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We investigate the effects of two-body currents on elastic electron-deuteron scattering in an ex-
actly Poincaré invariant quantum mechanical model with a null-plane kinematic symmetry. While
calculations using single-nucleon currents as input produce good qualitative agreement with exper-
iment, the two-body current that we investigate produces a good quantitative agreement between
theory and experiment for all three elastic scattering observables.
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I. INTRODUCTION

In the one-photon-exchange approximation elastic electron-deuteron scattering observables are functions of the
current matrix elements, 〈(1, d)P ′

d, µ
′
d|Iµ(0)|(1, d)Pd, µ〉, where |(1, d)Pd, µ〉 are deuteron four-momentum eigenstates

and Iµ(x) is the deuteron current density operator.
In a relativistic quantum theory the deuteron eigenstates transform irreducibly with respect to a dynamical unitary

representation of the Poincaré group. In this work they are eigenstates of a two-nucleon mass operator constructed
by adding “realistic” nucleon-nucleon interactions, such as Argonne V18 or CD Bonn [1][2], to the square of the
non-interacting invariant mass operator, M2 = M2

0 + 4mvnn. With this mass operator the S-matrix elements of the
resulting two-nucleon model are consistent with the nucleon-nucleon scattering data used to determine the interaction.

The representation of the dynamics can additionally be chosen so the interaction vnn is invariant with respect to a
non-interacting, “kinematic” subgroup of the Poincaré group. Different choices of kinematic subgroup [3] are related
by unitary transformations that do not change the two-body S-matrix [4], but the choice of representation of the
dynamics effects the representation of the current operator. In this work the interaction is taken to be invariant with
respect to a subgroup of the Poincaré group that leaves a plane tangent to the light cone invariant. This is called
the null-plane kinematic subgroup. It is the largest possible kinematic subgroup and it has well-known advantages
for treating electron-scattering problems.

The hadronic current density operator is conserved and covariant with respect to the dynamical representation of
the Poincaré group. It is necessarily the sum of one-body and two-body operators. Cluster properties imply that
one-body current operators, which are determined by empirical nucleon form factors, are conserved and transform
covariantly with respect to the non-interacting representation of the Poincaré group. In a dynamical model the
one-body parts of the current are only covariant with respect to the kinematic subgroup.

Two-body parts of the current operator are needed to restore full covariance and may include additional contribu-
tions of a dynamical origin. Deuteron matrix elements of an exactly covariant hadronic current are constrained by
the Poincaré transformation properties of the current operator and deuteron state vectors. These linear relations can
be used to express all of the current matrix elements in terms of three linearly-independent current matrix elements,
which are linearly related to invariant deuteron form factors. This current is also covariant with respect to the null-
plane kinematic subgroup. The kinematic subgroup is relevant because the one and two-body parts of the current
operator are separately covariant with respect to the kinematic subgroup. This more limited symmetry allows all
current matrix elements to be expressed in terms of four linearly independent current matrix elements, using only
null-plane kinematic transformations. The full covariance implies an additional dynamical constraint among these
four kinematically independent matrix elements. In a dynamical model with a null-plane kinematic symmetry the
additional dynamical constraint is rotational covariance [5][6][7] [8] which was appropriately referred to as the “angular
condition” by Leutwyler and Stern.

Any kinematically covaraint current operator can be used to define matrix elements of a fully covariant current by
evaluating any three linearly independent current matrix elements using the kinematically covariant current operator.
The remaining current matrix elements are generated by the constraints implied by covariance, current conservation,
and parity. This construction ensures that the fully covariant current and kinematically covariant current operators
agree on the three independent matrix elements and all matrix elements related to them by kinematic Poincaré trans-

formations. The resulting covariant current depends on the choice of the three linearly independent matrix elements,
which are chosen among the four kinematically independent matrix elements related by the angular condition.

Null-plane “impulse calculations” compute the three independent current matrix elements using the single-nucleon
current operators. When the null plane is oriented so the “+” component of the momentum transfer, Q+ = Q0+Q3, is
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zero the independent matrix elements can be chosen to be matrix elements of the + component, I+(0) = I0(0)+I3(0)
of the current. When the independent matrix elements are taken to be matrix elements of the + component of the
current the one-body matrix elements are (1) invariant with respect to null-plane boosts (2) the single-nucleon form
factors exactly factor out of the integral for the current matrix element and (3) the momentum transfer to the nucleons
is identical to the momentum transfer to the deuteron.

When used with realistic nucleon-nucleon interactions and empirical nucleon form factors, null-plane impulse calcu-
lations give a good qualitative description of all of the elastic electron-deuteron scattering observables. The results are
not sensitive to the choice of realistic interaction, empirical nucleon form factors, or the choice of independent matrix
elements used to construct the fully covariant current. Quantitative differences between the results of null-plane
impulse calculations and experiment, particularly in the observables A and T 20 cannot be explained by experimental
uncertainties or uncertainties in theoretical input.

In order to account for the difference between theory and experiment it is necessary to introduce an additional
two-body current operator that has a non-vanishing contribution to the set of independent current matrix elements
used to generate the fully covariant current. In this paper we investigate the consequences of including an additional
two-body current that has an operator structure motivated by “pair-current” contributions in covariant formulations
of elastic electron-deuteron scattering. In this work the two-body current is constructed to be covariant with respect
to the null-plane kinematic subgroup.

Null-plane quantum mechanical models use Poincaré covariant two-component spinors rather than Lorentz covariant
four-component spinors. Dirac spinors, which are spinor representations of Lorentz boosts, transform between the two-
and four-component spinor representations. In the four-component representation, interactions that have a γ5 vertex
include contributions that couple to the photon through a causal propagator that do not appear in the null-plane
impulse calculation. In the two-component spinor representation this contribution can be included as a two-body
operator in the current. These considerations determine the structure of our model two-body current. The operator
is constructed to satisfy exact null-plane kinematic covariance. It is extended to a fully covariant current in the same
way that the one-body current in the “null-plane impulse” calculations is extended to a fully covariant current.

The resulting model current, when added to the current generated by the empirical nucleon form factors, leads to
a good quantitative description of all of the elastic electron-deuteron scattering observables. Ambiguities related to
the implementation of the angular condition are investigated.

Elastic electron-deuteron scattering has been studied by many authors [9][10][11] [12][6] [7][13] [14][15] [16]
[17][18][19] [20][21][22] using a variety of different methods and assumptions. In all cases the problem is to con-
struct matrix elements of a conserved covariant current operator for a range of space-like momentum transfers, Q.
The calculations discussed in this work are based on quantum mechanical models where the Poincaré group is an
exact symmetry of the underlying theory and the interaction has a null-plane kinematic symmetry. Exactly Poincaré
invariant quantum mechanical models using other choices of kinematic subgroups have also been applied to electron-
deuteron scattering. Different choices of kinematic subgroup have dynamical consequences for the impulse calculations.
Another class of calculations are based on quasipotential treatments. These calculations extract the current matrix
elements from covariant amplitudes without directly using the underlying quantum theory. This is done by general-
izing Mandelstam’s [23] method to extract current matrix elements from Green functions using Bethe-Salpeter wave
functions. “Relativistic impulse approximations” in this formalism depend on the specific quasipotential reduction,
but they generally include a pair-current contribution that is related to the two-body current used in this paper.
Detailed reviews can be found in [20] [24].

The Poincaré invariant dynamical models in this paper are formulated in a representation with a null-plane kine-
matic symmetry [5] [25][26]. Unlike models based on null-plane quantum field theory [27][28][8], where few-degree of
freedom truncations break rotational covariance, the class of quantum mechanical models that we consider are exactly

rotationally invariant. The null-plane treatment of electron scattering has the following advantages:

1. For electron scattering the momentum transfer, Q, is spacelike, so the orientation of the null plane can be chosen
so the +-component, Q+ := Q0 + Q3, of the momentum transfer is zero. When Q+ = 0 all current matrix
elements can be constructed from three independent matrix elements of the + component, I+(0) := I0(0)+I3(0),
of the current:

〈(1, d), P̃′, µ′|I+(0)|(1, d), P̃, µ〉 P̃ := (P+, P1, P2). (1.1)

where we have labeled the deuteron four momenta by their null-plane components, P̃, and the spins are null
plane spins (defined in section 2).

2. There is a three-parameter subgroup of Lorentz boosts that leaves the null plane invariant. Because these
boosts form a subgroup, there are no Wigner rotations associated with null-plane boosts. It follows that matrix
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elements of I+(0) with Q+ = 0 and delta-function normalized initial and final states are independent of frames
related by null-plane boosts:

〈(1, d), P̃′′′, µ′|I+(0)|(1, d), P̃′′, µ〉 = 〈(1, d), P̃′, µ′|I+(0)|(1, d), P̃, µ〉 (1.2)

where P ′′′ = ΛP ′, P ′′ = ΛP and Λ is any null-plane preserving boost. This means that matrix elements of I+(0)
are equal to null-plane Breit-frame matrix elements with the same null-plane spin magnetic quantum numbers.
The null-plane Breit-frame matrix elements are defined to have momentum transfer perpendicular to the unit
vector, (ẑ), that defines the orientation of the null plane. This is consistent with the requirement that Q+ = 0.

3. A consequence of property two is that the one-body current matrix elements of I+(0) with the physical momentum
transfer exactly factor out of the corresponding nuclear current matrix elements:

〈Ψ, P̃ + Q̃|I+
i (0)|Ψ, P̃〉 =

〈p̃i0 + Q̃|I+
i (0)|p̃i0〉

∫

dp̃1 · · · dp̃n〈Ψ, P̃ + Q̃|p̃1 · · · p̃i + Q̃ · · · p̃n〉〈p̃1 · · · p̃i · · · p̃n|Ψ, P̃〉. (1.3)

This follows directly from (1.2) because covariance with respect to null-plane boosts can be used to remove
the dependence of the constituent current matrix elements on the internal momenta without changing the spin
sums or normalization. A proof can be found in [26]. This means that the matrix elements of the one-body
contributions to I+(0) can be expressed as sums of products of null-plane Breit-frame nucleon matrix elements
multiplied by functions of Q2 that only depend on the initial and final wave functions.

With this formalism it is possible to satisfy exact rotational covariance and the impulse contribution to the inde-
pendent current matrix elements involves only experimentally observable on-shell single-nucleon matrix elements.

This paper is organized as follows. In section two we introduce our notation and define the null-plane kinematic
subgroup. In section three we construct a dynamical representation of the Poincaré group with a null-plane kinematic
symmetry that provides a realistic description of the two-nucleon system. In section four we review the experimental
observables for elastic electron-deuteron scattering and their relation to current matrix elements. In section five we
discuss the nucleon currents that are used to construct the one-body part of our current operator. In section six
we use the Wigner-Eckart theorem for the Poincaré group to realize the dynamical constraints on the current, and
we discuss some of the ambiguities in the implementation of the angular condition. In section seven we define our
dynamical two-body current. In section eight we summarize our results. Appendix A summarizes how we relate our
two- body current to the pion-exchange part of the model interaction, and appendix B contains additional details
related to how this is done with the AV18 interaction.

II. NULL-PLANE KINEMATICS

In this section we discuss our notation and the null-plane kinematic subgroup introduced by Dirac [3]. The null
plane is the three-dimensional hyperplane of points tangent to the light cone satisfying the condition

{x|x+ := t+ x · ê3 = 0}. (2.1)

The null-plane components, x̃ = (x+,x⊥) of the four vector xµ are

x± := t± x · ê3 x⊥ = (x · ê1,x · ê2). (2.2)

Four vectors xµ can be represented by 2 × 2 Hermitian matrices in the null-plane components of xµ:

X =

(

x+ x∗⊥
x⊥ x−

)

= xµσµ x⊥ = x1 + ix2 xµ =
1

2
Tr(σµX) (2.3)

where σµ = (I,σ) and σ are the two × two Pauli matrices. Since the determinant of X is minus the square of the
proper time, −x2, if Λ is a complex 2 × 2 matrix with unit determinant then the transformation

X → X ′ = ΛXΛ† (2.4)
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defines a real Lorentz transformation,

Λµ
ν =

1

2
Tr(σµΛσνΛ†). (2.5)

We use the notation Λ to represent both the 2 × 2 and 4 × 4 representation of Lorentz transformations; the implied
representation is easily determined. Points on the null-plane can be represented by triangular matrices of the form

X =

(

0 x∗⊥
x⊥ x−

)

. (2.6)

Poincaré transformations

X → X ′ = ΛXΛ† +A (2.7)

that leave the null plane invariant (i.e. preserve the form of (2.6)) have the form

Λ =

(

α 0
β 1/α

)

A =

(

0 a∗⊥
a⊥ a−

)

= aµσµ, (2.8)

where α 6= 0, β, and a⊥ are complex and a− is real. These transformations form a seven-parameter subgroup of the
Poincaré group that leaves the null plane invariant. This subgroup is called the kinematic subgroup of the null plane.
This subgroup includes the three-parameter subgroup of translations on the null plane, a three-parameter subgroup
of null-plane-preserving boosts as well as rotations about the 3-axis.

The null plane-preserving-boost that transforms a rest 4-momentum (m,0) to a value p is the matrix-valued function
of ṽ = p̃/m := (p+/m, p1/m, p2/m) given by

Λf (p̃/m) := Λf(ṽ) :=

( √
v+ 0

v⊥/
√
v+ 1/

√
v+

)

. (2.9)

Since the reality of α in (2.8) is preserved under matrix multiplication, the null-plane boosts, (2.9), form a subgroup

of the Lorentz group.
The action of a null-plane boost on an arbitrary four momentum vector is determined by using (2.9) in (2.4). The

resulting transformation property of the + and ⊥ components of the four momentum is

p+ → p+′ = v+p+ p⊥ → p′
⊥ = p⊥ + v⊥p

+. (2.10)

Since p− does not appear in (2.10) the three components p̃ := (p+,p⊥) are called a “null-plane vector”. The −
component can be calculated using the mass-shell condition

p− =
m2 + p2

⊥
p+

. (2.11)

The null-plane spin of a particle of mass m is defined [5] [29][26] so that (1) it agrees with ordinary canonical spin in
the particle’s rest frame and (2) is invariant with respect to null-plane boosts, (2.9).

The null-plane boost (2.9) differs from the more standard rotationless boost, which has the 2 × 2 matrix form

Λc(k/m) = e
1
2
ρ·σ , (2.12)

where ρ is the rapidity

ρ = k̂|ρ| cosh(|ρ|) =
√

k2 +m2/m sinh(|ρ|) = k/m. (2.13)

The null-plane representation of the single-nucleon Hilbert space, H1, is the space of square integrable functions of
the null-plane vector components of the particle’s four momentum and the 3-component of its null-plane spin:

ψ(p̃, µ) = 〈(j,m), p̃, µ|ψ〉
∫ ∞

0

dp+

∫

R2

dp⊥

j
∑

µ=−j

|ψ(p̃, µ)|2 <∞. (2.14)

The Poincaré group acts irreducibly on single-nucleon states

〈(j,m)p̃, µ|U1(Λ, A)|ψ〉 =
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∫ ∞

0

dp+′
∫

R2

dp′
⊥

j
∑

µ′=−j

Dm,j
p̃,µ;p̃′,µ′ [Λ, A]〈(j,m), p̃′, µ′|ψ〉, (2.15)

where the Poincaré group Wigner-D function in the null-plane irreducible basis [26] is

Dm,j
p̃,µ;p̃′,µ′ [Λ, A] := 〈(j,m), p̃, µ|U(Λ, A)|(j,m), p̃′, µ′〉 =

δ(p̃ − Λ̃(p′))

√

p+

p+′D
j
µµ′ [Rfw(Λ, p̃′)]eip·a, (2.16)

Dj
µµ′ [R] is the ordinary SU(2) Wigner D-function and

Rfw(Λ, p̃′) := Λ−1
f (p̃/m)ΛΛf(p̃′/m) (2.17)

is a null-plane Wigner rotation. It is the identity matrix when Λ is a null-plane boost.
Our model Hilbert space for the two-nucleon system is the tensor product of two single-nucleon Hilbert spaces.

The kinematic representation of the Poincaré group on the two-nucleon Hilbert space is the tensor product of two
single-nucleon representations of the Poincaré group:

H = H1 ⊗H1 U0(Λ, A) := U1(Λ, A) ⊗ U1(Λ, A). (2.18)

The tensor product of two one-body irreducible representations of the Poincaré group is reducible. It can be decom-
posed into an orthogonal linear superposition of irreducible representations using the Poincaré group Clebsch-Gordan
coefficients in the null-plane basis,

Ψ((j1,m1), p̃1, µ1, (j2,m2), p̃2, µ2) =

∑

∫

〈(j1,m1), p̃1, µ1; (j2,m2), p̃2, µ2|(j, k), l, s, P̃, µ〉dP̃k2dkΨ((j,m), l, s, P̃, µ), (2.19)

where the Poincaré group Clebsch-Gordan coefficient [26] in the null-plane basis is

〈(j1,m1), p̃1, µ1; (j2,m2), p̃2, µ2|(j, k), l, s, P̃, µ〉 =

δ(P̃ − p̃1 − p̃2)
δ(k − k(p̃1, p̃2))

k2

∣

∣

∣

∣

∣

∂(P̃,k)

∂(p̃1, p̃2)

∣

∣

∣

∣

∣

1/2

×

∑

Ylm(k̂(p̃1, p̃2))D
1/2
µ1,µ′

1

[Rfc(k/m1)]D
1/2
µ2,µ′

2

[Rfc(−k/m2)]×

〈1
2
, µ′

1,
1

2
, µ′

2|s, µs〉〈l,m, s, µs|j, µ〉 (2.20)

with

∣

∣

∣

∣

∣

∂(P̃,k)

∂(p̃1, p̃2)

∣

∣

∣

∣

∣

1/2

=

√

(p+
1 + p+

2 )ω1(k)ω2(k)

(ω1(k) + ω2(k))p+
1 p

+
2

, (2.21)

Rfc(k/m1) := Λ−1
f (k/m1)Λc(k/m1) Rfc(−k/m2) := Λ−1

f (−k/m2)Λc(−k/m2) (2.22)

and (ω(k),k) = k(p1, p2) = Λ−1
f (P̃/M0)p1. The rotation Rfc(k/m), called a Melosh rotation, [30][26] transforms the

null-plane spins so they rotate under a single representation of SU(2) which allows them to be coupled using ordinary
SU(2) Clebsch-Gordan coefficients. The absence of Wigner rotations in (2.20) is a consequence of the null-plane
boosts forming a subgroup. The quantum numbers l and s are degeneracy parameters that label different irreducible
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representations with the same mass and spin that appear in the tensor product. In (2.20) the two-body invariant
mass M0, which has continuous spectrum, is replaced by k2 which is related to M0 by

M0 = 2
√

k2 +m2. (2.23)

In this basis two-nucleon wave functions have the form

ψ((j, k), l, sP̃, µ) = 〈(j, k), l, sP̃, µ|ψ〉
∫ ∞

0

dP+

∫

R2

dP⊥

∫ ∞

0

k2dk

j
∑

µ=−j

1
∑

s=0

|j+s|
∑

l=|j−s|
|ψ((j, k), l, s, P̃, µ)|2 <∞

(2.24)
and U0(Λ, A) acts irreducibly on these states:

〈(j, k), l, s, P̃, µ|U0(Λ, A)|ψ〉 =

∫ ∞

0

dP+′
∫

R2

dP′
⊥

j
∑

µ′=−j

DM0(k),j

P̃,µ;P̃′,µ′
[Λ, A]〈(j, k), l, s, P̃′, µ′|ψ〉 =

j
∑

µ′=−j

eiP ·a
√

P+′

P+
Dj

µµ′ [Rfw(Λ, P̃′/M0)]〈(j, k), l, s, P̃′, µ′|ψ〉 (2.25)

where P = ΛP ′. This basis is used in the formulation of our dynamical model in the next section.
In the rest of this paper we use the following notation for covariant, canonical, and null-plane basis vectors for

mass-m spin-j irreducible representation spaces which are related by

|(j,m), p, µ〉 = |(j,m),p, µ〉
√

ωm(p)

m
=

j
∑

ν=−j

|(j,m), p̃, ν〉
√

p+

m
Dj

νµ[Rfc(k/m)]. (2.26)

III. DYNAMICS

Dynamical models of the two-nucleon system in Poincaré invariant quantum mechanics are defined by a dynamical
unitary representation of the Poincaré group acting on the two-nucleon Hilbert space. The mass Casimir operator for
this representation can be defined by adding a realistic nucleon-nucleon interaction vnn [31][26] to the square of the
non-interacting two-nucleon mass operator as follows:

M2 = M2
0 + 4mvnn, (3.1)

where m is the nucleon mass and for a dynamical model with a null-plane kinematic symmetry and vnn has the form

〈(j′, k′), l′, s′, P̃′, µ′|vnn|(j, k), l, s, P̃, µ〉 = δ(P̃′ − P̃)δj′jδµ′µ〈k′, l′, s′‖vj‖k, l, s〉 (3.2)

in the non-interacting irreducible basis (2.20). The interaction vnn is restricted so M2 is a positive operator and

designed so M2 commutes with the non-interacting operators j2 ,P̃ and jz and is independent of the eigenvalues of
P̃ and jz .

Simultaneous eigenstates of M2, j2 ,P̃, jz in the non-interacting irreducible basis have the form

〈(j′, k′), l′, s′, P̃′, µ′|(j, λ), P̃, µ〉 = δ(P̃′ − P̃)δj′jδµ′µφλ,j(k, l, s) (3.3)

where the wave function φλ,j(k, l, s) is a solution of the eigenvalue equation

(λ2 − 4k2 − 4m2)φλ,j(k, l, s) =

1
∑

s′=0

|j+s′|
∑

l′=|j−s′|

∫ ∞

0

4m〈k, l, s‖vj
nn‖k′, l′, s′〉k′2dk′φλ,j(k

′, l′, s′). (3.4)

The eigenfunctions, φλ,j(k, s), of this mass operator are also solutions to the non-relativistic Schrödinger equation
with interaction vnn, which can be seen by dividing both sides of (3.4) by 4m. The deuteron is an even-parity bound
state with j = s = 1 and parity limits the l′ sum in (3.4) to l′ ∈ {0, 2}.
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If {M2, j, P̃, µ} have the same interpretation as {M2
0 , j, P̃, µ}, then it follows from (3.2) that the eigenstates (3.3)

transform irreducibly with respect to a dynamical representation of the Poincaré group defined by replacing the

eigenvalues of M0 in DM0,j

P̃,µ;P̃′,µ′
[Λ, A] by the eigenvalues λ of M :

〈(j′, k′), l′, s′P̃′, µ′|U(Λ, A)|(j, λ), P̃, µ〉 =

∫ j
∑

µ′′=−j

〈(j′, k′), l′, s′P̃′, µ′|(j, λ), P̃′′, µ′′〉dP̃′′〈(j, λ), P̃′′, µ′′|U(Λ, A)|(j, λ), P̃, µ〉 =

φj,λ(k′, l′, s′)Dλ,j′

P̃′,µ′;P̃,µ
[Λ, A]. (3.5)

Since the eigenstates (3.3) are complete, U(Λ, A), defined by (3.5), is a dynamical unitary representation of the
Poincaré group on the two-nucleon Hilbert space. When (Λ, A) is an element of the kinematic subgroup of the null

plane, the Poincaré Wigner D-function in the null-plane basis, Dλ,j

P̃′,µ′;P̃,µ
[Λ, A], is independent of the mass eigen-

value, λ, and is thus identical to the Poincaré Wigner D-function for the non-interacting irreducible representation.
This shows that the null-plane kinematic subgroup defined by (2.8) is the kinematic subgroup of the dynamical
representation (3.5).

The rotational covariance in (3.5) is exact, but because Dλ,j

P̃′,µ′;P̃,µ
[Λ, A] depends explicitly on the mass eigenvalue

λ when Λ = R is a rotation, the rotations are dynamical transformations.
The eigenfunctions of the interacting mass operator, M , are identical functions of k, l, s to the eigenfunctions of the

non-relativistic Schrödinger equation with interaction vnn. The identity

Ω±(Hnr, H0nr) = Ω±(Hr, H0r), (3.6)

where Ω±(H,H0) are the scattering wave operators for the non-relativistic and relativistic system respectively, follows
from the elementary calculation:

Ω±(Hr, H0r) = lim
t→±∞

ei(P+

0
+P−)t/2e−i(P+

0
+P−

0
)t/2 = lim

t′→±∞
eiP−t′e−iP−

0
t′ =

lim
t′→±∞

ei(M2+P2
0⊥)t′/P+

0 e−i(M2
0 +P2

0⊥)t′/P+

0 = lim
t′′→±∞

eiM2t′′e−iM2
0 t′′ =

lim
t′′→±∞

ei(k2/m+vnn)4mt′′+i4m2t′′e−i(k2/m)4mt′′−i4m2t′′ =

lim
t′′′→±∞

ei(P2/4m+k2/m+vnn)t′′′e−i(P2/4m+k2/m)t′′′ =

Ω±(Hnr, H0nr) (3.7)

where the limits are strong or absolute abelian [32] limits and the times in (3.7) were reparameterized as follows

t′′′ = 4mt′′ = 4mt′/P+
0 = 2mt/P+

0 . (3.8)

This proof uses kinematic symmetries that follow from (3.2) and the spectral condition, P+
0 > 0. It follows from eq.

(3.7) that relativistic and non-relativistic scattering matrices are identical functions of k:

S(Hnr, H0nr) = Ω†
+(Hnr, H0nr)Ω−(Hnr, H0nr) = Ω†

+(Hr, H0r)Ω−(Hr, H0r) = S(Hr, H0r). (3.9)

Since realistic nn interactions [2][1] are constructed by correctly transforming experimental differential cross-section
data to the center-of-momentum frame and then fitting the solution of the scattering problem to the transformed
data, these interactions can be used in (3.1) without modification. There is a small binding energy correction of
about 1 part in 2000, which we ignore. The difference in the relativistic and non-relativistic wave function is due to
the Poincaré-group Clebsch-Gordan coefficients which are used to transform the wave function to the tensor product
representation which is used in the computation of the current matrix elements.

We use this method to construct the deuteron eigenstates and the representation of the Poincaré group that we use
to evaluate the deuteron current matrix elements.
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IV. OBSERVABLES

The differential cross section for elastic electron-deuteron scattering in the one-photon-exchange approximation,

dσ =
(2π)4e

√

(pe · pd)2 −m2
em

2
d

|〈(je,me), p
′
e, µ

′
e|Ieµ(0)(je,me), |pe, µe〉

(2π)3

q2
×

〈(1, d), p′d, µ′
d|Iµ

d (0)|(1, d), pd, µd〉|2δ4(p′d − pd + p′e − pe)
dp′

e

ωe(p′
e)

dp′
d

ωd(p′
d)
, (4.1)

is a quadratic function of the deuteron current matrix elements, 〈(1, d)p′d, µ′
d|I

µ
d (0)|(1, d), pd, µd〉. Covariance, current

conservation, and discrete symmetries imply that only three of the deuteron current matrix elements are linearly
independent [33], which means that any deuteron elastic-scattering observable can be expressed in terms of three
independent quantities for a given momentum transfer.

Standard observables are the structure functions A(Q2) and B(Q2) and the tensor polarization T20(Q
2, θ) at θlab =

70o. The quantities A(Q2), B(Q2) are determined from the unpolarized laboratory frame differential cross section
using a Rosenbluth [34] separation:

dσ

dΩ
(Q2, θ) =

α2 cos2(θ/2)

4E2
i sin4(θ/2)

Ef

Ei
[A(Q2) +B(Q2) tan2(θ/2)] (4.2)

while T20(Q
2, θ) is extracted from the difference in the cross sections for target deuterons having canonical spin

polarizations µd = 1 and µd = 0 at a fixed laboratory scattering angle [35]:

T20(Q
2, θ) =

√
2

dσ
dΩ1

(Q2, θ) − dσ
dΩ0

(Q2, θ)
dσ
dΩ(Q2, θ)

. (4.3)

These experimental observables are related to the deuteron form factors [9] [36] [37] [38] G0(Q
2), G1(Q

2), and
G2(Q

2) by:

A(Q2) = G2
0(Q

2) +
2

3
ηG2

1(Q
2) +G2

2(Q
2) (4.4)

B(Q2) =
4

3
η(1 + η)G2

1(Q
2) (4.5)

T20(Q
2, θ) = −G

2
2(Q

2) +
√

8G0(Q
2)G2(Q

2) + 1
3ηG

2
1(Q

2)[1 + 2(1 + η) tan2(θ/2)]√
2[A(Q2) +B(Q2) tan2(θ/2)]

. (4.6)

where η = Q2

4M2
d

and Md is the deuteron mass.

The form factors are Poincaré invariant quantities that are linearly related to current matrix elements. They are
traditionally expressed in terms of canonical spin current matrix elements in the standard Breit frame, with the
momentum transfer chosen parallel to the axis of spin quantization:

G0(Q
2) =

1

3
(〈(1, d), P ′

b, 0|I0(0)|(1, d), Pb, 0〉 + 2〈(1, d), P ′
b, 1|I0(0)|(1, d),−Pb, 1〉) (4.7)

G1(Q
2) = −

√

2

η
〈(1, d), P ′

b, 1|I1(0)|(1, d), Pb, 0〉 (4.8)

G2(Q
2) =

√
2

3
〈(1, d), P ′

b, 0|I0(0)| − (1, d), Pb, 0〉 − 〈(1, d), P ′
b, 1|I0(0)|(1, d), Pb, 1〉) (4.9)

where P ′
b = (Md

√
1 + η, 0, 0, Q

2 ) and Pb = (Md

√
1 + η, 0, 0,−Q

2 ) and the normalization of G2(Q
2) follows the conven-

tions used in [38].
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The 0-momentum transfer limit of these form factors are related to the charge, magnetic moment, and quadrupole
moments [9]

lim
Q2→0

G0(Q
2) = 1 lim

Q2→0
G1(Q

2) =
Md

mn
µd lim

Q2→0

G2(Q
2)

Q2
=

1

2
√

3
Qd. (4.10)

Current covariance, current conservation, and discrete symmetries can be used to express the matrix elements in
(4.7-4.9) in terms of matrix elements of the plus component of the current in the null-plane Breit frame, where the
momentum transfer is in x direction and the spins are null-plane spins.

The canonical spin basis vectors in (4.7-4.9) are related to the null-plane basis vectors defined in (2.14) by (2.26)
which involves a change in normalization and a Melosh rotation (2.22) of the spins.

V. NUCLEON CURRENTS

The impulse current is the sum of single-nucleon current operators for the proton and neutron. For spin 1/2 systems
that are eigenstates of parity there are two linearly independent current matrix elements[33]. They are related to the
Dirac nucleon form factors F1(Q

2) and F2(Q
2) by

〈(jn,mn), p′, ν′|Iµ(0)|(jn,mn)p, ν〉 = ū(p′)Γµu(p) (5.1)

where

Γµ = γµF1(Q
2) − i

2m
σµνQνF2(Q

2) (5.2)

and u(p) is a canonical spin Dirac spinor.
For spacelike momentum transfers with Q+ = 0 these form factors can be expressed in terms of the independent

null-plane matrix elements

〈1
2
|I+(0)|1

2
〉 := 〈(jn,mn), p̃′,

1

2
|I+(0)|(jn,mn), p̃,

1

2
〉 = F1(Q

2) (5.3)

〈1
2
|I+(0)| − 1

2
〉 := 〈(jn,mn), p̃′,

1

2
|I+(0)|(jn,mn), p̃,−1

2
〉 = −

√
τF2(Q

2) (5.4)

where τ := Q2

4m2 .

The Dirac nucleon form factors F1(Q
2) and F2(Q

2) are related to the Sachs form factors by [39]

F1(Q
2) =

Ge(Q
2) + τGm(Q2)

1 + τ
, (5.5)

F2(Q
2) =

Gm(Q2) −Ge(Q
2)

1 + τ
. (5.6)

We consider recent parameterizations due to Bijker and Iachello [40]; Bradford, Bodek, Budd, and Arrington [41];
Budd, Bodek, and Arrington [42]; Kelly [43] and Lomon [44][45] [46]. These parameterizations all determine the
proton-electric form factors using the polarization experiments [47]. The input to our calculations is the isoscalar
form factors, which are the sum of the proton and neutron form factors.

VI. DEUTERON CURRENTS: DYNAMICAL CONSTRAINTS

The hadronic current density operator, Iµ(x), transforms as a four-vector density under the dynamical representa-
tion (3.5) of the Poincaré group,

U(Λ, A)Iµ(x)U †(Λ, A) = (Λ−1)µ
νI

ν(Λx+ a). (6.1)

The current operator must also satisfy current conservation

gµν [Pµ, Iν(0)]− = 0, (6.2)
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in addition to symmetries with respect to space reflections and time reversal. Here gµν is the Minkowski metric with
signature (−+ ++). Current covariance and current conservation are dynamical constraints on the current operator.

Using the identity

〈(1, d), P̃′, ν′|Iµ(x)|(1, d), P̃, ν〉 =

〈(1, d), P̃′, ν′|U †(Λ, A)U(Λ, A)Iµ(x)U †(Λ, A)U(Λ, A)|(1, d), P̃, ν〉 (6.3)

with current covariance (6.1) and the transformation properties (3.5) of the deuteron eigenstates gives linear equations
for each value of Λ and A that relate the different matrix elements: Current conservation leads to the additional linear
constraints on the current matrix elements:

gαµ(P
′α − Pα)〈(1, d), P̃′, ν′|Iµ(0)|(1, d), P̃, ν〉 = 0. (6.4)

It is well-known that these constraints, when combined with space-reflection and time-reversal symmetries, [33] can
be used to express any deuteron current matrix element as a linear combination of three independent current matrix
elements. This is the Wigner-Eckart theorem for the Poincaré group applied to a conserved current. The invariant
form factors or independent current matrix elements play the role of invariant matrix elements in the Wigner-Eckart
theorem.

If the coordinate axes are chosen so the + component of the momentum transfer is zero, which can always be
done for electron scattering, then it is possible to choose the independent matrix elements as matrix elements of the
“+” component of the current density, I+(0) [7]. Matrix elements of I+(0) in an irreducible null-plane basis with
normalization (2.14) are invariant with respect to the group of null-plane boosts.

It follows from this invariance that the matrix elements of I+(0) only depend on the square of the momentum
transfer and the individual null-plane spin components. There are 3 × 3 = 9 combinations of initial and final spins.
Covariance with respect to the null-plane kinematic subgroup relates all of them to four kinematically independent
current matrix elements. The one and two-body parts of the current operator transform independently under the
action of the kinematic subgroup. The kinematic subgroup does not include the full rotation group. Rotational
covariance [5][6][7] gives one additional constraint among the kinematically-covariant matrix elements, called the
“angular condition”, reducing the number of independent matrix to three. It relates matrix elements of the one and
two-body parts of the current operator.

Because the constraints (6.1) and (6.2) are dynamical, it is a non-trivial problem to construct fully-covariant
current operators. It is much easier to construct a set of deuteron matrix elements of a conserved covariant current
operator. This can be done by first computing a set of three independent current matrix elements. The remaining
matrix elements are generated from these three matrix elements using the constraints implied by (6.1) and (6.4). It is
possible to do better by computing the three independent matrix elements using a model current that is covariant with
respect to the null-plane kinematic subgroup. Operators that are covariant with respect to the kinematic subgroup
are easily constructed. In this case the kinematically-covariant current and fully-covariant current will agree not only
on the three independent currrent matrix elements, but also on any matrix elements generated from the independent
matrix elements by the null-plane kinematic subgroup. The angular condition is needed to obtain all of the current
matrix elements. It is a dynamical constraint that generates the fourth kinematically independent matrix element
from the three independent matrix elements in a manner consistent with rotational covariance. The remaining current
matrix elements can be generated from this fourth matrix element using only kinematic covariance. This gives all
deuteron matrix elements of a conserved covariant current operator.

While it is straight forward to construct kinematically covariant current operators, there are many fully covariant
current operators that agree with a given kinematically covariant current operator on different subsets of matrix
elements. This leads to ambiguities when a kinematically covariant current is used to generate matrix elements
of a fully covariant current. Model assumption are needed to eliminate these ambiguities. Specifically, a fully
covariant current operator can be chosen to agree with the kinematically covaraint current operator on any set
of three independent current matrix elements and all matrix elements generated from them using kinematic Poincaré
transformations. Because kinematic covariance cannot generate all of the current matrix elements, the resulting
covariant current will depend on the choice of independent current matrix elements used to generate the full current,
which is the model assumption.

“Null-plane impulse approximations” choose the kinematically-covariant current to be the sum of the single-nucleon
currents. For the deuteron the elastic scattering observables computed in the null-plane impulse approximation are
not very sensitive to the choice of independent current matrix elements used to generate the full current.

In this paper we use the same method to compute matrix elements of a dynamical two-body current operator.
A kinematically covariant model two-body current is used to compute independent current matrix elements. The
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remaining current matrix elements are generated using (6.1) and (6.4). As in the case of the null-plane impulse
approximation, a complete specification of a fully-covariant model current requires both a kinematically covariant
current and a choice of kinematically independent current matrix elements.

If the deuteron eigenstates |(1, d), P̃, µ〉 are given a delta-function normalization, then the matrix elements

I+
µ,ν := 〈(1, d), P̃′, µ|I+(0)|(1, d), P̃, ν〉 (6.5)

with Q+ = P+′ − P+ = 0 and null-plane spins are invariant with respect to null-plane boosts. The four kinemati-
cally independent matrix elements of I+(0) can be taken as I+

1,1, I
+
1,0, I

+
0,0 and I+

1,−1. They are related by rotational
covariance. The result is that only three linear combinations of these matrix elements can be taken as independent.

The three independent linear combinations of the current matrix elements used to generate the fully covariant
current in ref. [7] were:

I+
1,1 + I+

0,0, I
+
1,0, I

+
1,−1. (6.6)

We refer to this choice of independent current matrix elements as choice I. These independent matrix elements can
be distinguished by the number of spin flips between the initial and final states.

Rotational covariance, or equivalently the angular condition, relates the difference I+
1,1− I+

0,0 to the matrix elements

(6.6):

I+
1,1 − I+

0,0 = − 1

1 + η
[η(I+

1,1 + I+
0,0) − 2

√

2ηI+
1,0 + I+

1,−1] (6.7)

where

η := Q2/4M2
d . (6.8)

This relation is dynamical because η involves the deuteron mass eigenvalue, Md.
Direct computation of the difference I+

1,1−I+
0,0 using the kinematically covariant current operator and the difference

determined by the constraint (6.7) of current covariance

∆− := I+
1,1 − I+

0,0 +
1

1 + η
[η(I+

1,1 + I+
0,0) − 2

√

2ηI+
1,0 + I+

1,−1] (6.9)

gives a measure of the size of the dynamical contribution to the current operator that is generated by the rotational
covariance constraint. If this difference is small compared to the size of independent matrix elements, then there will
not be too much sensitivity to the choice of independent matrix elements; on the other hand, if this difference is large,
there will be an increased sensitivity to the choice of independent current matrix elements.

Both impulse or impulse plus an exchange current can be used to compute the independent current matrix elements.
Our calculations, shown in fig. 1, indicate that ∆− is larger when our model exchange current contributions are added
to the independent matrix elements. This means that the presence of the exchange current enhances the sensitivity
of the results to the choice of independent matrix elements. Because of this increased sensitivity, we investigate
the impact of using different choices of independent linear combinations of current matrix elements to generate fully
covariant current matrix elements on the sensitivity of the elastic electron-deuteron scattering observables.

To motivate the other choices that we use note that any matrix element of a conserved covariant current in a set
of deuteron eigenstates can be expressed in terms of a rank 3 covariant current tensor [36]. The deuteron null-plane
spin operator can be expressed in terms of the Poincaré group generators as

(0, jf ) := − 1

2Md
Λ−1

f (P̃/Md)
µ

νǫ
µ

αβγP
αJβγ (6.10)

where Pα is the deuteron four momentum operator, Jβγ is the deuteron angular momentum tensor, and Λ−1
f (P̃/Md)

µ
ν

is a 4×4 Lorentz-transform-valued matrix of the operator Pµ [25][26]. The quantity (0, jf ) is not a four vector because

Λ−1
f (P̃/Md)

µ
ν is a matrix of operators. If the operator Λf (P̃/Md)

µ
ν is applied to both sides of (6.10) the result is a

four vector, which up to the factor Md in the denominator, is the Pauli-Lubanski vector for the deuteron.
It follows from (6.10) that it is possible to replace the deuteron spins by four vectors by multiplying the current

matrix element by the inverse of the boost used in (6.10); the resulting vector is orthogonal to the four momentum. If
this boost is applied to the initial and final deuteron states in a current matrix element then the result is a rank-three
tensor density, T µ

ρσ(P ′, P ) satisfying [36][12]

P ρ′T µ
ρσ(P ′, P ) = T µ

ρσ(P ′, P )P σ = (P ′
µ − Pµ)T µ

ρσ(P ′, P ) = 0. (6.11)
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Formally this tensor density is related to the null-plane current matrix elements by

T µ
ρσ(P ′, P ) := Λf (P̃′/Md)

i
ρO

∗
ν′i

√
P+′〈d, P̃′, ν′|Iµ(0)|d, P̃, ν〉

√
P+OνjΛf(P̃/Md)

j
σ

(6.12)

where Oνj is the unitary matrix

Oνj =





− 1√
2

− i√
2

0

0 0 1
1√
2

− i√
2

0



 (6.13)

that converts Cartesian components of vectors to spherical components and the i, j sums go from 1 to 3. The factors√
P+ give |P̃, ν〉

√
P+ a covariant normalization.

The general form of this Lorentz covariant tensor density T µ
ρσ(P ′, P ) can be parameterized by the available four

vectors and three invariant form factors F1(Q
2), F2(Q

2) and ,F3(Q
2):

T µ
ρσ(P ′, P ) =

1

2
(P ′ + P )µE(P ′)ρα[gαβF1(Q

2) +
QαQβ

M2
d

F2(Q
2)]E(P )βσ

−1

2
E(P ′)ρα[Qαgµβ − gµαQβ]F3(Q

2)E(P )βσ (6.14)

where

E(P )αβ = gαβ − PαPβ

P 2
(6.15)

is the covariant projector on the subspace orthogonal to P . The projectors are not needed when this tensor is
contracted with vectors orthogonal to the final or initial four-momentum.

We use this covariant representation of the current matrix elements to identify preferred choices of independent
current matrix elements. Independent matrix elements can be constructed by contracting this current tensor with
different sets of “polarization 4-vectors”. These are 4-momentum dependent vectors vν(P ) that are orthogonal Pµ.
The contraction has the form

v′af (P ′)ρT µ
ρσ(P ′, P )vbi(P )σ =

1

2
(P ′ + P )µ[v′af (P ′) · vbi(P )F1(Q

2) +
(v′af (P ′) ·Q)(Q · vbi(P ))

M2
d

F2(Q
2)]

−1

2
[(v′af (P ′) ·Q)vbi(P )µ − vaf (P ′)µ(Q · vbi(P ))]F3(Q

2). (6.16)

In this case the three invariant scalar products

v′af (P ′) · vbi(P ) v′af (P ′) ·Q Q · vbi(P ) (6.17)

can be used in (6.17) and (6.12) to relate the form factors to the current matrix elements. Three pairs of polarization
vectors give three equations that can be solved to express F1(Q

2), F2(Q
2) and F3(Q

2) in terms of the current matrix
elements. Given the form factors the rest of the current matrix elements are determined by the current tensor.

The form factors F1(Q
2), F2(Q

2), F3(Q
2) defined by (6.12) and (6.14) are related to the form factors G1(Q

2),
G2(Q

2), G3(Q
2) [38] which are defined in terms of canonical-spin Breit-frame matrix elements with momentum transfer

in the 3 direction:

((1 + 2η)F1 + 4η(1 − η)F2 + 2ηF3) =c 〈(1, d), Q
2
, 0|I0(0)|(1, d),−Q

2
, 0〉c = G0(Q

2) +
√

2G2(Q
2) (6.18)

F1(Q
2) =c 〈(1, d),

Q

2
, 1|I0(0)|(1, d),−Q

2
, 1〉c = G0(Q

2) − 1√
2
G2(Q

2) (6.19)
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F3(Q
2) =

√

2

η c

〈(1, d), Q
2
,−1|I1(0)|(1, d),−Q

2
, 0〉c = G1(Q

2). (6.20)

The enhanced sensitivity to the choice of linearly independent matrix elements when the exchange current is
included, as shown in fig. 1, suggests that in addition to the choice (6.6) of linearly independent matrix elements used
in [7], other choices should be considered.

Frankrurt, Frederico, and Strikman [48] defined independent current matrix elements using polarization vectors
(6.16) constructed from the last three columns v1c(Pb), v2c(Pb), v3c(Pb), of the canonical boost in the null-plane Breit
frame

(v1c(Pb), v2c(Pb)v3c(Pb)) =







−√
η 0 0√

1 + η 0 0
0 1 0
0 0 1






. (6.21)

These are automatically orthogonal to the momentum. Three independent current matrix elements are extracted from
the contractions v1c(P

′
b)

ρT+
ρσ(P ′

b, Pb)v1c(Pb)
σ, v2c(P

′
b)

ρT+
ρσ(P ′

b, Pb)v2c(Pb)
σ and v3c(P

′
b)

ρT+
ρσ(P ′

b, Pb)v1c(Pb)
σ. These

can be computed consistently using a kinematically covariant model current in all frames related to the null-plane
Breit frame by null-plane kinematic transformations. Their preference for this choice is to avoid using the 3′3 matrix
element, which is maximally suppressed in the infinite momentum frame. In [5] operators are classified as good, bad
or terrible according to their scaling properties with respect to Lorentz boosts to the infinite momentum frame. The
3′3 matrix element is terrible in this classification. We call this choice of independent current matrix elements choice
II.

We are indebted to Fritz Coester [49] for suggesting a third choice of independent current matrix elements that
emphasizes the kinematic symmetries of the null plane. This choice uses columns of the null-plane boost as polarization
vectors.

(v1f (P ), v2f (P ), v3f (P )) =







P x/Md P y/Md P 0/Md −Md/P
+

1 0 P x/Md

0 1 P y/Md

−P x/Md −P y/Md P z/Md +Md/P
+






(6.22)

The independent combinations are v1f (P ′)ρT+
ρσ(P ′, P )v1f (P )σ, v2f (P ′)ρT+

ρσ(P ′, P )v2f (P )σ, and

v3c(P
′)ρT+

ρσ(P ′, P )v1c(P )σ. When the first two terms are evaluated in the null-plane Breit frame the scalar
products (6.17) that relate the contractions to the form factors are mass independent, which is preserved under
kinematic transformations. This means that the boost parameters that appear in the calculations of the one-body
current matrix elements are independent of the constituent masses. To construct a third independent linear
combination that exploits this mass independence would require using matrix elements of I2(0). Rather than using
I2(0), F3 is extracted using polarization vectors that are mutually orthogonal, with one of them also orthogonal to
Q, which gives matrix elements that are independent of F1 and F2. This results in the same expression for F3 = G1

used in the other two schemes. We call this choice of independent current matrix elements choice III.
These three choices lead to expressions for deuteron form factors based on three different covariant current operators

generated using three different choices of independent linear combinations of matrix elements of a kinematically
covariant model current I+(0). These different current operators lead to distinct expressions for the deuteron form
factors in terms of the null-plane current matrix elements of I+(0). The results, expressed in terms of the standard
deuteron form factors and null-plane Breit frame matrix elements of the + component of the current are:
Choice I:

(1 + η)G0(Q
2) = (

1

2
− η

3
)(I11 + I00) +

5
√

2η

3
I10 + (

2η

3
− 1

6
)I1−1 (6.23)

(1 + η)G1(Q
2) = I11 + I00 − I1−1 − (1 − η)

√

2

η
I10 (6.24)

(1 + η)G2(Q
2) = −

√
2η

3
(I11 + I00) +

4
√
η

3
I10 −

√
2

3
(2 + η)I1−1 (6.25)

Choice II (G0(Q
2) of choice I replaced by):
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(1 + η)G0(Q
2) = (

2η

3
+ 1)I+

1,1 −
η

3
I+
00 +

2
√

2η

3
I+
1,0 + (

2η + 1

3
)I+

1,−1] (6.26)

Choice III (G0(Q
2) and G2(Q

2) of choice I replaced by):

G0(Q
2) = (1 +

2η

3
)I+

11 +
1

3
I+
1,−1 −

2η

3
G1(Q

2) (6.27)

G2(Q
2) =

2
√

2

3
(ηI+

1,1 − I+
1,−1 − ηG1(Q

2)) (6.28)

Since B(Q2) only depends on G1(Q
2) which uses the same linear combination of current matrix elements for all three

choices, the computation of B(Q2), is unchanged. These choices lead to a B(Q2) that is in good agreement with
experimental data.

The different linear combinations of null-plane current matrix elements used in choices I , II and III have a non-trivial
effect on the scattering observables A(Q2) and T20(Q

2, θ). Selecting one of these choices is a model assumption.

VII. DEUTERON CURRENTS: DYNAMICAL EXCHANGE CURRENTS

The realistic interactions [1][2] used to construct the mass operator (3.1) include a one-pion-exchange contribution
plus a short-range contribution that is designed so the two-body cross sections fit experiment.

“Required” two-body currents, discussed in the previous section, are needed to satisfy the constraints of current
covariance and current conservation. These constraints are satisfied by directly computing a set of linearly-independent
matrix elements and then using the constraints to determine the remaining current matrix elements. Even if the
independent current matrix elements are computed using the one-body impulse current, the matrix elements generated
by the constraints will have two-body contributions. The interaction dependence arises because the covariance and
current conservation constraints involve the deuteron mass, which is the eigenvalue of the dynamical two-body mass
operator (3.4).

In addition to the two-body currents directly generated by covariance and current conservation, realistic interactions
contain terms that involve the exchange of charged mesons, leading to the exchange of the nucleon charges, and the
possibility of two-body currents associated with these exchanges. These currents give additional contributions to the
linearly independent matrix elements of I+(0) that are needed to compute electron-scattering observables in null-plane
quantum mechanics. The form of the dynamical exchange current contribution to I+(0) is model dependent, but we
assume that the most important contribution is motivated by one-pion exchange physics.

To motivate the structure of our two-body current consider the pseudoscalar pion-nucleon vertex

L(x) = −igπ : Ψ̄(x)γ5Ψ(x)τ · φ(x) : . (7.1)

When this vertex is coupled to a photon-nucleon vertex with a causal propagator, the propagator connecting these
two vertices can be decomposed into a sum of two terms involving the covariant spinor projectors Λ+(p) = u(p)ū(p)
and Λ−(−p) = −v(−p)v̄(−p), where u(p) and v(p) are Dirac spinors. This results in a sum of two terms with the
following spin structures

ū(p)Γµu(p′)ū(p′)γ5u(p′′) (7.2)

−ū(p)Γµv(−p′)v̄(−p′)γ5u(p′′). (7.3)

In this form these operator structures are expressed as 2 × 2 matrices in the nucleon spins. In Poincaré invariant
quantum models the first term is included in the one-body part of the current. The second term, which leads to the
“pair current” in covariant formulations, is not included in the one-body part of the current in Poincaré invariant
quantum models. It can be included as a contribution to the two-body part of the current. To do this it is useful to
convert the v-spinors to u spinors using

v(−p)v̄(−p) = γ5βu(p)ū(p)βγ5 (7.4)
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which replaces the operator structure in the second term by

ū(p)Γµβγ5u(p
′)ū(p′)βu(p′′). (7.5)

The factors β appearing in this expression are spinor space-reflection operators. Since space reflections do not leave
the null plane invariant, they become dynamical operators in null-plane quantum mechanics.

The canonical Dirac spinors can be converted to null-plane spinors by multiplying the spins by Melosh rotations,
uf (p) = u(p)D1/2[Rcf (p)]. These rotations cancel in the combinations that appear in the projectors Λ±(p), so the
projectors can be expressed directly in terms of null-plane Dirac spinors.

To construct a kinematically covaraint current we first make the model assumption that β should be replaced by an
invariant operator that agrees with β in the rest frame of the initial (or final deuteron). It requires β → −Pd · γ/Md.

Because the null-plane boosts do not have Wigner rotations, the null-plane Dirac spinors satisfy the following
covariance condition with respect to null-plane boosts Λ:

uf (p̃) = S(Λ−1)uf (Λ̃p) ūf (p̃) = ūf (Λ̃p)S(Λ).

This leads to the identity

m
√

p+
ūf (p)Γ+(−Pd · γ/Md)γ5uf(p′)ūf (p′)(−Pd · γ/Md)uf (p′′)

m
√

p+′
=

m
√

(Λp)+
ūf (Λ̃p)Γ+(−ΛPd · γ/Md)γ5uf(Λ̃p′)ūf (Λ̃p′)(−ΛPd · γ/Md)uf (Λ̃p′′)

m
√

(Λp′′)+
. (7.6)

which defines a null-plane-boost-invariant current kernel that agrees with (7.5) in the rest frame of the initial deuteron.
For the adjoint we use the rest frame of the final deuteron.

The operator (7.5) factors into a product of 2 × 2 spin matrices, ū(p)Γµ(−Pd · γ/Md)γ5u(p
′) and ū(p′)(−Pd ·

γ/Md)u(p
′′). The term ū(p′)(−Pd · γ/Md)u(p

′′) replaces ū(p′)γ5u(p
′′) in one vertex of the one-pion-exchange inter-

action, while the factor ū(p)Γµ(−Pd · γ/Md)γ5u(p
′) has the appearance of a modified one-body current.

To be consistent with our input two-body interaction we modify the one-pion exchange contribution of the model
interaction by replacing the part of the phenomenological interaction that comes from ū(p′)γ5u(p

′′) by a modified
interaction that comes from ū(p′)(−ΛPd · γ/Md)u(p

′′) = ū(p′)βu(p′′) in the deuteron rest frame. We then apply this
modified interaction to the deuteron wave function and use kinematic null-plane boosts to transform the result to an
arbitrary frame.

The resulting matrix elements of the kinematically covariant two-body current has the following form

〈(1, d), P̃′, ν′|Iµ
ex(0)|(1, d), P̃, ν〉 :=

∫

〈(1, d), P̃′, ν′|(jn,mn), p̃′
1, ν

′
1, (jn,mn), p̃′

2, ν
′
2〉(−

1

2m
)ūnf (p′1)Γ

µγ5(
P · γ
Md

)unf (p′′1)dp̃′
1dp̃

′′
1dp̃

′
2×

〈(jn,mn), p̃′′
1 , ν

′′
1 , (jn,mn), p̃′

2, ν
′
2|U(Λf (P/Md))ṽπ |(1, d), P̃0, ν〉 + (1 → 2) + h.c. (7.7)

where in this expression we replaced the Dirac spinors with a covariant normalization used in projection operator
Λ±(p) by spinors with a non-covariant normalization:

unf (p) :=

√

m

p+
uf(p), (7.8)

to simplify the notation. We also remark that the projectors can be expressed in terms of canonical or null-plane
spinors with covariant normalization, uc(p)ūc(p) = uf (p)ūf (p). Details of the construction are discussed in appendix
A and B.

The quantity

〈(1, d), P̃, ν|(jn,mn), p̃1, ν1, (jn,mn), p̃2, ν2〉 (7.9)

is the deuteron eigenstate in the tensor product basis, P̃0 = (Md, 0, 0) is the rest frame value of the deuteron null-plane
momentum, U(Λf (P/Md)) represents a kinematic null-plane boost to the Breit frame. The modified pion-exchange
interaction ṽπ has the form (see Appendix A):

〈P̃′,k′, ν′1, ν
′
2|ṽπ|P̃,k, ν1, ν2 〉 →
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δ(P̃′ − P̃)
g2

π

(2π)3
2m

2m
τ 1 · τ 2vπ(k − k′)

(k′ − k) · σ2

2m
(7.10)

where vπ(k − k′) is the coefficient function of the one-pion-exchange contribution to the operator

δ(P̃′ − P̃)
g2

π

(2π)3
(k − k′) · σ1

2m
τ 1 · τ 2vπ(k − k′)

(k′ − k) · σ2

2m
(7.11)

in the phenomenological interaction. For the Argonne V18 interaction vπ(k − k′) is extracted from the one-pion-
exchange contribution to the tensor × (τ 1 · τ 2) and spin-spin × (τ 1 · τ 2) parts of the interaction using the method
discussed in [50] and [51]. The extraction is discussed in Appendix B. The resulting interaction, vπ(k − k′), differs
from 1/(m2

π + (k − k′)2) by the effects of the short-distance cutoff in the AV18 interaction.
This exchange current is constructed to transform covariantly with respect to the null-plane kinematic subgroup.

We add this current to the impulse current when computing the three independent matrix elements. These matrix
elements are then used to generate the remaining current matrix elements using the constraints of current covariance
and current conservation as discussed in the previous section.

Each term in the expression (7.7) for the exchange current matrix element can be represented as the product of

(− 1
2m ) with the modified current ūnf (p′1)Γ

µγ5(
P ·γ
Md

)unf (p′′1) evaluated between a deuteron eigenstate and a pseudo-

state defined by applying the rotationally invariant modified interaction ṽπ in (7.10) to the rest deuteron state and
kinematically boosting the result to the Breit frame. This defines a kinematically covariant exchange current that we
use to compute the independent matrix elements of I+(0).

VIII. RESULTS

The input to our calculation of the elastic electron-deuteron scattering observables is (1) the choice of nucleon form
factors [40] [45][46] [42][41][43], (2) the choice of nucleon-nucleon interaction [1][2], and (3) the choice of independent
linear combinations of current matrix elements used to generate the full current, [7][48] [11][52].

The extraction of proton-electric form factors based on polarization measurements compared with measurements
based on the Rosenbluth separation were found to be inconsistent[47] ; these inconsistencies have been explained [53]
by including two-photon-exchange corrections in the Rosenbluth separation. This has led to a modification of the
phenomenological parameterizations of the proton electric form factor. All of the nucleon form factors that we use
are consistent with the extractions based on the polarization measurements.

Neutron electric form factor data is only available for a limited range of momentum transfers. The high-momentum
transfer behavior of the different parameterizations is a consequence of different theoretical assumptions. This leads
to some variation of the parameterizations for momentum transfers above Q2 ∼ 1(GeV )2. Different parameterizations
of the neutron electric form factor are compared to a dipole form factor in fig 2. The form factors that we compare are
recent parameterizations given by Lomon [45], Budd, Bodeck and Arrington (BBA) [42], Bradford Budd, Bodeck and
Arrington (BBBA) [41], Kelly [43], and Bijker and Iachello (BI) [40]. All of these parameterizations agree for Q2 < 1.
The curves in figure 2 are given as ratios to dipole form factors, which emphasize differences in the parameterizations.
The input to our calculations are the isoscalar linear combinations of the nucleon form factors, F1N (Q2) and F2N (Q2).
These form factors are plotted in figures 3 and 4 for the same parameterizations that are compared in figure 2. These
plots show no significant variation among the various nucleon form factors. Our calculations of elastic-scattering
observables are not very sensitive to these differences.

As shown in section VII, our model exchange current breaks up into a product of an effective “one-body” current
and an interaction. The interaction is a modification of the one-pion exchange contribution to the tensor part of
the phenomenological interaction. Most of our calculations are based on the Argonne V18 interaction. We extract
the one-pion exchange contribution to the V18 potential by first discarding the short-range parts of the interaction
that contribute to the spin-spin and tensor forces, then we use a method developed by Riska [50] and Schiavilla,
Pandharipande, and Riska [51] to extract the one-pion exchange contribution to the tensor force from the remaining
parts of the interactions. This procedure is discussed in Appendix B. The one-pion-exchange potential that we extract
differs from 1

m2
π+(k−k′)2 by the effects of the short distance configuration-space cutoff that appears in the Argonne V18

interaction. The Fourier transform of the extracted interaction is compared to the pion-exchange potential without
the cutoff in figure 5. The dotted curve includes the cutoff parameters that are used in the Argonne V18 interaction.
The most important differences are for momenta above 1-2 fm−1.

Figures 6,7,8 show the three deuteron form factors, G0, G1 and G2 with and without the exchange current included
for the two-nucleon form factors (BI and BBBA) that have the largest high-momentum transfer difference in the
neutron electric form factor. The independent matrix elements (6.6) are calculated using the one-body parts of
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the current and with the exchange current added. The remaining current matrix elements are determined by the
constraints of current conservation and current covariance. The figures show that the addition of the exchange
current contributions lead to an enhancement of G0 above the minimum at Q2 = 1GeV 2. The minimum of G1 shifts
to the right, and G2 is enhanced. Except for momentum transfers Q2 between 6 and 7 these form factors are not very
sensitive to the different assumptions made about the neutron electric form factor.

Data for the observables A are labeled Stanford Mark III [54], CEA [37], Orsay [55], SLAC E101 [56], Saclay
ALS [57], DESY [58], Bonn [59], Mainz [60], JLab Hall C [61], JLab Hall A [62] and Monterey [63]. Data for B are
labeled: SLAC NPSA NE4 [64], Martin [65], Bonn [59], Saclay ALS [66], Mainz [60], Stanford Mark III [54]. Data for
T20 are labeled: Novosibirsk-85 [67] [68], Novosibirsk-90 [69], Bates-84 [70], Bates-91 [71] and JLab Hall C [72].

Calculations of A, B, and T20 using the independent matrix elements (6.6) (choice I) and the five parameterizations
of the nucleon form factors used in figures 2-4 are shown in figures 9-11. While the null-plane impulse calculations give
a qualitative understanding of the data, it is clear from these calculations that the null-plane impulse approximation
is inadequate.

Figures 12,13,14 show the effects of including the phenomenological pion-exchange current defined in section VII.
We see that A and B provide acceptable fits to the data when the pion exchange current is included. The results are
insensitive to the assumptions used in parameterizing the high-momentum transfer behavior of the neutron electric
form factor. T20 is closer to the data, but it is still below the most recent Jlab hall C data [72] between Q2 of .5 and
2GeV 2.

The calculation displayed in figures 12,13,14 are based on the choice I of independent current matrix elements given
by (6.6). The presence of the exchange current (7.7) increases the sensitivity to the choice of the independent current
matrix elements. This is shown in figure 1. What is plotted is the difference I+

11(0) − I+
00(0) with and without the

exchange current using a direct calculation of the difference or by generating the difference using current conservation
and current covariance. The difference between the dashed curve and solid curve shows that the required two-body
contributions to the current in this difference is small when the independent current matrix elements are computed in
the impulse approximation. Comparing the dotted and dash-dot curve indicates that much larger required two-body
contributions to the current are needed when the exchange current contributions are included in all matrix elements.
This suggests that there will be a non-trivial sensitivity to the choice of independent current matrix elements used to
generate the fully covariant exchange current.

To test this we examined the two other choices, II and III, of independent matrix elements discussed in section VI.
These methods relate form factors to independent current matrix elements by contracting different sets of polarization
vectors into the current tensor. In both approaches there are preferred polarization vectors; in one case the vectors are
chosen to minimize the dependence on matrix elements that are maximally suppressed in the infinite momentum frame
(P+ → 0), while the other choice minimizes the mass dependence in the contractions used to define the independent
current matrix elements. Both choices were discussed in section VI.

Figures 15,16,17, and 18 show the deuteron elastic scattering observables A(Q2) and T20(Q
2) for both choices, II and

III, of polarization vectors. In both casesG1 is computed using the same linear combination of current matrix elements
used for choice I. Since B only depends on G1, B is identical for all three choices. All three choices of independent
matrix elements give different predictions for A and T20. For choices II and III there is a mild enhancement of A at
higher momentum transfers compared to choice of independent matrix elements given by (6.6). There is also a larger
effect on the tensor polarization that brings the curve to within the experimental error bars.

The result is that both choice II and III of independent current matrix elements give consistent results for the elastic
scattering observables and they both provide a good description of the existing data over a wide range of momentum
transfers. It is clear that there is a non-trivial sensitivity to the choice of independent current matrix elements when
these results are compared to the corresponding results based on choice I.

Another potential source of sensitivity to the input is the choice of nucleon-nucleon interaction. Any phase equivalent
change in the nucleon-nucleon interaction is automatically accompanied by a corresponding change in the current
operator. For interactions with a long-range meson exchange tail one might expect that the same data could be
understood by simply adjusting the cutoff parameter. For typical soft interactions that are useful in low-energy
problems, one expects that a more significant modification of the current would be necessary.

In figs. 19,20 and 21 we compare calculations of A(Q2), B(Q2), and T20(Q
2) using the CD Bonn wave functions

with and without the exchange current. In these calculations the exchange current is still based on the Argonne V18
cutoffs. The calculations show the generalized impulse calculations and calculations where the exchange current is
added to the impulse current, without adjusting the cutoff parameters. The calculations clearly show that there is
more sensitivity to the choice of nucleon-nucleon interactions than to the choice of nucleon form factor.

Good consistency with all experimental observables is obtained using the V18 interaction with nucleon form factors
[41] and the choice of independent current matrix elements suggested by Frankfrut, Frederico and Strickman or
Coester, discussed in section VI. These calculations are shown in figs. 22,23 and 24. For these choices the model
exchange current explains the difference between the generalized impulse approximation and the experimental data.
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Figure 25 shows the ratio of the experimental values of A(Q2) to the calculated values using exchange current II.
The data is presented on a linear scale to better illustrate the comparison between theory and experiment. The solid
line represents the calculation with exchange current II while the diamonds show the ratio of exchange current III to
exchange current II. There are no significant differences between the two exchange currents for momentum transfers
below 4 (GeV)2. While our exchange current, which used the one-pion exchange part of the Argonne V18 interaction,
required the numerical computation of Fourier transforms, the resulting interaction contribution to the exchange
current differed very little from a simple static momentum-space pion exchange interaction, fig 5, which indicates the
simplicity of our exchange current.

Our results indicate that this simple exchange current is sufficient to provide a good quantitative understanding of
elastic electron-deuteron scattering for a wide range of momentum transfers. The sensitivities to both the choice of
interaction and the choice of independent matrix elements are the largest uncertainties in the calculations, and these
uncertainties are all larger than the experimental uncertainties. For momentum transfers where data is available there
is very little sensitivity to the uncertainties in the neutron electric form factors.

Finally we compare the magnetic and quadrupole moments of the deuteron with and without the exchange current
and using the three different choices of independent current matrix elements. The results are shown in table 1. Our
calculations do not exhibit any sensitivity to the choice of nucleon form factor, which are sufficiently well constrained
by experiment at low momentum transfers. The exchange current contributions affect the results for all of the
moments. In both cases they are closer to experiment than the moments computed using the generalized impulse
approximation. The magnetic moment is in good agreement (to within computational accuracy) with experiment,
while the quadrupole moment differs from the experimental result by a few percent.

The conclusion of our research is that a simple exchange current motivated by one-pion exchange and the freedom
to define a conserved covariant current operator by choosing a preferred set of independent current matrix elements is
sufficient to provide a good fit to all three elastic scattering observables using Poincaré invariant quantum theory with
a null-plane kinematic symmetry. The model exchange current has the spin structure of a “pair” current, designed
with a null-plane kinematic symmetry. The quality of the nucleon form factors has progressed to the point that our
results are insensitive to the choice of nucleon form factor.

While is it straightforward to include low-order pion-exchange physics in a more general class of models, the strategy
for making the best choice of independent current matrix elements in a general class of electron-nucleus reactions
requires more investigation. The principles used to derive choices I, II and III of independent current matrix elements
all can be generalized to treat initial and final states with different spins. Whether there is one consistent set of
principles that works universally for all reactions is not yet known.

A second observation is that our model, with one of the two preferred choices of independent current matrix
elements, provides a better description of all three observables than methods based on truncations of null-plane field
theory or instant form relativistic quantum mechanics. Our model has features of both - unlike the instant-form
model our model has the full-null plane kinematic symmetry with all of the advantages discussed at the beginning of
this paper. Unlike truncations of a null-plane field theory, which emphasize cluster properties at the expense of exact
Poincaré invariance, our model is exactly Poincaré invariant. We expect that the Poincaré invariance constraint to be
more important for momenta near or slightly above the deuteron mass scale, since the deuteron mass scale is involved
in the implementation of the symmetry.

This research provides a useful first step in trying to devise a more systematic treatment of model exchange currents
in Poincaré invariant quantum mechanics with a null-plane kinematic symmetry. It leads to a simple current that
provides a significant improvement in all three elastic scattering observables when compared with the correspond-
ing impulse calculations, however additional research is still needed in order to determine if these methods can be
successfully applied to larger class of reactions.

This work was performed under the auspices of the U. S. Department of Energy, Office of Nuclear Physics, under
contract No. DE-FG02-86ER40286. The authors would like to express our gratitude to Fritz Coester who made many
material suggestions that significantly improved the quality of this work.

APPENDIX A: CURRENT CONSTRUCTION

The steps motivating the structure of the model exchange current (7.7) are summarized in this appendix. We
consider a pseudoscalar pion-nucleon vertex:

L(x) = −igπ : Ψ̄(x)γ5Ψ(x)τ · φ(x) : (A1)
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where gπ = 2m fπ

mπ
is the pseudoscalar pion-nucleon coupling constant and m is the nucleon mass. In what follows we

use canonical Dirac spinors with a non-covariant normalization

unc(p) :=

√

m

ω(p)
uc(p) (A2)

and use the notation

vπ(k′,k) :=
g2

π

(2π)3
τ 1 · τ 2

m2
π + (k′ − k)2 − i0+

. (A3)

In this notation the tree-level one-pion-exchange transition amplitude is given by the rotationally invariant kernel:

〈k′, µ′
1, µ

′
2|vπ|k, µ1, µ2〉 :=

ūnc(k
′)γ5unc(k)vπ(k′,k)ūnc(−k′)γ5unc(−k) (A4)

where we have assumed a plane wave normalization 〈k′|k〉 = δ(k′ − k).
The tree-level one-pion-exchange transition amplitude in the presence of an external electromagnetic field, using

the vertex (A1) with

Aµ(q) :=
1

(2π)4

∫

e−iq·yAµ(y)d4y, (A5)

includes four terms, one of which is

〈p′
1, µ

′
1,p

′
2, µ

′
2|Iµ(0)µ|p1, µ1,p2, µ2〉 =

ūnc(p
′
1)Γ

µunc(r)ūnc(r)γ5unc(p1)
1

E12 − ω(r) − ω(p′
2) + i0+

×

vπ(p′
2,p2)ūnc(p

′
2)γ5unc(p2)+

ūnc(p
′
1)Γ

µvnc(−r)v̄nc(−r)γ5unc(p1)
1

E12 − ω(p′
2) + ω(r) − i0+

×

vπ(p′
2,p2)ūnc(p

′
2)γ5unc(p2) + · · · (A6)

where

E12 = ω(p1) + ω(p2) (A7)

is the initial energy,

r = p1 + p2 − p′
2. (A8)

and

Γµ = γµF1(Q
2) − i

2m
σµν , QνF2(Q

2) (A9)

is the nucleon impulse current. The + · · · represents the contribution from the other three terms related by either
Hermitian conjugation and/or exchanging the proton and neutron.

To motivate the structure our model exchange current we first evaluate this covariant expression in the rest frame
of the initial two-body system so the pion-exchange interaction appears as a rotationally invariant function of the
relative momenta. This allows us to relate the interaction part of this kernel to the interaction kernel in (A4). Next
we treat the initial energy of the two-body system, E12, as a parameter that can be expressed in terms of the mass
of the initial state (deuteron) and the kinematically conserved momenta. We use the assumed null-plane kinematic
symmetry of the interaction to express the energy denominators in terms of masses and null-plane kinematic variables;
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E12 → 1
2 (P+ + M2+P⊥

P+ ), E120 → 1
2 (P+ +

M2
0 +P⊥

P+ ). These are all model assumptions. In the rest frame of the initial
deuteron P− = Md which gives

E12 − ω(r) − ω(p′
2) → E12 − E120 → 1

2

M2
d −M2

0 (k′)

P+
rest

→ M2
d −M2

0 (k′)

2Md
≈ M2

d −M2
0 (k′)

4m
(A10)

and

E12 − ω(p′
2) + ω(r) → E12 → 1

2
(P+ +

M2 + P⊥
P+

) → 1

2
(Md +

M2
d

Md
) = Md ≈ 2m (A11)

Using (A10) and (A11) in (A6) gives

〈p′
1, µ

′
1,−k′, µ′

2|Iµ(0)µ|k, µ1,−k, µ2〉 =

ūnc(p
′
1)Γ

µunc(k
′)

4m

M2
d −M2

0 − i0+
ūnc(k

′)γ5unc(k)×

vπ(k′,k)ūnc(−k′)γ5unc(−k)−

ūnc(p
′
1)Γ

µvnc(−k′)
1

2m
v̄nc(−k′)γ5unc(k)×

vπ(k′,k)ūnc(−k′)γ5unc(−k) + · · · (A12)

The terms in this expression are easy to interpret. The first two lines represent the product of a one-body current
matrix element, the propagator, 4m

M2
d
−M2

0
−i0+ , associated with equation (3.4) and the rotationally invariant kernel of

the pion-exchange interaction (A4). This term is already included in the one-body contribution to the current matrix
element.

The last two lines have a similar form except one of the unc(k) spinors in the current and the rotationally invariant
interaction kernel are replaced by vnc(−k) spinors. In addition, the propagator term is replaced by the factor
1/2m. We find it convenient for computational purposes to split the v spinor terms that give the Dirac projector
Λ−(−k) = −vc(−k)v̄c(−k) and to use γ5β to convert the vnc(−k) to unc(k). The two factors of β break kinematic
covariance. We restore manifest kinematic covaraince by using this expression to define the current matrix elements
in the rest frame of the initial system, and we transform to the Breit frame by requiring kinematic covaraince.

Using

vnc(−p)v̄nc(−p) = γ5βunc(p)ūnc(p)βγ5 (A13)

the last two lines of (A12) become

ūnc(p
′
1)Γ

µγ5βunc(k
′)

1

2m
×

ūnc(k
′)βu(k)vπ(k′), (k))ūnc(−k′)γ5unc(−k) + · · · . (A14)

This separates into the product of an effective one-body current,

ūnc(p
′
1)Γ

µγ5βunc(k
′) (A15)

a factor 1/2m, and a modified one-pion-exchange interaction

ūnc(k
′)βunc(k)vπ(k′), (k))ūnc(−k′)γ5unc(−k). (A16)

The interaction term is identical to the rotationally invariant kernel of the one-pion-exchange interaction (A4) with
the replacement: ūnc(k

′)γ5unc(k) → ūnc(k
′)βunc(k). This replacement preserves the rotational invariance of this

kernel in the rest frame, but it is not covariant with respect to null-plane boosts.
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This splitting has the advantage that the computation of the exchange current matrix element has the same structure
as the computation of an impulse current matrix element with the current replaced by (A15) and the deuteron wave
function |ψ〉 replaced by 1

2m ṽ|ψ〉 where ṽ is the modified interaction (A16). The input to this calculation is defined
in rest frame of the initial deuteron. We get the null-plane Breit frame result by requiring kinematic covariance.

The effective one-body current (A15) can be extended to a kinematically covariant operator that agrees with (A15)
in the deuteron rest frame by replacing the β in (A15) by

β → −P · γ/Md (A17)

This leads to a kinematically covariant modified current kernel

ūnc(p
′
1)Γ

µγ5
(P · γ)
Md

unc(k
′). (A18)

Kinematic covariance is all that this needed for a consistent computation of the current matrix elements.
The modified interaction (A16) is rotationally invariant so when it is applied to the rest deuteron eigenstate the

resulting pesudo-state has the same spin as the deuteron. This can be consistently defined in any other kinemati-
cally related frame using null-plane boosts. This, along with the replacement (A17) restores the manifest kinematic
covariance.

The last step is to replace the modified interaction (A16) by the corresponding modified one-pion-exchange part of
a realistic model interaction. In a typical realistic interaction the pseudoscalar pion-exchange interaction is obtained
by replacing the spinor terms in the rotationally invariant kernel (A4) by

ūnc(k
′)γ5unc(k) → σ · (k − k′)

2m
(A19)

This expression is obtained by retaining the leading term in a k/m expansion of the spinor term, which is normally
justified because the one-pion exchange interaction also includes a high-momentum or short-distance cutoff. The
net effect is that the resulting interaction, when included in the full nucleon-nucleon interaction, provides a good
description of the two-nucleon bound state and scattering observables.

Expanding ū(k′)βu(k) to the same order in k/m gives 1. This suggests that the modified interaction (A16) can be
modeled by replacing the one-pion exchange contribution to the realistic interaction

σ1 · (k − k′)vπ(k − k′)σ2 · (k′ − k)τ 1 · τ 2 (A20)

by

2mvπ(k − k′)σ2 · (k′ − k)τ 1 · τ 2. (A21)

The one-pion exchange interaction (A4) only contributes to the part of the tensor force in the nucleon-nucleon
interaction that multiplies the isospin exchange operator τ 1 · τ 2. The tensor interaction also has contributions from
the vector exchanges which also contribute to the spin-spin interaction. Riska [50] and Schiavilla, Pandharipande, and
Riska [51] introduced a method for isolating the pion-exchange contribution to the tensor force of a phenomenological
interaction using linear combinations of the tensor and spin-spin interactions. The resulting interaction is

vps(k − k′) =
1

3
(2vt(k − k′) − vss(k − k′)) (A22)

where vt and vss are tensor and spin-spin contributions to the charge exchange part of the Argonne V18 interaction.
We extract this from the pion-exchange contribution to the Argonne V18 potential. This is compared to 1

m2
π+(k−k′)2

in figure 5. The difference between these curves is due to the short-distance cutoff used in the AV18 interaction.
When this interaction is applied to the deuteron bound state vector the result is a spin 1 “pseudo wave function”.

The resulting “pseudo vector” can be defined in the Breit frame by requiring that it transforms covariantly with respect
to the null-plane kinematic subgroup. This kinematic covariance ensures that the current kernel is kinematically
covariant provided the pseudo-current is modified following (A17). The kinematic covariance of the current is needed
for a consistent calculation matrix elements of I+(0).

We can now write the form of the Breit frame matrix elements of this one-pion exchange contribution to the
exchange current:

〈(1, d), P̃′, µ′|I+
ex(0)|(1, d), P̃, µ〉 =
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∑

∫

〈(1, d), P̃′, µ′|(j′, k′), P̃′′′, l′, s′, µ′′′〉k′2dk′dP̃′′′×

〈(j′, k′), P̃′′′, l′, s′, µ′′′|(jp,mp), p̃
′
p, µ

′
p, (jn,mn), p̃′

n, µ
′
n〉dp̃′

pdp̃
′
n×

〈p̃′
p, µ

′
p, p̃

′
n, µ

′
n|I+

ex−eff (0)|(jp,mp)p̃p, µp, (jn, fn)p̃n, µn〉dp̃pdp̃n×

〈(jp,mp), p̃p, µp, (jn,mn), p̃n, µn|(j, k)P̃′′, l, s, µ′′〉k2dkdP̃′′〈(j, k)P̃′′, l, s, µ′′|P̃, µ, χ〉 (A23)

where the terms in this expression are the deuteron wave function in the free-particle irreducible null-plane basis

〈(1, d)P̃′, µ′, d|(1, k′), l′, s′, P̃′′′, µ′′′〉 = δ(P̃′ − P̃′′′)δj′j′′′δµ′µ′′′φ∗j′ (k
′, l′, s′) (j′ = s′ = 1), (A24)

the Poincaré group Clebsch-Gordan coefficients in the null-plane basis

〈P̃′′′, k′, j′, l′, s′, µ′′′|p̃′
p, µ

′
p, p̃

′
n, µ

′
n〉 =

δ(P̃′′′ − p̃′
p − p̃′

n)
δ(k′ − k(p̃′

p, p̃
′
n))

k′2

√

∂(P̃,k)

∂(p̃′
p, p̃

′
n)

〈j, µ|l,ml, s,ms〉×

〈s,ms|
1

2
, µp,

1

2
, µn〉Y ∗

lml
(k̂(p̃′

pp̃
′
n))×

D
1/2
µpµ′

p
[Λ−1

c (k/m)Λf (k/m)]D
1/2
µnµ′

n
[Λ−1

c (−k/m)Λf (−k/m)], (A25)

the proton effective current

〈p̃′
p, µ

′
p, p̃

′
n, µ

′
n|I+

ex−eff (0)|p̃p, µp, p̃n, µn〉 = (A26)

δ(p̃n − p̃n)ūnf (p̃′
p, µ

′
p)Γ

µ
p (q)γ5(η0γ0 − η1γ1)unf (p̃p, µp), (A27)

where the null plane Dirac spinors are related to the canonical Dirac spinors by a Melosh rotation

uf(p̃p, µp)µ = uc(p̃p, µp)µ′D
1/2
µ′µ[Λ−1

c (pp/m)Λf(−pp/m)], (A28)

another Poincaré Clebsch-Gordan coefficient

〈p̃p, µp, p̃n, µn|P̃′′, k, j, l, s, µ′′〉 = (A29)

δ(P̃′′′ − p̃′
p − p̃′

n)
δ(k′ − k(p̃′

p, p̃
′
n))

k′2

√

∂(P̃,k)

∂(p̃′
p, p̃

′
n)

× (A30)

D
1/2
µpµ′

p
[Λ−1

f (k/m)Λc(k/m)]D
1/2
µnµ′

n
[Λ−1

f (−k/m)Λc(−k/m)]×

〈s,ms|
1

2
, µ′

p,
1

2
, µ′

n〉〈j, µ|l,ml, s,ms〉Ylml
(k̂(p̃′

p, p̃
′
n)), (A31)

and the pseudo wave function

〈(k, j), l, s, P̃′′, µ′′|P̃, µ, χ〉 =

δ(P̃′′ − P̃)

∫

∑

〈j, µ′′|l,ml, s,ms〉〈s,ms|
1

2
, µp,

1

2
, µn〉

1

(2π)3/2
Y ∗

lml
(k̂)dk̂×

(k − k′) · σµnµ′
n
vps(k

′ − k)τ 1 · τ 2dk
′Yl′m′

l
(k̂′)〈s′,m′

s, |
1

2
, µ′

p,
1

2
, µ′

n〉〈j, µ, |, s′,m′
s, l

′,m′
l〉φlsj(k

′) (A32)

where vps is given by (A19). The full exchange current is the sum of the above quantity and the three other terms
related by taking Hermitian conjugates or exchanging the particle that couples to the photon. The computation of
the pseudo wave function is discussed in Appendix B.
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APPENDIX B: CALCULATION OF PSEUDO WAVE FUNCTION

The calculation of the pseudo wave function (A32) requires the one-pion exchange part of the tensor interaction.
Riska [50] and Schiavilla, Pandharipande, and Riska [51]outlined a method to extract the pseudoscalar contribution
to the tensor force as a linear combination of the radial coefficient functions in the Argonne V18 interaction. The
method is based on the observation that both pseudoscalar and vector meson exchange contribute to both the tensor
and spin-spin interaction in the static limit[50].

The Fourier transform of the interaction has the structure

vnn(κ) = Ωtvt(κ
2) + Ωssvss(κ

2) + · · · (B1)

where κ := k′ − k,

Ωt := (σ1 · σ2κ
2 − 3σ1 · κσ2 · κ)(τ 1 · τ 2) (B2)

Ωs := κ2(σ1 · σ2)(τ 1 · τ 2) (B3)

and we have explicitly exhibited the tensor and spin-spin contributions to the interaction.
The coefficient functions in (B1) are Fourier transforms of the coefficient functions the corresponding terms in the

Argonne V18 interaction,

vss(κ
2) =

4π

κ2

∫ ∞

0

drr2vστ (r)(j0(κr) − 1), (B4)

vt(κ
2) =

4π

κ2

∫ ∞

0

drr2vtτ (r)j2(κr), (B5)

where the factor 1/κ2 is due to the difference in the conventions used to define tensor operator in momentum and
configuration space.

These coefficient functions have contributions from both pseudoscalar and vector meson exchange. To separate
them, following [50], define the tensor and spinor operators and note that

(σ1 · κσ2 · κ)((τ 1 · τ 2)) = −1

3
(Ωt − Ωss) (B6)

while vector meson exchange gives the combination [50]

((σ1 × κ) · (σ2 × κ))(τ 1 · τ 2) =
1

3
[2Ωss + Ωt]. (B7)

This implies that

vtΩt + vssΩss = vps
1

3
(Ωss − Ωt) + vv

1

3
(2Ωs + Ωt) = (B8)

1

3
(vv − vps)Ωt +

1

3
(vps + 2vv)Ωs. (B9)

Using these expressions we can isolate the pseudoscalar and vector contribution to the interaction using the following
linear combinations of the tensor and spin-spin interactions:

vps = vss − 2vt (B10)

vv = vss + vt. (B11)

For the Argonne V18 interaction, which is used in our calculations, there remains a small difference between the
pseudoscalar interaction calculated using (B10) and the contribution that comes directly from terms that can be
directly identified with the one-pion exchange contribution. We only retain the one-pion exchange contribution to
these terms, this still includes the short-distance cutoff used in the Argonne V18 r-space potential.
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The interactions vστ (r) and vtτ (r) have the form

vστ (r) ≡ f2

9

{

(

m0

m±

)2

m0Y (µ0, r) + 2m±Y (µ±, r)

}

+ vc(r) (B12)

vtτ (r) ≡ f2

9

{

(

m0

m±

)2

m0T (µ0, r) + 2m±T (µ±, r)

}

+ vt(r). (B13)

Here Y (µ, r) and T (µ, r) are the Yukawa and tensor functions with the exponential cutoff of the Urbana and Argonne
V14 models:

Y (µ, r) =
e−µr

µr
(1 − e−cr2

), (B14)

T (µ, r) = (1 +
3

µr
+

3

(µr)2
)Y (µr)(1 − e−cr2

), (B15)

The terms vc(r) and vt(r) are short-range phenomenological interactions that we discard for the computation of the
exchange current.

In order to carry out the angular part of the integral in (A32), we expand the pseudoscalar potential vps(k−k′) in
partial waves:

vps(|k − k′|) =
∑

lm

vl(k
2,k′2)Y ∗

lm(k̂)Ylm(k̂′), (B16)

where

vl(k
2,k′2) = 2π

∫ 1

−1

Pl(u)vps(
√

k2 + k′2 − 2kk′′u)du. (B17)

We expand the vector k and k′ in spherical harmonics

k = k(

√

2π

3
(Y1−1(k̂) − Y11(k̂)), i

√

2π

3
(Y1−1(k̂) + Y11(k̂)),

√

4π

3
Y10(k̂)) (B18)

to obtain the following expression for the pseudo wave function:

χ
(c)

P̃d,µd

(~k′′, µ′′
p , µ

′
n) (B19)

≡ 1

(2π)3

∫

dk̂k2dk
∑

l=0,2

l
∑

µl=−l

∞
∑

l′=0

l′
∑

µ′

l
=−l′

vl′(k
2,k

′′2)Yl′µ′

l
(k̂′′)Y ∗

l′µ′

l
(k̂)Ylµl

(k̂)

× [k′′(

√

2π

3
(Y1−1(k̂′′) − Y11(k̂′′)), i

√

2π

3
(Y1−1(k̂′′) + Y11(k̂)),

√

4π

3
Y10(k̂))

− k(

√

2π

3
(Y1−1(k̂) − Y11(k̂)), i

√

2π

3
(Y1−1(k̂) + Y11(k̂)),

√

4π

3
Y10(k̂))]

× 〈µ′
n|~σ|µn〉〈sp, µ

′′
p , sn, µn|s, µs〉〈s, µs, l, µl|j, µ〉.Y l

µl
(k̂)ul(k),

The angular integrals are evaluated using:
∫

dk̂Y ∗l′

µ′

l
(k̂)Y l

µl
(k̂) = δl′lδµ′

l
µl
, (B20)

∫

dk̂Y ∗l′

µ′

l
(k̂)Y l

µl
(k̂)Y 1

µ′′

l
(k̂) (B21)

=

√

(2 · 1 + 1)(2 · l + 1)

4π(2 · l′ + 1)
〈1, µ′′

l , l, µl|l′, µ′
l〉〈1, 0, l, 0|l′, 0〉.
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After carrying out the integral on k̂: the expression for the pseudo wave function becomes

χ
(c)

P̃d,µd

(~k′′, µ′′
p , µ

′
n) (B22)

≡ 1

(2π)3

∫

k2dk
∑

l=0,2

l
∑

µl=−l

∑

l′

l′
∑

µ′

l
=−l′

vl′(k
2,k′′2, )Yl′µl′

(k̂′′)ul(k)

× 〈sp, µ
′′
p , sn, µn|s, µs〉〈s, µs, l, µl|j, µ〉

× [

√

2π

3
〈µ′

n|σx|µn〉 [ k′′(Y1−1(k̂′′) − Y11(k̂′′))δl′lδµl′µl

+ k

√

(2 · 1 + 1)(2 · l + 1)

4π(2 · l′ + 1)
〈1, 0, l, 0|l′, 0〉(−〈1,−1, l, µl|l′, µl′〉 + 〈1, 1, l, µl|l′, µl′〉) ]

+ i

√

2π

3
〈µ′

n|σy|µn〉 [ k′′(Y1−1(k̂′′) + Y11(k̂′′))δl′lδµl′µl

+ k

√

(2 · 1 + 1)(2 · l + 1)

4π(2 · l′ + 1)
〈1, 0, l, 0|l′, 0〉(−〈1,−1, l, µl|l′, µl′〉 − 〈1, 1, l, µl|l′, µl′〉) ]

+

√

4π

3
〈µ′

n|σz |µn〉 [ k′′Y10(k̂′′)δl′lδµl′µl

− k

√

(2 · 1 + 1)(2 · l + 1)

4π(2 · l′ + 1)
〈1, 0, l, 0|l′, 0〉〈1, 0, l, µl|l′, µl′〉 ] ]

The sum over l′ includes only a finite number of values. It can only be 0 or 1 for l = 0 and 1, 2 or 3 when l = 2. This
limits the sum on l′ to the first four partial waves, l′ = 0, 1, 2, 3. The final expression of the pseudo wave function can
be written in the form:

χ
(c)

P̃d,µd

(~k′′, µ′′
p , µ

′
n) =

∑

ll′

Ill′(k
′′)fll′(k̂

′′, µ′′
p , µ

′
n), (B23)

where fll′(k̂
′′, µ′′

p , µ
′
n) are angle-dependent coefficients and Ill′ (k

′′) are the relevant scalar quantities which have the
following form:

Ill′ (k
′′) ≡

∫

k2dkvl(k, k
′′)ul′(k) (B24)

or

Ill′(k
′′)

∫

k′3dkvl(k, k
′′)ul′(k). (B25)

The allowed combinations of l and l′ pairs requires the following integrals Ill′ (k
′′):

I00(k
′′) ≡

∫

v0(k, k
′′)u0(k)k

2dk (B26)

I10(k
′′) ≡

∫

v1(k, k
′′)u0(k)k

3dk (B27)

I12(k
′′) ≡

∫

v1(k, k
′′)u2(k)k

3dk (B28)

I22(k
′′) ≡

∫

v2(k, k
′′)u2(k)k

2dk (B29)

I32(k
′′) ≡

∫

v3(k, k
′′)u2(k)k

3dk (B30)
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The total exchange current contribution is

〈P̃′
d, µ

′
d, d|I+

ex(0)|P̃d, µd, d〉 =
∑

∫

dk′Ji (B31)

× [Ψ∗
P̃′

d
,µ′

d

(k′, µ′
p, µn)[ūf (p̃′

p, µ
′
p)Γ

µ
p (q)γ5(−P · γ/Md)uf (p̃p, µp)]χ

(f)

P̃d,µd

(k, µp, µn)

+ χ
(f)∗
P̃′

d
,µ′

d

(k, µ′
p, µn)[ūf (p̃′

p, µ
′
p)(−P · γ/Md)γ

5Γµ
p (q)uf (p̃p, µp)]ΨP̃d,µd

(k, µp, µn)]

+ [p↔ n]

where Ji is the jacobian

Ji = |
∂(p̃′′

p , p̃
′′
n)

∂(P̃′′,k′′)
| 12 | ∂(P̃′,k′)

∂(p̃′
p, p̃

′
n)

| 12 (B32)
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IM IM+Exchange IM(WSS) IM+MEC(WSS)

Qd 0.2698 0.2752 0.270 0.275

µd 0.8535 0.8596 0.847 0.871

TABLE I: deuteron magnetic and quadrupole moments evaluated in the impulse approximation and including the exchange
current contribution. The values are the same using all six different nucleon form factor parameterizations and three combina-
tions of independent current matrix elements. Argonne V 18 potential is used in the calculation. The values labeled with WSS
are from [1]. The experimental values are 0.2860 ± 0.0015fm2 [73] and 0.857406 ± 0.000001µN [74].
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FIG. 23: (color online) B(Q2) , AV18, BBBA form factors with and without exchange

current II and III
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