functions only by N-body correlations. Because it is a Hamiltonian theory, it is compatible
with any computational method. And because the exact Hamiltonian can be expressed as a sum of parts with
complementary sets of channels, it provides a precise framework for including the dynamics due to the excluded
channels. It is also compatible with Hamiltonians that have many-body interactions that come from effective field
theory [2][3] or unitary scattering equivalences [4][5][6][7]. The channel decomposition can also be applied to model
bound systems when the reactions are dominated by few-body channels.

The corresponding treatment in the relativistic case was outlined. It requires Poincaré generators that satisfy cluster
properties. While this is a non-trivial constraint [28][29], once it is satisfied the construction proceeds in the same
way as in the non-relativistic construction. The relativistic treatment is applicable to models with color confinement,
where color-singlets naturally cluster and the constituent particles have relativistic energies.

While computational methods have improved considerably since this method was first introduced, applications of
this method in principle requires the solution of all proper subsystem problems. This is still a difficult problem, so the
construction of the channel truncated Hamiltonian, except in the simplest cases, will likely involve some modeling. The
advantage for complex reactions is that the interactions are precisely defined, and their structure and properties are
understood. Another advantage is that while the structure of the channel truncated Hamiltonian involves contributions
from many subsystems, the combinatorial factors [12][13][14] ensure that there is no over counting. This is relevant for
treating overlapping channels and systems with identical particles where it is necessary to retain all channels related
to the important channels A; by exchange of identical particles, but this needs to be done in a manner that avoids
over counting.

One of the issues with approximations that preserve the optical theorem by discarding open channels is that the
exact incoming and outgoing scattering states can live on different subspaces of the Hilbert space. The incoming and
outgoing states are related by time-reversal, which implies that approximations that preserve the optical theorem
by discarding open channels may violate time-reversal invariance. In scattering applications, the scattering matrix
element involves limits with the general structure

Spa = }EBO (I)L giHvt =2t ilat § (166)
where the time evolution in H is in the forward direction. So for the purpose of this work, there is a preferred
direction in time. Note that even though H 4, may not be time-reversal invariant, it is still a Hermitian operator with
an absolutely continuous spectrum that is bounded from below.
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