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In this paper we discuss a formulation of relativistic quantum mechanics that uses model Euclidean
Green functions or their generating functional as input. This formalism has a close relation to
quantum field theory, but as a theory of linear operators on a Hilbert space, it has the advantages of
quantum mechanics. One interesting feature of this approach is that matrix elements of operators
in normalizable states on the physical Hilbert space can be calculated directly using the Euclidean
Green functions without performing an analytic continuation. The formalism is summarized in this
paper. We discuss the motivation, advantages and difficulties in using this formalism. We discuss
how to compute bound states, scattering cross sections, and finite Poincaré transformations without
using analytic continuation. A toy model is used to demonstrate how matrix elements of e−βH in
normalizable states can be used to construct sharp-momentum transition matrix elements.

PACS numbers: 11.80.-m, 24.10.Jv

I. MOTIVATION

In this paper we investigate a framework for constructing relativistic quantum mechanical models of few-degree-of-
freedom systems that are inspired by an underlying quantum field theory. Our interest is in few-body physics at the
few-GeV energy scale. Poincaré invariance is an important symmetry at this scale since the energies are comparable
to the mass scale of the hadrons. Most models of systems at these energies are motivated by quantum field theory,
but their connection with quantum mechanical models of a finite number of degrees of freedom is not straightforward.
The advantage of a quantum mechanical model of a finite number of degrees of freedom is that the theory is linear
and it can be in-principle solved, even for strongly interacting systems, with mathematically controlled errors. Bound
systems of particles present no special problems; they are just point-spectrum eigenstates of the mass operator (rest
energy). The construction of a unitary multichannel scattering operator, S, can be performed using the same methods
that are used in non-relativistic models.
One approach that has been successfully used to formulate realistic Poincaré invariant quantum mechanical models of

few-hadron systems is Poincaré invariant quantum mechanics[1]. In this approach a dynamical unitary representation
of the Poincaré group is constructed on a few-particle Hilbert space. This approach has been successfully applied
to treat a number of few-hadron or few-quark problems. The virtue of this approach is that it is possible construct
quantum mechanical models with a finite number of degrees of freedom that have a unitary representation of the
Poincaré group, satisfy a spectral condition, and for fixed numbers of particles satisfy cluster separability. These are
essentially all of the axioms of quantum field theory, except microscopic locality, which cannot be tested experimentally
and requires an infinite number of degrees of freedom. One of the disadvantages of this approach is that the models
do not have a straightforward relation to a Lagrangian field theory. This makes it difficult to use a field theory like
QCD to improve or constrain the models.
Because of the difficulties discussed in the previous paragraph it is desirable to explore alternate formulations

of relativistic quantum mechanics that have a more direct relation to Lagrangian field theory while preserving the
structure of the underlying quantum theory. The alternative that we pursue in this work is to formulate models that
are motivated by the standard reconstruction of a quantum theory from the field theory. The Euclidean formulation
of quantum field theory is convenient for this purpose because (1) it has a direct relation to the action or Lagrangian
through either formal path integrals or the Dyson expansion and (2) it is possible to use the Euclidean Green functions
or their generating functional to directly construct the physical Hilbert space using the Euclidean reconstruction
theorem. In this paper we argue that using this framework it is possible to compute all interesting quantum mechanical
observables without explicit analytic continuation.
The proposed models are constructed by restricting the number of degrees of freedom. In passing to a few-

body model all of the axioms of field theory cannot be preserved. One of the attractive features of the Euclidean
reconstruction theorem is that locality is an independent requirement that can be relaxed without violating the other
axioms[2]. A feature of this approach is that the dynamics is introduced directly by the model Euclidean Green
functions or generating functional, rather than in a model Hamiltonian or Lagrangian. One of the challenges of this
approach is to find a robust framework for modeling Euclidean Green functions or generating functionals with the
required properties. An advantage is that standard Euclidean field theoretic methods can be used to motivate the
structure of the models.
The construction of the physical Hilbert space of the field theory from a Euclidean generating functional is discussed
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in the next section. The generating functional for a scalar field is used to illustrate the basic construction. The
construction of the Poincaré Lie algebra is discussed in the third section. The resulting generators are self-adjoint
operators on the physical Hilbert space. The construction of one-particle states and the computation of finite Poincaré
transformations on these states is discussed in section four. The one-particle states are used to construct scattering
states in section five. The computation of finite Poincaré transformations on the scattering states is also discussed
in this section. Everything discussed in sections 2-5 uses only Euclidean generating functionals and Euclidean test
functions. Section six discusses how the results of sections 2-5 are expressed in terms of Euclidean Green functions.
This is more practical for formulating models. Models of a finite number of degrees of freedom are discussed in
section seven by considering the structure of models of relativistic nucleon-nucleon scattering. A numerical test of the
proposed method to compute scattering observables from matrix elements of e−βH in normalizable states is given in
section eight using an exactly solvable non-relativistic model. The results suggest that these methods can be used to
compute cross sections at the few-GeV energy scale. Our conclusions and the outlook for this approach are discussed
in the last section.

II. QUANTUM MECHANICS - HILBERT SPACE REPRESENTATION

To illustrate the construction of the model quantum theory we assume that we are given an Euclidean generating
functional Z[f ] associated with a scalar field. For the purpose of illustration we assume that Z[f ] has all of the
properties that are expected of the generating functional of a scalar field theory. These properties include Euclidean
invariance, reflection positivity, reality, and cluster separability.
The generating functional relates the Lagrangian of the field theory to the Hilbert space formulation of the theory.

In Lagrangian field theory the generating functional is formally the functional Fourier transform of an Euclidean
path-integral measure with action A[φ]

Z[f ] =

∫
D[φ]e−A[φ]+iφ(f)

∫
D[φ′]e−A[φ′]

=
∑

n

(i)n

n!
Sn (f, · · · , f)

︸ ︷︷ ︸

n times

= exp(
∑

n

(i)n

n!
Scn (f, · · · , f)

︸ ︷︷ ︸

n times

) (2.1)

where f = f(τ,x) is a Schwartz test function in the Euclidean space-time variables and Sn is the n-point Euclidean
Green function, and Scn is the connected n-point Euclidean Green function. In this approach the generating functional
Z[f ] is the dynamical input that replaces the Lagrangian or Hamiltonian. A connection with an underlying Lagrangian
or path integral is not required and will not be generally assumed, however this connection provides an important
source of phenomenology, which is a primary motivation for developing this formalism.
In what follows Euclidean space-time coordinates are denoted by x = (τ,x). Euclidean invariance of the generating

functional means that

Z[fE,a] = Z[f ]. (2.2)

for

fE,a(x) := f
(
E−1(x− a)

)
, (2.3)

where E is an O(4) rotation and a is an Euclidean space-time displacement.
The construction of the physical Hilbert space from Euclidean Green functions was given by Osterwalder and

Schrader [2][3]. A simpler construction in terms of the generating functional was given by Fröhlich[4]. We use
Fröhlich’s approach to illustrate the construction using the generating functional for a “scalar field”. To construct the
physical Hilbert space Osterwalder and Schrader select a Euclidean time axis and restrict the space of test functions,
f(τ,x), to real-valued Schwartz functions of four Euclidean space-time variables that vanish for negative Euclidean
times;

S+ = {f(τ,x) ∈ S|f(τ,x) = 0 τ < 0}. (2.4)

We call elements of S+ positive-time test functions. In what follows all test functions will be assumed to be positive-
time test functions unless stated otherwise.
Osterwalder and Schrader introduced the Euclidean time-reflection operator Θ defined by

Θf(τ,x) = f(−τ,x). (2.5)
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The generating functional, Z[f ], is reflection positive if for any finite sequence of real positive-time test functions,
{f1 · · · fn} ∈ S+, the n× n matrix,

Mij := Z[fi −Θfj ] ≥ 0, (2.6)

is non-negative. This condition is not automatic. It holds for generating functionals for free fields and for some
lattice truncations of interacting theories. In general it is a requirement on physically acceptable models. One of
the challenges in implementing this formalism is to find a robust class of reflection positive generating functionals.
In what follows we assume this condition is satisfied; in applications it may only be satisfied approximately or when
restricted to a subspace.
In Fröhlich’s construction a dense set of normalizable vectors in the physical Hilbert space is represented by complex

wave-functionals of the form

B(φ) =

nb∑

j=1

bje
iφ(fj) (2.7)

where bi are complex numbers and fj(τ,x) are real positive-time test functions. The argument φ can be thought of as
an abstract integration variable. This interpretation is motivated by the path integral representation of the generating
functional, (2.1).
The physical scalar product of two such wave-functionals, B(φ), and

C(φ) =

nc∑

k=1

cke
iφ(gk) (2.8)

is given directly in terms of the generating functional by

〈B|C〉 :=
nb,nc∑

j,k

b∗jckZ[gk −Θfj ]. (2.9)

Reflection positivity, (2.6), is equivalent to the statement that vectors have positive length

〈B|B〉 ≥ 0. (2.10)

The physical Hilbert space is obtained by identifying wave functionals whose difference has zero norm and completed
by adding convergent sequences of wave functionals.
The inner product (2.9) is the physical quantum mechanical scalar product, even though the input only involves

the Euclidean generating functional and positive-time Euclidean test functions! No analytic continuation is used. An
explicit illustration of this relationship in given in section six for free scalar particles in eq. (6.4) and free spin 1/2
particles in eq. (6.6).
While the computation of the exact generating functional is equivalent to solving the field theory, models of

generating functionals are easily constructed. For example, consider the representation of the generating functional
in terms of connected Euclidean Green functions. If we use the linked cluster theorem to isolate the contribution to
the generating functional from the connected n-point Green function (see 2.1),

Zcn[f ] := e
(in)
n! S

c
n(f,··· ,f), (2.11)

then the full generating functional is the product

Z[f ] =
∏

n

Zcn[f ]. (2.12)

It follows that the matrix that gives the quantum mechanical scalar product, (2.6), has the decomposition

Mij := Z[fi − θfj ] =
∏

n

Zcn[fi − θfj ] =
∏

n

Mn
ij (2.13)

which is an infinite Schur product of the matrices Mn
ij . A sufficient condition for positivity of Mij is that each Mn

ij

in the Schur product is positive (this is because the Schur product can be expressed as the restriction of the tensor
product of positive operators to the diagonal subspace).
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Thus, one strategy for constructing models is to use the representation (2.13) to build models starting with the
free field two-point function. Zc2 [f ] is reflection positive if it is the generating functional for a free field. Including a
reflection positive Zc4 [f ] in the Schur product (2.13) would give a generating functional for an interacting many-body
theory with two-body interactions, where the dynamical input is a model connected Euclidean 4-point function,

Zmodel[f ] = Zc2 [f ]Z
c
4 [f ]. (2.14)

Reflection positivity of M4
ij means that

Zc4 [fi − θfj ] = e
i4

4! S
c
4(fi−θfj ,fi−θfj ,fi−θfj ,fi−θfj) (2.15)

is a positive matrix for any finite sequence of positive-time test functions. The model can be extended by including
additional factors, Zcn[f ].

III. RELATIVISTIC INVARIANCE

Poincaré invariance of a quantum theory implies the existence of a unitary representation of the Poincaré group on
the physical Hilbert space [5]. Equivalently there should be a set of ten infinitesimal generators of the Poincaré group
represented by self-adjoint operators satisfying the Poincaré commutation relations.
The relation between the complex orthogonal group and the complex Lorentz group is relevant for constructing

Poincaré generators. To understand the connection between O(4) and the Lorentz group consider the matrices

X =

(
t+ z x− iy
x+ iy t− z

)

X =

(
iτ + z x− iy
x+ iy iτ − z

)

. (3.1)

A simple calculation shows that det(X) = t2 − x2 and det(X) = −(τ2 + x2), which are (−) the Minkowski and
Euclidean invariant (distances)2 respectively. Both determinants are preserved under the linear transformations

X → X ′ = AXBt X → X′ = AXBt det(A) = det(B) = 1 (3.2)

where A and B are complex matrices with unit determinant. In general the pair (A,B) defines a complex Lorentz
or complex O(4) transformation. Both (A,B) and (−A,−B) correspond to the same linear transformation of the
coordinates. In general, the transformed coordinates may become complex, but the determinant remains real and
unchanged. If B = A∗ then the transformation X ′ = AXBt is a real Lorentz transformation; if A,B ∈ SU(2) then
the transformation X′ = AXBt is a real O(4) transformation.
When A,B ∈ SU(2) the transformation X ′ = AXBt is a six parameter subgroup of the complex Lorentz group.

While this represents a real Euclidean transformation on the Euclidean Hilbert space (without the Euclidean time
reversal Θ), it defines a complex ten-parameter subgroup of the Lorentz group on the physical Hilbert space. It is
possible to extract the ten Poincaré generators on the physical Hilbert space by considering the infinitesimal forms of
these complex Lorentz transformations.
In order to get a unitary representation of the real Poincaré group on the physical Hilbert space the generators

must be self-adjoint. It turns out that the Θ in the physical scalar product breaks Euclidean invariance in just the
right way to ensure that all of the Poincaré generators are self-adjoint.
We begin by defining real Euclidean transformations on wave functionals by

(T (E, a)B) (φ) =

nb∑

j=1

bje
iφ(fj,E,a) fj,E,a(x) := fj

(
E−1(x− a)

)
. (3.3)

These transformations leave the generating functional invariant, Z[f ] = Z[fE,a]. In general they will not preserve the
positive-time constraint.
Before we use these transformations to construct Poincaré generators on the physical Hilbert space, it is useful to

note that the wave functionals can also be considered as multiplication operators. For example the operator B(φ)
acting on the wave functional C(φ) is the wave functional D(φ) defined by

D(φ) := B(φ)C(φ) =

nb∑

j=1

nc∑

k=1

bjcke
iφ(fj+gk). (3.4)

These algebraic properties will be used when we formulate the scattering asymptotic conditions.
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Next we consider the real Euclidean transformations, T (E, a), as complex Poincaré transformations on the physical
Hilbert space. It is useful to treat pure rotations, space translations, Euclidean time translations, and Euclidean
rotations in planes containing the time axis separately. The Euclidean time reversal Θ operator does not commute
with the last two transformations.
We define action of the Poincaré generators on the wave functionals considered as operators by:

[P, B(φ)] = −i ∂
∂a

(T (I, (0, a))BT (I, (0,−a)))(φ)|a=0
:= −i

nb∑

j=1

bj
∂

∂a
e
iφ(fj,I,(0,a))

|a=0
, (3.5)

[J · n̂, B(φ)] = −i ∂
∂ξ

(T (R(n̂, ξ), 0)BT (R(n̂,−ξ), 0))(φ)|ξ=0
:= −i

nb∑

j=1

bj
∂

∂ξ
e
iφ(fj,(R(n̂,ξ),0))

|ξ=0
(3.6)

where R(n̂, ξ) is an ordinary rotation about the n̂ axis by an angle ξ. For the Hamiltonian we require that β > 0 in
T (I, (β, a)) to preserve the positive-time support condition:

[H,B(φ)] = − ∂

∂β
(T (I, (β, 0))BT (I, (−β, 0)))(φ)|β=0

:= −
nb∑

j=1

bj
∂

∂β
e
iφ(fj,I,(β,0))

|β=0
. (3.7)

For the boost generators we first restrict the support of the test functions fj in the wave functionals to a cone
symmetric about the positive Euclidean time axis that makes an angle 0 ≤ χ < π/2 with the Euclidean time axis

Sχ,+ := {f ∈ S+ | f(τ,x) = 0, tan−1(
τ

|x|) ≥ χ}. (3.8)

This ensures that the support condition is preserved for sufficiently small rotations. On these wave functionals we
consider the Euclidean rotation T (Re(n̂, ξ), 0) in the n̂− τ plane through angle ξ < π/2− χ:

fj,ξ,n̂(τ,x) := fj(τ
′,x′) ff ∈ Sχ,+, (3.9)

with

τ ′ = τ cos(ξ)− xn̂ sin(ξ) x′n̂ = xn̂ cos(ξ) + τ sin(ξ). (3.10)

The restrictions on the parameters ξ and χ ensure that initial and final vectors are in the physical Hilbert space. On
these vectors the rotationless boost generator is defined by

[K · n̂, B(φ)] = − ∂

∂ξ
(T (Re(n̂, ξ), 0)BT (Re(n̂,−ξ), 0))(φ)|ξ=0

:= −
nb∑

j=1

bj
∂

∂ξ
e
iφ(fj,(Re(n̂,ξ),0))

|ξ=0
(3.11)

where Re(n̂, ξ) is the Euclidean space-time rotation (3.10). Note the absence of the i in the expressions for H and K.
This is compensated for by the Θ that appears in the physical scalar product.
Direct calculations show that the ten operators H,P,J,K satisfy the Poincaré commutation relations and are

formally Hermitian on the physical Hilbert space. Self-adjointness of H,P,J follows because these operators are
generators of either one parameter unitary groups or a contractive Hermitian semigroup. The contractive nature
of time Euclidean time evolution is proved using reflection positivity and positivity properties of the generating
functional[6]. This also ensures that Hamiltonian satisfies the spectral condition:

H ≥ 0. (3.12)

Self-adjointness of K can be established by verifying that rotations in Euclidean space-time planes define local sym-
metric semigroups on the model Hilbert space [7][8][9].
Matrix elements of the Poincaré generators in normalizable states can be expressed directly in terms of the generating

functional

〈B|H|C〉 = − ∂

∂β





Nb∑

j=1

Nc∑

k=1

b∗jckZ[gk,I,(β,0) −Θfj ]





β=0

, (3.13)
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〈B|P|C〉 = −i ∂
∂a





nb∑

j=1

nc∑

k=1

b∗jckZ[gk,I,(0,a) −Θfj ]





a=0

, (3.14)

〈B|n̂ · J|C〉 = −i ∂
∂ξ





bb∑

j=1

nc∑

k=1

c∗jdkZ[gk,R(n̂,ξ),0 −Θfj ]





ξ=0

, (3.15)

〈B|n̂ ·K|C〉 = − ∂

∂ξ





bb∑

j=1

nc∑

k=1

c∗jdkZ[gk,Re(n̂,ξ),0 −Θfj ]





ξ=0

. (3.16)

The formal Hermiticity of the generators defined above can be deduced from these expressions. For example

〈B|H†|C〉 = 〈C|H|B〉∗ =

− ∂

∂β





Nb∑

j=1

Nc∑

k=1

b∗jckZ[−fk,I,(β,0) +Θgj ]





β=0

=

− ∂

∂β





Nb∑

j=1

Nc∑

k=1

b∗j ckZ[−fk +Θgj,I,(β,0)]





β=0

=

− ∂

∂β





Nb∑

j=1

Nc∑

k=1

b∗j ckZ[−Θfk + gj,I,(β,0)]





β=0

=





Nb∑

j=1

Nc∑

k=1

b∗jckZ[Θgj,I,(β,0) − fk]





β=0

= 〈B|H|C〉 (3.17)

where we have used reality, Z∗[f ] = Z[−f ], Euclidean invariance, and properties of Θ. Hermiticity of the rotationless
boost generators follows using the same argument. The Euclidean time-reversal operator, Θ, plays the role of the
missing factor of i when integrating by parts.
The commutation relations can be verified by explicit computation, however they also follow as a direct consequence

of the relation between complex O(4) and the complex Lorentz group.
Matrix elements of e−βH can also be directly computed in terms of the generating functional:

〈B|e−βH |C〉 =
Nb∑

j=1

Nc∑

k=1

b∗j ckZ[gk,I(β,0) −Θfj ]. (3.18)

These matrix elements will be used to compute scattering cross sections. They only involve elementary quadratures.
Matrix elements of the mass Casimir operator can be expressed in terms of the Poincaré generators

M2 = H2 −P2 (3.19)

〈B|M2|C〉 :=
(
∂2

∂β2
+

∂2

∂a2

) Nb∑

j=1

Nc∑

k=1

b∗j ckZ[gk,I(β,a) −Θfj ]|β=a=0
. (3.20)

Finally we note that the real Euclidean transformations, T (E, a) can be formally expressed in terms of the Poincaré
generators on the physical Hilbert space by

T (I, (β, a)) = e−βH+ia·P T (R(n̂, ψ), 0) = eiJ·n̂ψ T (Re(n̂, ψ), 0) = eK·n̂ψ. (3.21)
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Thus Euclidean time evolution and rotations in Euclidean space-time planes look like imaginary time evolution and
Lorentz transformation with imaginary rapidities.
The operators defined in (3.5,3.6,3.7 and 3.11) are self-adjoint operators on the physical Hilbert space that satisfy

the Poincaré commutation relations. Formally they can be exponentiated to give a unitary representation of the
Poincaré group on the physical Hilbert space, but, as we will see in the next two sections, this exponentiation is never
needed.
The expressions for the matrix elements of all of the Poincaré generators in normalizable states (3.13-3.16) are

directly expressed in terms of the Euclidean generating functional and Euclidean test functions. Analytic continuation
is not used.

IV. PARTICLES

Given the dense set of wave functionals of the form (2.7) and the physical scalar product (2.9) the Gram-Schmidt
method can be formally used to construct a complete orthonormal set of wave functionals Bn(φ):

〈Bn|Bm〉 = δmn. (4.1)

Since the orthonormal wave functionals are complete, normalizable one-particle states are linear combinations of these
orthonormal wave functionals with square summable coefficients:

Ψλ(φ) =
∑

n

bnBn(φ)
∑

n

|bn|2 <∞ (4.2)

that are eigenstates of the mass square Casimir operator (3.19) of the Poincaré group with eigenvalue λ2 in the point
spectrum:

∑

n

〈Bm|M2|Bn〉bn =
∑

n

〈Bm|(H2 −P2)|Bn〉bn = λ2δmnbn. (4.3)

These normalizable states are infinitely degenerate because there is an associated wave packet in the particle’s
momentum and spin. For suitable wave packets these normalizable eigenstates can be decomposed into simultaneous
eigenstates of mass and linear momentum using translations and Fourier transforms:

Ψλ,p(φ) =

∫
da

(2π)3/2
e−ip·a (T (0, a)Ψλ) (φ). (4.4)

These wave functionals can be given a plane-wave normalization

〈Ψλ,p′ |Ψλ,p〉 = δ(p′ − p). (4.5)

The simultaneous eigenstates of mass and linear momentum can be further decomposed into eigenstates of spin,
and z-component of spin using

Ψλ,j,p,µ(φ) =

j
∑

ν=−j

∫

S(U2)

dR
(
T (R, 0)Ψλ,R−1p

)
(φ)Dj∗

µν(R) (4.6)

where the integral is over SU(2) and dR is the SU(2) Haar measure. This projection gives the canonical spin. This
is the spin measured in the rest frame when the particle is transformed to the rest frame by a rotationless Lorentz
transformation. Different projections can be used to get states of different helicities or light-front spins. The integral
in equation (4.6) vanishes if there are no states of mass λ and spin j.
The normalization of the states can be chosen so

〈Ψλ,j′,p′,µ′ |Ψλ,j,p,µ〉 = δ(p′ − p)δj′jδµ′µ. (4.7)

The state |Ψλ,j,p,µ〉 is a single-particle state if λ is in the discrete spectrum of M .
Since we started from a linear combination of wave functionals, the single-particle state is formally represented by

a single-particle wave functional

Ψλ,j,p,µ(φ). (4.8)
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In general it is not trivial to compute finite Poincaré transformations in terms of the generators, however if the
one-particle state is a non-degenerate state (i.e. the theory has no other particles with the same mass and spin) then
this state necessarily transforms irreducibly with respect to the dynamical unitary representation of the Poincaré
group introduced in the previous section. It follows that

〈B|U(Λ, a)|Ψλ,j,p,µ〉 =

〈B|ψλ,p′,µ′〉
√

ωλ(p′)

ωλ(p)
e−iωλ(p

′)a0+ip′·aDj
µ′µ[Λ

−1
c (

p′

λ
)ΛΛc(

p

λ
)] (4.9)

where

(p′)j = Λj0ωλ(p) + Λjkp
k ωλ(p) =

√

λ2 + p2 (4.10)

and Λc(
p

λ ) is a rotationless Lorentz boost that transforms to a frame where a particle of mass λ is at rest to one where
it has linear momentum p.
Normalizable single-particle states have the form

Ψλ,j,f (φ) =

∫

dp

j
∑

µ=−j

f(µ,p)Ψλ,j′,p′,µ′(φ) (4.11)

〈Ψλ,j,g|Ψλ,j,f 〉 =
∫

dp

j
∑

µ=−j

g∗(µ,p)f(µ,p) (4.12)

where the integral is over the 3-momentum, p. In this formalism there is no distinction between elementary particles
and bound states. They describe particles because they have discrete mass eigenvalues.
What is interesting is that it is possible to construct the Hilbert space, Poincaré generators, find single-particle states

and perform finite Poincaré transformations on single-particle states using only the Euclidean generating functional,
and positive-time test functions without performing any analytic continuation.

V. SCATTERING THEORY

In a quantum theory scattering states are solutions of the Schrödinger equation that evolve into asymptotically
separated non-interacting single-particle states or bound states. In quantum field theory there is no free dynamics
on the physical Hilbert space, so with the exception of one-particle states, there are no states of non-interacting
particles on the physical Hilbert space. However, because of cluster properties, there are states that look like states
of asymptotically separated particles. These states evolve like systems of free particles until the particles get close
enough to interact.
One natural framework to formulate scattering asymptotic conditions that is applicable in both quantum mechanics

and quantum field theory is the two-Hilbert space formulation of scattering [10]. In this framework a separate
many-particle Hilbert space of non-interacting particles is introduced. This space is used to label the states of the
asymptotically stable particles. There is a mapping from this asymptotic space to the physical Hilbert space that
adds the correct description of the internal structure of the particles on the physical Hilbert space when the particles
are asymptotically separated.
In the asymptotic Hilbert space composite particles are treated like elementary particles with a given mass, spin,

and momentum distribution. The internal structure of the composite particle is contained in the mapping to the
physical Hilbert space. In field theories all particles have internal structure due to their self-interactions. In the
non-relativistic case the mapping from the asymptotic Hilbert space to the physical Hilbert space has the form

∏

i

|(λi, ji)pi, µi〉 (5.1)

where the product is a symmetrized tensor product of possibly composite particle states with a given momentum
and spin. Normalizable states in the physical Hilbert space are obtained when this mapping is integrated over square
integrable functions of the momenta and magnetic quantum numbers of each asymptotically stable particle. In this
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way composite particles are treated as elementary particles with mass λi and spin ji in the asymptotic Hilbert space,
while the mapping adds the internal structure of the asymptotically separated bound states in the physical Hilbert
space.
In quantum field theory there are two standard approaches to scattering. The most practical is the LSZ treatment

of scattering, which formulates the scattering asymptotic conditions using interpolating fields that create states from
the vacuum that have the same quantum numbers as single-particle states. It has the advantage that the asymptotic
conditions can be formulated without solving the one-body problem. The price for this advantage is that weak limits
must be used to calculate scattering matrix elements. The second approach is Haag-Ruelle scattering [11][12] which
uses non-local fields that create only one-particle states from the vacuum. Haag-Ruelle scattering is the natural
generalization of standard quantum mechanical scattering in the field theory setting and it has a natural two-Hilbert
space formulation[13][14]. Haag-Ruelle scattering states are defined by strong limits, just like in the non-relativistic
case. Haag-Ruelle scattering is not commonly used in applications because it requires the solution of the one-body
problem on the physical Hilbert space as input. In this work the one-body solutions discussed in the previous section
are used to formulate the Haag-Ruelle asymptotic conditions.
We begin with a summary of the two-Hilbert space formulation of Haag-Ruelle scattering in Minkowski field theory.

For simplicity we consider a scalar field theory with a single-particle state of mass λ. To construct the mapping from
the asymptotic Hilbert space to the physical Hilbert space the Fourier transform of the field, φ̃(p), is multiplied by a
smooth function ρ(p2) of the square of the Minkowski four momentum that is one when p2 = −λ2 (the mass of the
asymptotic particle) and identically vanishes when −p2 is in the rest of spectrum of M2.

The product of the Fourier transform of the field and the smooth invariant function, φ̃ρ(p) := ρ(p2)φ̃(p), is then
Fourier transformed back to configuration space. The resulting field φρ(x) is covariant, but no longer local. It has
the property that when it is applied to the physical vacuum it creates only the single-particle eigenstate of the mass
operator with mass λ. Because of the multiplication by ρ(p2), φρ(x) is a well-behaved operator-valued function of
time when it is smeared over a test function in three space variables.
The part of φρ(x) that asymptotically looks like a creation operator is extracted by taking the linear combination

of φ and φ̇ below:

A(f, t) := −i
∫

φρ(x)
↔

∂0 f(x)dx (5.2)

where f(x) is a smooth, mass λ, positive-energy solution of the Klein-Gordon equation. Here smooth means that the
Fourier transform of the t = 0 solution is a smooth function with compact support in the three momentum. Haag
and Ruelle show that the N -particle scattering states in the physical Hilbert space exist and are given by the strong
limits

|Ψ±(f1, · · · fN )〉 = lim
t→±∞

A(fN , t) · · ·A(f1, t)|0〉. (5.3)

Next we express the limit (5.3) in a two Hilbert space framework that can also be used in the wave functional
representation of the physical Hilbert space. First we write A(f, t) defined in (5.2) by expressing the time derivative
of the field using the commutator with the Hamiltonian and the time derivative of the Klein-Gordon solution by an
energy factor:

A(f, t)|0〉 =

− i

(2π)3/2

∫

dx dpeiHt (i[H,φρ(0,x)]− iωλ(p)φρ(0,x)) e
−iHt|0〉e−iωλ(p)t+ip·xf̃(p) (5.4)

where f̃(p) is a test function in the three momentum. Integrating over x gives a partial Fourier transform of the field
so (5.2) becomes

A(f, t)|0〉 = eiHt
∫

([H,φρ(0,p)]− ωλ(p)φρ(0,p)) |0〉f̃(p)e−iωλ(p)tdp. (5.5)

The time-dependence is in the quantities eiHt and e−iωλ(p)t, where the second factor gives the time dependence of the
positive-energy solution the Klein-Gordan equation. This is expressed as an operator that acts on the wave packet
f̃(p) of a free particle of mass λ. It follows that (5.2) can be interpreted as a mapping from a dense subset of the
Hilbert space of square integrable functions, f(p), to the physical Hilbert space

A(f, t)|0〉 = eiHtA1e
−iH0t|f〉 (5.6)
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where H0 = ωλ(p) is the energy of the asymptotic particle and

A1(p) := ([H,φρ(0,p)]− ωλ(p)φρ(0,p)) . (5.7)

By repeating this analysis N -times the products that appear in the Haag-Ruelle formula,

∏

A(f1, t) · · ·A(fN , t)|0〉, (5.8)

can be expressed as mappings from an N -particle subspace of the Fock space of non-interacting particles of mass λ
to the physical Hilbert space:

∏

A(f1, t) · · ·A(fN , t)|0〉 = eiHt
∫

AN (p1, · · · ,pN )e−i(
P

ωλ(pi))tf1(p1) · · · fN (pN )dp1 · · · dpN = (5.9)

eiHt
∫

AN (p1, · · · ,pN )e−iH0tf1(p1) · · · fN (pN )dp1 · · · dpN (5.10)

where

AN (p1, · · · ,pN ) :=
∏

A1(pi)|0〉. (5.11)

Equation (5.9) has the form

eiHtANe
−iH0t|f〉 (5.12)

where H0 =
∑
ωλ(pi) is the Hamiltonian for N non-interacting particles of mass λ.

In this notation the Haag-Ruelle theorem, (5.3), has the two-Hilbert space form:

lim
t→±∞

‖|Ψ±(f)〉 − eiHtANe
−iH0t|f〉‖ = 0. (5.13)

Following what is done in standard quantum mechanical multichannel scattering theory, wave operators are defined
by

ΩN±|f〉 := lim
t→±∞

eiHtANe
−iH0t|f〉 = |Ψ±(f)〉. (5.14)

In the field theory case [12], these wave operators satisfy relativistic intertwining relations

U(Λ, a)ΩN± = ΩN± (⊗Ui(Λ, a)) (5.15)

that relate the dynamical representation of the Poincaré group with the tensor product of n single-particle irreducible
representations on the n-particle sector of the asymptotic Fock space.
The scattering states can be expressed using the representation of the physical Hilbert space in terms of wave

functionals in section 2. The relevant observation is that

φ̃ρ(p)|0〉 (5.16)

is a single-particle state of linear momentum p and mass λ. The wave functionals (2.7) of section 2 are vectors in
the physical Hilbert space, even though they are expressed in terms of Euclidean test functions and the Euclidean
generating functional. The wave functional,

Ψλ,j′,p′,µ′(φ), (5.17)

defined in the previous section, creates a single-particle state of linear momentum p and mass λ.
Thus, if we make the replacements

φ̃ρ(p) → Ψλ,j′,p′,µ′(φ), (5.18)

in the two-Hilbert space Haag-Ruelle injection operator, AN (5.11), then it becomes the wave functional

AN (p1, µ1, · · ·pN , µN )(φ) :=
∏(

[H,Ψλi,j′i,p
′

i,µ
′

i
]− ωλi

(pi)Ψλi,j′i,p
′

i,µ
′

i

)
(φ) (5.19)
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where this functional allows for the possibility of scattering of composite particles with arbitrary spin.
The proof of the Haag-Ruelle theorem does not apply to models; however for models the existence of channel wave

operators can be established directly by a generalization of Cook’s method[19], which gives the following sufficient
condition for the existence of N-particle wave operators:

∫ ∞

0

‖(HAN −ANH0)e
±iH0t|f〉‖ <∞ (5.20)

while Lorentz invariance, (5.19), follows if

lim
t→∞

‖(KAN −ANK0)e
±iH0t|f〉‖ = 0. (5.21)

Expression (5.19) leads to the following formal expression for S-matrix elements between normalizable states:

Sfi = 〈Ψ+|Ψ−〉 =

lim
t→∞

∫

f∗1 (p1, µ1) · · · f∗M (pM , µM )ei
P

ωλi
(pi)t×

〈A†
M (p1, µ1, · · · ,pM , µM )|e−2iHt|AN (p′

1, µ
′
1, · · · ,p′

N , µ
′
N )〉×

ei
P

ωλi
(p′

i)tf ′1(p
′
1, µ

′
1) · · · f ′N (p′

N , µ
′
N )

∏

ij

dpidp
′
j (5.22)

where the scalar product is expressed in terms of the Euclidean generating functional. This expression has the form

Sfi = lim
t→∞

〈B(t)|e−2iHt|C(t)〉. (5.23)

While eq. (5.23) involves operators that are defined in the wave functional representation, the real time evolution
operator, e−2iHt, is difficult to calculate in this representation.
Fortunately this quantity can be replaced by a more easily computable quantity using the Kato-Birman invariance

principle [15] [16][13][14] which identifies the limits

Ω±|f〉 := lim
t→±∞

eiHtANe
−iH0t|f〉 = lim

t→±∞
eig(H)tANe

−ig(H0)t|f〉 (5.24)

for g(x) in a suitable class of admissible functions, provided both limits exist. The content of this result is that in the
large-time limit the surviving terms correspond to situations where both exponents oscillate in phase, which requires
that both the dynamical and asymptotic energies are the same. Replacing H and H0 by functions of H resp. H0 does
not change this result provided the function is increasing, with suitable smoothness. A useful choice for g(x) that is
in the class of admissible functions is

g(x) = −e−βx β > 0. (5.25)

For this choice the expressions for the wave operator becomes

Ω±|f〉 := lim
n→±∞

e−ine
−βH

ANe
ine−βH0 |f〉 (5.26)

where the time parameter t has been replaced by a dimensionless integer n.
This means that the expression (5.23) for the S matrix elements can be replaced by

Sfi = 〈Ψ+|Ψ−〉 = lim
n→∞

∫

f∗1 (p1, µ1) · · · f∗k (pM , µM )e−ine
−β(

P

ωλi
(pi)×

×〈A†
M (p1, µ1, · · · ,pM , µM )|e2ine−βH |AN (p′

1, µ
′
1, · · · ,p′

N , µ
′
N )〉

×e−ine
i

P

ωλi
(p′

i)

f ′1(p
′
1, µ

′
1) · · · f ′M (p′

M , µ
′
M )

∏

ij

dpidp
′
j . (5.27)
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The virtue of this expression is that for large fixed n, e2inx can be uniformly approximated by a polynomial for
x ∈ [0, 1]

|e2inx − Pn,ǫ(x)| < ǫ ∀x ∈ [0, 1]. (5.28)

Because the spectrum of e−βH is in the interval [0, 1] and the approximation is uniform the operator satisfies the same
inequality

|‖e2ine−βH − Pn,ǫ(e
−βH)|‖ < ǫ (5.29)

where the norm on the left is the uniform or operator norm and Pn,ǫ(x) and ǫ are the polynomial and error that
appear in equation (5.28).
Using the polynomial approximation in (5.27) gives

Sfi = lim
n→∞

∑

m

dm(n)〈B(n)|e−βmH |C(n)〉. (5.30)

where dm(n) are the coefficients of the polynomial in (5.29). This is useful because matrix elements of powers of
e−mβH between wave functionals B(n)[φ] and C(n)[φ] can be expressed directly in terms of the generating functional
using (3.18).
While time-dependent methods are not traditionally used in scattering calculations, they have been used successfully

in non-relativistic few-body calculations [17]. The advantage of the above formalism is that the entire calculation can
be performed using only Euclidean methods.
In order to calculate sharp-momentum transition matrix elements it is necessary to use narrow wave packets. If the

transition matrix is sufficiently smooth as a function of momentum, it will factor out of the S-matrix element, allowing
one to define scattering observables that do not depend on the details of the wave packet. This is an assumption in
the standard formulation relating time-dependent and time-independent scattering [18]. For sharp initial and final
wave packets the on-shell transition matrix elements can be approximated by:

〈p1, µ1, · · ·pN , µN |T |p1, µ1,p2, µ2〉

≈ 〈B|S|C〉 − 〈B|C〉
−2πi〈B|δ4(pf − pi)|C〉 . (5.31)

After the wave packets are fixed the limit n → ∞ in (5.27) can be investigated. For a large enough n the term in
the limit, (5.27), which has the form

〈B(n)|e−2ine−βH |C(n)〉, (5.32)

will be a good approximation to 〈B|S|C〉 in (5.31) .

For this value of n, e−2ine−βH

can then be uniformly approximated by a polynomial in e−βH which can be evaluated
using Euclidean methods.

〈B(n)|e−2ine−βH |C(n)〉 ≈
∑

m

dm(n)〈B(n)|e−mβH |C(n)〉. (5.33)

Combining these three approximations gives an approximation to sharp-momentum transition matrix elements using
matrix elements of e−nβH in normalizable states as input.
Once the scattering states are known their Poincaré transformation properties are determined by equation (5.15)

and the transformation properties (4.9) of the single-particle states.
It is useful summarize the steps needed to calculate transition-matrix elements.

1. Solve the one-body problem. These are eigenstates of the mass-square operator with discrete eigenvalues: Ψ(φ).

2. Use translational and rotational covariance to construct Ψλ,j,p,µ(φ).

3. Choose a sufficiently narrow set of single asymptotic-particle wave packets f(pi, µi). The width must be suffi-
ciently narrow to factor the transition matrix elements out of the S-matrix elements.
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4. Use the one-body solutions to construct the two-Hilbert space mappings

An(f) :=
∏

i

∫

([H,Ψλ,j,pi,µi
]− ωλ(pi)Ψλ,j,pi,µi

) f(pi, µi)dpie
ine−β(

P

ωλ(pi)

. (5.34)

5. Pick a large enough n.

6. Make a polynomial approximation to e2inx for x ∈ [0, 1]

e2inx ≈ P2n,ǫ(x). (5.35)

7. Calculate

Sfi = 〈An(f ′)|P2n,ǫ(e
−βH)|An(f ′)〉 (5.36)

8. Approximate 〈p1, µ1, · · ·pm, µm|T |p1, µ1,p2, µ2〉 using (5.31).

The result can be expressed directly in terms of the Euclidean generating functional using (3.18).
The discussion above assumes that the starting point is an Euclidean generating functional. For models the

requirement that all of these approximations converge are model assumptions that restrict properties of the model
generating functional or Green functions. These are reasonable requirements, since the model Green functions are
modeled after the field theoretic Green functions, which are expected to have these properties.
The usual difficulties of realizing the Poincaré symmetry are replaced by the requirement of finding reflection

positive Euclidean invariant Green functions or generating functionals. It is interesting that if the Green function is
given perturbatively, the perturbative Green function defines a different model. The scattering matrix constructed in
this model will not be perturbative, and may even be unitary.
For the simple kinds of two-body models discussed in section VII it is easy to see that the generalized Cook

condition (5.20) translates into regularity properties of the connected four-point function. This is because ‖(HA2 −
A2H0)e

−iH0t|f〉‖ is linear in the four-point Euclidean Green function and vanishes when the Green function is replaced
by the free four-point Euclidean Green function. What controls the convergence of the integral in (5.20) is the difference
between the full and free four-point Euclidean Green functions, which is the connected Euclidean four-point function.
Finally we note that even though the calculation of the scattering observables are based on Euclidean quantities,

the mechanism that leads to the convergence of the wave operators is in-phase oscillations, not an exponential fall-off.
The scattering states involve strong limits and replace interpolating operators by operators that create single-particle
states out of the vacuum. The factor β that appears in the application of the invariance principle serves as a parameter
the sets the energy scale of the reaction.
As a result, these calculations are not subject to some of the difficulties encountered in scattering calculations based

on a Euclidean lattice discretization[20], however it is necessary to be able to accurately compute matrix elements of
e−βH , which cannot be done easily on a lattice.

VI. GREEN FUNCTION REPRESENTATION

While the Euclidean generating functionals provide a concise and elegant description of the theory as well as a
consistent treatment of the few and many-body problems, the direct Green function approach of Osterwalder and
Schrader may be more appropriate for constructing phenomenological few-body models.
In the Green function approach the representation of the physical Hilbert space in terms of Euclidean wave func-

tionals is replaced by sequences of positive-time support functions of the form:

B(φ) → 〈x|f〉 :=








f0
f1(x11)

f2(x21, x22)
...








(6.1)

with an inner product that is expressed in terms of multi-point Euclidean Green functions.

〈g|f〉 :=
∑

mn

∫

dx1 · · · dxmdyn · · · dy1g∗m(Θx1 · · ·Θxm)Sm+n(x1, · · · , xm, yn · · · , y1)fn(y1, · · · , yn). (6.2)
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In the Green function representation the support of fn(y1, · · · , yn) is for 0 < y01 < y02 < · · · . Note that the order of
the support of the Euclidean times is identical to the order of the fields in the corresponding Minkowski Wightman
function. Reflection positivity is the condition

〈f |f〉 ≥ 0 (6.3)

and 〈g|f〉 is the physical quantum mechanical scalar product.
The relation between the Euclidean and Minkowski scalar products is illustrated for the case of a free Euclidean

two-point function, one for spin zero and one for spin 1/2:

〈f |f〉 =
∫

f(x)S2(Θx, y)f(y)d
4xd4y =

=
1

(2π)4

∫

d4xd4yd4pf(x)
eip·(θx−y)

p2 +m2
f(y)

=
1

(2π)4

∫

d4xd4yd4pf(x)
e−ip0·(x0+y0)+i~p·(~x−~y)

(p0 + iωm(~p ))(p0 − iωm(~p ))
f(y)

=

∫

d3p
|g(~p)|2
2ωm(~p )

≥ 0 (6.4)

where

g(~p) :=
1

(2π)3/2

∫

d4yf(y)e−ωm(~p)y0−i~p·~y. (6.5)

For spin 1/2:

〈f |f〉 =
∫

f(x)γ0S2(Θx, y)f(y)d
4xd4y =

=
1

(2π)4

∫

d4xd4yd4pf(x) eip·(θx−y)γ0
m− p · γe
p2 +m2

f(y)

=

∫

g†(~p)
Λ+(p)

(2π)3
g(~p)d3p (6.6)

where

Λ+(p) :=
ωm(~p) + γ0~γ · ~p−mγ0

2ωm(~p)
. (6.7)

We see clearly that in both case the Euclidean integrals with the Euclidean time reversal are identical to the corre-
sponding Minkowski scalar products. The equality shows that analytic continuation is not required to compute the
physical scalar product in the Euclidean representation.
In the Green-function representation the formulas for the Poincaré generators are replaced by

〈x|H|f〉 := {0, ∂

∂x011
f1(x11),

(
∂

∂x021
+

∂

∂x022

)

f2(x21, x22), · · · } (6.8)

〈x|P|f〉 := {0,−i ∂

∂ ~x11
f1(x11),−i

(
∂

∂ ~x21
+

∂

∂ ~x22

)

f2(x21, x22), · · · } (6.9)
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〈x|J|f〉 := {0,−i~x11 ×
∂

∂~x11
f1(x11),−i

(

~x21 ×
∂

∂~x21
+~x22 ×

∂

∂~x22

)

f2(x21, x22), · · · } (6.10)

〈x|K|f〉 := {0,
(

~x11
∂

∂x011
− x011

∂

∂~x11

)

f1(x11),

(

~x21
∂

∂x021
− x021

∂

∂~x21
+~x22

∂

∂x022
− x022

∂

∂~x22

)

f2(x21, x22), · · · }. (6.11)

For particles with spin these expression are modified as follows

J :

(

−i~x11 ×
∂

∂~x11

)

→
(

−i~x11 ×
∂

∂~x11
+ ~Σ

)

(6.12)

K :

(

~x11
∂

∂x011
− x011

∂

∂~x11

)

→
(

~x11
∂

∂x011
− x011

∂

∂~x11
+ ~B

)

(6.13)

where

~Σ = i~∇φS(e
−i
2 ~σ·

~φ, e
i
2~σ

t·~φ)aa′ (6.14)

and

~B = ~∇ρS(e
−i
2 ~σ·~ρ, e

−i
2 ~σ

t·~ρ)aa′ . (6.15)

Here S(R1, R2) is a finite dimensional representations of SU(2) × SU(2) associated with the type of field. It is
constructed by expressing the finite dimensional representation of the Lorentz group S(Λ) in terms of SL(2, C)
matrices S(A,A∗) and subsequently replacing A and A∗ by independent unitary matrices, A and B.
For the case of fermions the Euclidean time reversal operator also includes a factor γ0 for each final particle.
The formulas summarized in this section are discussed in more detail in [21].

VII. FEW-BODY MODELS

A typical application where relativistic few-body methods are used is elastic nucleon-nucleon scattering. This is
normally treated using the inhomogeneous Bethe-Salpeter equation. We outline the formulation of this problem in
the Euclidean quantum mechanical representation.
We consider a model Green function of the form

ΘS →








0 0 0 · · · · · ·
0 S2(Θx11, x12) 0
0 0 S4(Θx21,Θx22, x23, x24) 0
... 0 0

. . .







. (7.1)

For this model we assume that only S2 and S4 are non-zero. Furthermore we assume that S2 and S4 are related by
cluster properties:

S4 = S2S2 + Sc = S0 + Sc. (7.2)

The Euclidean Bethe Salpeter kernel is defined by

S−1
4 − S−1

0 = −K. (7.3)

The structure of S2 is determined by covariance up to an unknown Lehmann weight. If the weight is a delta function
in the mass then this is a free field Euclidean Green function. In this case the one-body solutions that are needed
to formulate the scattering problem are trivial. If the Lehmann weight also includes some continuous spectrum then
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it is necessary to solve a one-body problem to formulate the scattering asymptotic condition. To do this we take an
orthonormal set of positive-time test functions and use the Gram-Schmidt method to construct an orthonormal set

〈fn|fm〉 =
∫

dxdyf∗n(Θx)γ0S2(x− y)fm(y) = δmn. (7.4)

Because the invariant Minkowski Green function is defined with a Dirac conjugate field rather than a Hilbert space
adjoint, the γ0 needs to be eliminated from S2 to get the continuation to the Wightman function that serves as the
kernel of the Hilbert space scalar product. This is achieved by including γ0 as the spinor part of the Θ operator.
In this basis one-body solutions have the form

|λ〉 =
∑

n

cn|fn〉 (7.5)

where cn and λ are determined solving the eigenvalue problem for discrete λ2:

λ2cn =
∑

m

(
∂2

∂τ2
+

∂2

∂a2
)(fnγ

0ΘS2fm,I,(τ,a))τ=a=0cm. (7.6)

In this case the Euclidean two-point Green function has the form

S2(x− y) :=
1

(2π)4

∫

d4pρ(m)dm
m− p · γe
p2 +m2

eip·(x−y) (7.7)

where

iγ0e = β = γ0 = −γ0; γie = γi. (7.8)

and

ρ(m) = ρmδ(m− λ) + ρc(m). (7.9)

The matrix elements have the form

(f,Θγ0S2f)

=
1

(2π)4

∫

d4xd4yd4pdmf(x) eip·(Θx−y)γ0
m− p · γe
p2 +m2

ρ(m)f(y)

=

∫

g†(p,m)
Λ+(p,m)

(2π)3
ρ(m)g(~p,m)dpdm (7.10)

where

Λ+(p) :=
ωm(p) + γ0~γ · p−mγ0

2ωm(p)
(7.11)

is the positive-energy Dirac projector and

g(p,m) :=

∫

d4x e−ωm(p)x0−ip·xf(x). (7.12)

Single particle eigenstates of mass, linear momentum and spin are constructed from the mass eigenstates (7.6)

ψλ(x) =
∑

n

cnfn(x) (7.13)

using

ψλ,j,p,µ(x) =
∑

n

cn
1

(2π)3/2

∫
∑

ν

fn(τ, R
−1x− a)e−iR

−1p·xdaDj∗
µν(R)dR (7.14)
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The Haag-Ruelle operators A(p, µ) are

A(p, µ)[x] =
1

(2π)3/2

∫

dp[− ∂

∂β
− ωλ(p)]ψλ,j,p,µ[τ − β,x− ~a]|β=a=0

. (7.15)

The scattering asymptotic states of interest are two-body states. S-matrix elements in normalizable states can be
computed using the methods discussed in section 5. Equation (5.33) is replaced by:

〈g|S|f〉 =

lim
n→∞

∑

m

dm(n)

∫

g(p′
1, µ

′
1)g(p

′
2, µ

′
2)e

ine−β(ωλ(p′

1)+ωλ(p′

2))

A†(p′
1, µ

′
1)[Θx′2]A

†(p′
2, µ

′
2)[Θx′1]γ

0
1γ

0
2

×S4(x
′
2, x

′
2; x1, x2)A(p1, µ1)[x1 − 2mβ]A(p2, µ2)[x2 − 2mβ]eine

−β(ωλ(p′

1)+ωλ(p′

2))×

g(p2, µ2)g(p1, µ1)dp1dp2dp
′
1dp

′
2dx1dx2dx

′
1dx

′
2. (7.16)

Here the reflection positivity is limited to requiring that γ01γ
0
2ΘS4 is non-negative on products of positive-time test

functions.
This illustrates how the approximations discussed above can be implemented in a few-body setting. We note that

even if S4 is calculated perturbatively, the resulting approximate S matrix will be formally unitary. This is similar to
what is observed in non-relativistic scattering theory when the K-matrix is treated perturbatively

VIII. SCATTERING TEST

The scattering computations outlined above and in section V are based on the convergence of a sequence of three
approximations that are performed in a prescribed order. While they should in principle converge for suitable model
Green functions, that does not imply that the approximations can be sufficiently well-controlled to give converged
predictions for reactions at the few-GeV energy scale of interest. Since to the best of our knowledge this approach to
scattering, i.e. computing sharp-momentum transition matrix elements using matrix elements of e−nβH in normaliz-
able states as input, has not even been tested in non-relativistic models, we discuss the implementation of this method
in an exactly solvable non-relativistic model. This has the advantage that all of the approximations can be compared
to exact results, and the accuracy of the proposed method can be precisely determined. We consider a non-relativistic
Hamiltonian with a separable potential that has the range and strength of a nucleon-nucleon interaction. The range
is fixed by the pion mass while the strength is adjusted to bind two nucleons with the deuteron binding energy.
The the interaction is taken as a Yamaguchi interaction, with Hamiltonian

H = k2/m− |g〉λ〈g| 〈k|g〉 = g(k) =
1

m2
π + k2

. (8.1)

The transition matrix elements are

〈k|t|k′〉 = g(k)τ (
k′2

mn
+ i0+)g(k′) (8.2)

with

τ (
k′2

mn
+ i0+) = − λ

1 + mnλπ2

mπ

1
(imπ+k′)2

(8.3)

where mn = .94GeV, mπ = .14GeV, eb = −2.24MeV and the coupling constant is determined from these parameters
by

λ =
mπ

mnπ2
(mπ +

√
−mneb)

2. (8.4)

To test the approximations we calculate sharp-momentum transition matrix elements using matrix elements of e−βH

evaluated between normalizable states using the methods outlined in section five. While the eigenstates of this model
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can be computed exactly, we had to use the spectral expansion of the Hamiltonian to compute matrix elements of
e−βH . While this is a complicated construction in the non-relativistic case, it is replaced by a quadrature (3.18) in
the Euclidean case.
The first approximation is to extract sharp-momentum transition matrix elements using sufficiently narrow wave

packets in equation (5.31). For this model, exact expressions are available for both the S operator and the transition
matrix. For our test problem we choose Gaussian wave packets in the relative momenta of the form

φ(k) = Ne−α(k−k0)
2

= Ne−(k−k0)
2/k2

w (8.5)

where N is a normalization constant and k0 is the on-shell momentum. We do not choose a particular direction
because the interaction is pure s-wave, and the on-shell transition matrix elements at a given energy are given by a
single complex number.
Sharp on-shell transition matrix elements computed exactly and approximately from S-matrix elements using

(5.31) are compared as a function of the width, kw of the wave packets. The wave packet widths were deter-
mined by the requirement that the approximate transition matrix elements agree with the exact transition ma-
trix elements to an accuracy of less that 0.1%. The results are shown in Table 1 as a function of the relative
momentum. The first column of Table 1 shows the on-shell momentum k0 (center of the Gaussian). The sec-
ond column shows the value of α used to get the error shown in the fourth column. All of the errors in col-
umn four round up to .1%. The third column lists kw := 1/

√
α for each value of k0 and the last column is

the dimensionless ratio kw/k0. The values of α in column 3 are used in all of the calculations in this section.

Table 1

k0 α kw % error kw/k0

[GeV] [GeV−2] [GeV]

0.05 325000 0.00175412 0.1 0.035

0.1 105000 0.00308607 0.1 0.030

0.2 26000 0.00620174 0.1 0.031

0.3 10500 0.009759 0.1 0.032

0.4 5100 0.0140028 0.1 0.035

0.5 3000 0.0182574 0.1 0.036

0.6 2000 0.0223607 0.1 0.037

0.7 1350 0.0272166 0.1 0.038

0.8 1000 0.0316228 0.1 0.039

0.9 750 0.0365148 0.1 0.040

1.0 600 0.0408248 0.1 0.040

1.1 475 0.0458831 0.1 0.041

1.2 400 0.05 0.1 0.041

1.3 330 0.0550482 0.1 0.042

1.4 290 0.058722 0.1 0.041

1.5 250 0.0632456 0.1 0.042

1.6 210 0.0690066 0.1 0.043

1.7 190 0.0725476 0.1 0.042

1.8 170 0.0766965 0.1 0.042

1.9 150 0.0816497 0.1 0.042

2.0 135 0.0860663 0.1 0.043

The last column of Table 1 suggests that a 0.1% error will generally be obtained if this width is less than 3% of the
on-shell momentum. This property holds over a wide range of momenta in this model. This is a simple model tran-
sition operator; one may anticipate narrower wave packets are needed for more realistic models. This approximation
can be improved by decreasing the width of the wave packet; it is the largest source of error in the calculations. In any
realistic calculation the wave packet width does not have to be smaller than the experimental momentum resolution.
The second step is to approximate S-matrix elements in these Gaussian wave packets using equation (5.27). It is

important to first pick the wave packets because the n value needed for convergence depends on the width of the wave
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packet. The approximate quantities are

〈ψ′|Sn|ψ〉 :=
∫

dkdk′ψ′(k)e−ine
−βk2/m〈k|e2ine−βH |k′〉e−ine−βk′2/m

ψ(k′). (8.6)

In Tables 2-8 these quantities are computed using the spectral expansion for H. In these calculations the bound-state
contribution is not included because it vanishes in the large n limit. Tables 2-8 show the real and imaginary parts of
matrix elements 〈ψ′|(Sn − I)|ψ〉 for different values of n for k0 = 50, 100, 200, 500, 1000, 1500, 2000 MeV. The exact
value is given at the bottom of each table. Table 9 shows the values of β, the product k0 × β and the n-values
used in our final calculations. Table 9 suggests that β should be chosen so k0 × β is of order unity. Except for
the k0 = 50MeV case, n = 250 or more gives errors for the n-limits that are smaller than the errors made in the
factorization approximation, (5.31).
The n dependence of the real and imaginary part of matrix elements of 〈ψ′|(S − I)|ψ〉, computed using (5.27), are

plotted as a function of n for different values of k0 in figures 1-10. Figures 11 and 12 show how fast the neglected
bound state contribution to the spectral expansion falls off with n for k0 = 1 GeV.

Table 2: k0 = 50[MeV], α = 325000[GeV−2]

n Re 〈φ|(Sn − I)|φ〉 Im 〈φ|(Sn − I)|φ〉
50 -7.62976513315350e-1 -1.52406978178214e-1

100 -1.33113144491104e+0 -2.75546806155677e-1

150 -1.67324498184421e+0 -3.50392186517949e-1

200 -1.83391449191883e+0 -3.86136590065981e-1

250 -1.89273779093641e+0 -3.99389077283171e-1

300 -1.90951807884485e+0 -4.03228425149703e-1

350 -1.91324926322936e+0 -4.04093826445785e-1

400 -1.91389545311571e+0 -4.04245969269804e-1

450 -1.91398265491004e+0 -4.04266741575048e-1

500 -1.91399177708580e+0 -4.04268944214980e-1

550 -1.91399249452470e+0 -4.04269131167755e-1

600 -1.91399253056843e+0 -4.04269144047622e-1

650 -1.91399252976074e+0 -4.04269145893613e-1

ex -1.91399253060872e+0 -4.04269147714400e-1

Table 3: k0 = 100[MeV], α = 105000[GeV−2]

n Re 〈φ|(Sn − I)|φ〉 Im 〈φ|(Sn − I)|φ〉
50 -8.73395186664514e-1 4.95616337213744e-1

100 -1.34576615227520e+0 7.59199494502660e-1

150 -1.49091126760062e+0 8.39700869213905e-1

200 -1.51566533604846e+0 8.53352070852317e-1

250 -1.51799902547669e+0 8.54631681615040e-1

300 -1.51811943431498e+0 8.54697554653043e-1

350 -1.51812278309620e+0 8.54699376334219e-1

400 -1.51812288480017e+0 8.54699423334768e-1

450 -1.51812290596551e+0 8.54699435479409e-1

500 -1.51812290955424e+0 8.54699438102000e-1

550 -1.51812290968227e+0 8.54699438639971e-1

600 -1.51812288857871e+0 8.54699427676778e-1

650 -1.51812275938123e+0 8.54699356334623e-1

ex -1.51812291315971e+0 8.54699438329052e-1



20

Table 4: k0 = 200[MeV], α = 26000[Gev−2]

n Re 〈φ|(Sn − I)|φ〉 Im 〈φ|(Sn − I)|φ〉
50 -2.08408481834932e-1 4.56550768265380e-1

100 -3.11945696198071e-1 6.85279276148059e-1

150 -3.38623394392403e-1 7.44641333032490e-1

200 -3.42127100784575e-1 7.52475859236454e-1

250 -3.42359208499266e-1 7.52997722504423e-1

300 -3.42366821259122e-1 7.53015087494957e-1

350 -3.42366956571344e-1 7.53015382645461e-1

400 -3.42366963936415e-1 7.53015400508140e-1

450 -3.42366965122021e-1 7.53015404697748e-1

500 -3.42366965247355e-1 7.53015405389574e-1

550 -3.42366962667700e-1 7.53015400608940e-1

600 -3.42366938358008e-1 7.53015348812648e-1

650 -3.42366884413759e-1 7.53015247619997e-1

ex -3.42366967477707e-1 7.53015410457076e-1

Table 5: k0 = 500[MeV], α = 3000[Gev−2]

n Re 〈φ|(Sn − I)|φ〉 Im 〈φ|(Sn − I)|φ〉
50 -5.93330385580271e-3 9.65738963854834e-2

100 -7.12681692349637e-3 1.18415504225673e-1

150 -7.18129565909453e-3 1.19491569949089e-1

200 -7.18179706798405e-3 1.19502423190014e-1

250 -7.18179794641838e-3 1.19502444469971e-1

300 -7.18179794670870e-3 1.19502444477783e-1

350 -7.18179794671048e-3 1.19502444477784e-1

400 -7.18179794671081e-3 1.19502444477784e-1

ex -7.18179797016073e-3 1.19502444795275e-1

Table 6: k0 = 1[GeV], α = 600[Gev−2]

n Re 〈φ|(Sn − I)|φ〉 Im 〈φ|(Sn − I)|φ〉
50 -1.47024820732811e-4 1.55922557816223e-2

100 -1.62726188649875e-4 1.79713868930101e-2

150 -1.62967714125273e-4 1.80219591282450e-2

200 -1.62968113934903e-4 1.80220978916775e-2

250 -1.62968113982642e-4 1.80220979403700e-2

300 -1.62968113982642e-4 1.80220979403721e-2

350 -1.62968113982753e-4 1.80220979403720e-2

400 -1.62968113982975e-4 1.80220979403718e-2

ex -1.62968113982742e-4 1.80220979403858e-2
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Table 7: k0 = 1.5[GeV], α = 250[GeV−2]

n Re 〈φ|(Sn − I)|φ〉 Im 〈φ|(Sn − I)|φ〉
50 -1.40242356887477e-5 4.66175982621713e-3

100 -1.54430995201738e-5 5.52235009412764e-3

150 -1.54679181726403e-5 5.55112445776045e-3

200 -1.54679281958447e-5 5.55130663695727e-3

250 -1.54679280390813e-5 5.55130688968718e-3

300 -1.54679280390813e-5 5.55130688978369e-3

350 -1.54679280394143e-5 5.55130688978374e-3

400 -1.54679280388592e-5 5.55130688978377e-3

ex -1.54679280242191e-5 5.55130688386830e-3

Table 8: k0 = 2.0[GeV], α = 135[GeV−2]

n Re 〈φ|(Sn − I)|φ〉 Im 〈φ|(Sn − I)|φ〉
50 -2.60094316473225e-6 1.94120750171791e-3

100 -2.82916859895010e-6 2.35553585404449e-3

150 -2.83171624670953e-6 2.37471383801820e-3

200 -2.83165946257657e-6 2.37492460997990e-3

250 -2.83165905312632e-6 2.37492527186858e-3

300 -2.83165905257121e-6 2.37492527262432e-3

350 -2.83165905190508e-6 2.37492527262493e-3

400 -2.83165905234917e-6 2.37492527262540e-3

ex -2.83165905227843e-6 2.37492527259701e-3
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Table 9: Parameters

k0 [GeV] β[GeV−1] k0× β n

0.05 80.0 4.0 630

0.1 40.0 4.0 450

0.2 10.0 2.0 470

0.3 5.0 1.5 330

0.4 4.0 1.6 235

0.5 3.0 1.5 205

0.6 2.5 1.5 225

0.7 1.6 1.2 200

0.8 1.4 1.12 200

0.9 1.05 .945 190

1.0 1.0 1.0 200

1.1 0.95 1.045 200

1.2 0.9 1.08 200

1.3 0.85 1.105 200

1.4 0.7 0.98 200

1.5 0.63 0.945 200

1.6 0.57 0.912 200

1.7 0.5 0.85 200

1.8 0.45 0.81 200

1.9 0.42 0.798 200

2.0 0.4 0.8 200

The third approximation is the polynomial approximation to ei2ne
−βH

. In this application we use the freedom
to shift the zero of the energy of the free and interacting Hamiltonians by a constant (the binding energy) so the
spectrum of e−βH is strictly between zero and one. Then it is only necessary to find a polynomial approximation to
einx for x ∈ [0, 1].
The polynomial approximation is made using the Chebyshev expansion:

f(y) ≈ PN (y) :=
1

2
c0T0(y) +

N∑

k=1

ckTk(y) (8.7)

cj =
2

N + 1

N∑

k=1

f(cos(
2k − 1

N + 1

π

2
)) cos(j

2k − 1

N + 1

π

2
). (8.8)

The Chebyshev expansion is designed for functions on the interval [−1, 1]. To make full use of the information in
this approximation we approximate e−2inx = f(2x − 1) by the polynomial approximation to f(y). This gives the
polynomial

f(2e−βH
′ − 1) ≈ 1

2
c0T0(2e

−βH′ − 1) +

N∑

k=1

ckTk(2e
−βH′ − 1) = PN (e−βH

′

) (8.9)

where H ′ = H + eb. It follows that

|e2inx − PN (x)| < 2
nN+1

(N + 1)!
|‖e2ine−βH′

− PN (e
−βH′

)|‖ < 2
nN+1

(N + 1)!
(8.10)

Chebyshev polynomials are known to be good approximations to the best uniform polynomial approxima-
tion [22]. Table 10 shows polynomial approximations to einx for different values of x ∈ [0, 1], and
n. The errors are between 10−11 and 10−13 for the degree of the polynomial only slightly above n.
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Table 10: Polynomial convergence

x n deg poly error %

0.1 200 150 7.939e+00

0.1 200 200 3.276e+00

0.1 200 250 1.925e-11

0.1 200 300 4.903e-13

0.1 630 580 3.573e+00

0.1 630 630 2.069e+00

0.1 630 680 5.015e-08

0.1 630 700 7.456e-11

0.5 200 150 1.973e-13

0.5 200 200 1.627e-13

0.5 200 250 3.266e-13

0.5 630 580 1.430e-14

0.5 630 630 3.460e-13

0.5 630 680 9.330e-13

0.9 200 150 7.939e+00

0.9 200 200 3.276e+00

0.9 200 250 1.950e-11

0.9 200 300 9.828e-13

0.9 630 580 3.573e+00

0.9 630 630 2.069e+00

0.9 630 680 5.015e-08

0.9 630 700 7.230e-11

Table 10 suggests that a polynomial with degree 10-20% larger than n is needed for convergence to one part in 1012

(10−10%).
All three approximations are combined to get the approximations to the on-shell transition operator for inci-

dent momenta between 50 MeV and 2 GeV. These results are displayed in table 11. The errors are all bet-
ter than .1%. The only significant source of error is the approximate factorization of the sharp momentum
matrix element from the S matrix elements. This can be made as small as desired by choosing sufficiently
narrow wave packets, although there is no need to improve accuracy to better than experimental resolution.
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Table 11: Final calculation

k0 Real T Im T % error

0.05 2.18499e-1 -1.03160e+0 0.0982

0.1 -2.30337e-1 -4.09325e-1 0.0956

0.2 -1.01512e-1 -4.61420e-2 0.0981

0.3 -3.46973e-2 -6.97209e-3 0.0966

0.4 -1.39007e-2 -1.44974e-3 0.0997

0.5 -6.44255e-3 -3.86459e-4 0.0986

0.6 -3.34091e-3 -1.24434e-4 0.0952

0.7 -1.88847e-3 -4.63489e-5 0.0977

0.8 -1.14188e-3 -1.93605e-5 0.0965

0.9 -7.28609e-4 -8.86653e-6 0.0982

1.0 -4.85708e-4 -4.37769e-6 0.0967

1.1 -3.35731e-4 -2.30067e-6 0.0987

1.2 -2.39235e-4 -1.27439e-6 0.0968

1.3 -1.74947e-4 -7.38285e-7 0.0985

1.4 -1.30818e-4 -4.44560e-7 0.0955

1.5 -9.97346e-5 -2.76849e-7 0.0956

1.6 -7.73390e-5 -1.77573e-7 0.0992

1.7 -6.08794e-5 -1.16909e-7 0.0964

1.8 -4.85672e-5 -7.87802e-8 0.0956

1.9 -3.92110e-5 -5.42037e-8 0.0967

2.0 -3.20000e-5 -3.80004e-8 0.0966

These tests suggest that this method can be applied to compute scattering observables at the few GeV scale.

IX. SUMMARY AND CONCLUSION

In this paper we introduced a formulation of relativistic quantum mechanics that uses model Euclidean Green
functions or generating functionals as dynamical input. The motivation for this approach is to formulate few-body
models at the few GeV scale. The models are quantum mechanical which means that they are formulated in terms
of linear operators on a model Hilbert space. They can be treated using standard quantum mechanical methods.
The advantages of this framework over some conventional treatments of relativistic quantum mechanics is that there
is a formal relation to Euclidean Lagrangian field theory. Specifically, the quantum theory discussed in this paper
becomes the quantum formulation of the field theory when the model Green functions are replaced by the Green
functions of the field theory. A second advantage of this formalism is that all calculations can be performed in the
Euclidean domain, without using analytic continuation, however the quantities computed are ordinary Minkowski
scalar products of normalizable vectors.
The structure of the physical Hilbert space was discussed in section one in terms of an Euclidean generating

functional for a scalar field theory. Methods to model generating functionals in terms of connected Euclidean Green
functions were also discussed. Representations in terms of Euclidean Green functions were given in section 6. Examples
illustrating the equivalence of the Hilbert space inner product expressed in terms of Euclidean Green functions and
the standard Minkowski inner product were given in equations (6.4) and (6.5).
The Poincaré Lie algebra is realized by interpreting the real Euclidean group as a complex subgroup of the com-

plex Lorentz group on the physical Hilbert space. Self-adjoint generators that satisfy the Poincaré commutation
relations are extracted by considering infinitesimal Euclidean transformations which become infinitesimal complex
Lorentz transformations on the physical Hilbert space. Expressions for the generators were given both in terms of the
generating functional in section three and directly in terms of the Green functions in section six.
In section four the generators introduced in sections three and six are used to construct a mass operator whose point

eigenstates correspond to particles. The translation and rotation operators introduced in sections three and six are
used to construct operators that create single-particle states of a given sharp momentum and spin out of normalizable
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mass eigenstates. These states necessarily transform irreducibly under the Poincaré group if they are non-degenerate.
The operators that create single-particle states are used to construct two-Hilbert space injection operators that

define the scattering asymptotic conditions in the Haag-Ruelle formulation of scattering. The existence of the strong
limits that define the wave operators can be checked using a generalization of the standard Cook condition [19] used
in non-relativistic quantum mechanics. The two-Hilbert space wave operators are computed using time-dependent
methods with the Kato-Birman invariance principle to reduce the computation to the evaluation matrix elements
of polynomials in e−βH . The feasibility of this method for computing scattering observables was established using
an exactly solvable non-relativistic test model. This model demonstrated that it is possible to perform accurate
calculations over a wide range of energies using this method. Guidelines for choosing the “time” n, temperature
β, and the degree of the polynomial were established in the context of this model. Both the ”time” limit and
polynomial approximations were shown to be accurate to about ten significant figures. Even though the input to
the scattering theory involves Euclidean quantities, scattering emerges because the scattering states asymptotically
oscillate in phase with free-particle states as the “time-parameter”, n, gets large. The limits do not involve the
exponential fall-off that is used in lattice calculations. In addition, the use of one-body solutions in the formulation
of the scattering asymptotic condition implies that the time limits are strong limits. These two properties imply that
calculations can be performed at relativistic energies without the complications that arise in alternative formulations of
scattering involving Euclidean quantities [20]. Since the output of these calculations are wave operators, the relativistic
intertwining properties provide a mechanism for performing finite Poincaré transformations on all scattering states.
The framework presented in this work is preliminary. A practical implementation that can be used to treat realistic

systems clearly requires more development. For applications to realistic systems it is apparent that model Green
functions or generating functionals will need a significant amount of phenomenological input. In this regard this
framework is no different than realistic non-relativistic nuclear models or quasipotential models, where the interactions
or kernels for realistic systems require significant phenomenological input. In this framework the phenomenological
input is needed to construct few-point connected Green functions, rather than potentials or quasipotential kernels.
The use of models of Green functions avoids the difficulties encountered in calculating the Green functions from a
field theory. Formal representations of the Green functions [23] may be useful in making such models.
This approach has a number of potential advantages. Cluster properties, which provide a key relation between

few and many-body models is much easier to implement than it is in direct interaction formulations of relativistic
quantum mechanics or quasipotential models. The ability to calculate scattering observables directly from Euclidean
Green functions is also useful. Treating reactions that do not conserve particle number presents no special problems
in this formalism.
However, there is no free lunch. The requirements of reflection positivity, Euclidean invariance, along with some

additional technical requirements (ergodicity and analyticity) are essentially all of the axioms of quantum field theory
for generating functionals. The difficulties in finding non-trivial theories satisfying these axioms are well known. This
problem is not special to this framework; it is a problem in all implementations of field theory. In the context of
this formalism, since Euclidean invariance and cluster properties are easy to realize, one might anticipate that it will
be difficult to find a robust class of models that satisfy full reflection positivity. This is an important question for
future research. While reflection positivity of free-field generating functionals is easy to establish, reflection positivity
is not stable with respect to small Euclidean invariant perturbations [21]. Reflection positivity provides the quantum
mechanical scalar product and ensures the spectral condition. This suggest that in models one may have to deal with
violations of the spectral condition or negative norm states. For few-body problems one works on a subspace of the
Hilbert space of the full theory that is relevant for a given energy scale. One might anticipate that good models will
satisfy reflection positivity on this subspace. This possibility requires additional investigation.
In the absence of the positive Euclidean-time-support restriction on the test functions, the group of Euclidean

motions in the inner product (2.9) with the Euclidean time reversal still has a representation of a complex subgroup
of the Poincaré group that acts on a space with an indefinite metric. This suggests the possibility that for some models
there may be invariant subspaces with positive norm[24] and positive energy that are distinct from the ones created
using the positive-time test functions. These possibilities, may provide an alternative to full reflection positivity, also
require additional investigation.
While the model formally becomes the field theory in the limit that the model generating functional becomes the full

generating functional, truncations that eliminate higher-order connected Green functions from the exact generating
functional are not mathematical approximations. In practice, the construction of model generating functionals involve
some fitting to data and the model generating functionals only include contributions from a finite set of connected
Green functions. To obtain a quantitative relation between these quantities to the corresponding field theoretic
quantities it is necessary to first replace the field-theoretic generating functional by an effective generating functional
that only has contributions from the connected Green functions that appear in the model. There is an additional
freedom due to the fact that the model is only expected to be valid on an finite energy interval. Finally these is an
additional freedom associated with “field redefinitions”. A formal development of these connections is beyond the
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scope of this paper.
While this framework is strongly motivated by the structure of the a field theory, most of the properties of the a given

model can be tested without appealing to properties of the field theory. For example, the existence and invariance
of scattering matrix elements can be checked using (5.20, 5.21), while existence and self-adjointness of Poincaré
generators can checked by verifying that rotations in Euclidean space-time planes are local symmetric semigroups
[7][8][9].
Another important open question that requires more investigation is the implementation of this strategy in QCD,

where the consistency of reflection positivity with confinement and gauge invariance introduces additional constraints
on the models. Some formulations of Lattice QCD satisfy reflection positivity in the presence of these constraints,
which provides some hope that these constraints are also compatible in models. For the type of calculations discussed,
i.e one-particle states and scattering states, it is sufficient that reflection positivity holds on gauge invariant subspaces,
since one-particle states are gauge invariant and the two-Hilbert space injection operator has range in the subspace of
gauge invariant states. This limited form of reflection positivity is all that is needed to implement the computational
strategy discussed in this paper.
This work supported in part by the U.S. Department of Energy, under contract DE-FG02-86ER40286.
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FIG. 1: Re (〈φ|(S − 1)|φ〉) vs n 50[MeV] α = 325000[GeV−2]
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FIG. 2: Im (〈φ|(S − 1)|φ〉) vs n 50[MeV] α = 325000[GeV−2]
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FIG. 3: Re (〈φ|(S − 1)|φ〉) vs n 100[MeV] α = 105000[GeV−2]
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FIG. 5: Re (〈φ|(S − 1)|φ〉) vs n 200[MeV] α = 26000[GeV−2]
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FIG. 6: Im (〈φ|(S − 1)|φ〉) vs n 200[MeV] α = 32000[GeV−2]
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