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Abstract

In this paper I discuss a formulation of relativistic few-particle scattering theory where the

dynamical input is a collection of reflection-positive Euclidean covariant Green functions. This

formulation of relativistic quantum mechanics has the advantage that all calculations can be per-

formed using Euclidean variables. The construction of the Hilbert space inner product requires

that the Green functions are reflection positive, which is a non-trivial constraint on the dynamics.

In this paper I discuss the structure of reflection positive Green functions. I show that scattering

wave operators exist when the dynamics is given by a Green function with the structure discussed

in this work. Techniques for computing scattering observables in this Euclidean framework are

discussed.

PACS numbers: 03.70.+k, 11.10.-z 11.15.Ha 64.60.ae
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I. INTRODUCTION

In this paper I discuss a formulation of relativistic few-body quantum mechanics where the

dynamics is introduced through a collection of Euclidean “Green” functions. The motivation

for this approach is similar to the motivation for using Euclidean methods in quantum field

theory. The complicated singularities of the Minkowski Green functions are replaced by

well-behaved Euclidean Green functions. In addition, while the input can in principle be

directly calculated from a field theory, for the purpose of making realistic models it can also

be treated phenomenologically. Cluster properties, which are difficult to realize in direct

interaction formulations of relativistic quantum mechanics, are relatively simple to realize

in the Euclidean formulation. The surprising features of this approach are (1) all relevant

calculations can be performed entirely in Euclidean space, (2) there is numerical evidence

that GeV-scale scattering calculations can be performed without analytic continuation (3)

and finite Poincaré transformations can be performed without leaving Euclidean space.

In the next section I discuss the general structure of this Euclidean formulation of rela-

tivistic quantum mechanics. In section three I discuss the construction of the model Hilbert

space and the construction of a representation of the Poincaré Lie algebra on this space.

This defines what I mean by a relativistic quantum theory. In section four I illustrate how

the usual Minkowski description of a single particle is realized in the Euclidean framework.

In section five I discuss the important constraint of reflection positivity, which is a required

property of acceptable Euclidean Green functions. I illustrate some of the difficulties with

establishing reflection positivity and generalize a known one-dimensional result to demon-

strate the existence of a large class of reflection positive four-point Green functions. In

section six I discuss the formulation of the scattering problem when the dynamics appears

in the kernel of a Hilbert space inner product. I show that Møller wave operators exist for

the class of reflection positive Green function introduced in the previous section. In section

seven I discuss methods for the numerical computation of scattering observables in this for-

malism. Section eight provides a summary of the results and a discussion of open problems.

The appendix generalizes the discussion in section four to massive particles with any spin.

2



II. INPUT

The input to a Euclidean relativistic quantum theory is a collection of Euclidean invariant

distributions, which I refer to as quasi-Schwinger functions

{Sm:n(xm, · · · , x1; y1, · · · , yn)}. (2.1)

Here san-serif variables xi = (x0i ,xi) and yi := (y0i ,yi) are Euclidean space-time variables.

In principle the collection of quasi-Schwinger functions could be infinite, however finite

collections are appropriate for making few-body models. The y and x variables are associated

with initial and final degrees of freedom respectively. For purpose of illustration I consider

the spinless case. The treatment of particles with spin is discussed in the appendix.

The quasi-Schwinger functions are assumed to have the following properties:

E.1 Euclidean invariance:

Sm:n(xm, · · · , x1; y1, · · · , yn) =

Sm:n(Oxm + a, · · · , Ox1 + a;Oy1 + a, · · · , Oyn + a) (2.2)

where a is a constant Euclidean 4-vector and O is a four-dimensional orthogonal trans-

formation.

E.2 Reflection positivity:

for any {fn(y1, · · · , yn)} with support for 0 < y01 < y02 < · · · < y0n−1 < y0n:

(f, f)M =∑
k,n

∫
f ∗
k (xk, · · · , x1)Sk:n(θxk, · · · , θx1; y1, · · · , yn)fn(y1, · · · , yn)d4kxd4ny ≥ 0 (2.3)

where θy := θ(y0,yyy) := (−y0,yyy) is the Euclidean time reflection operator.

In addition the quasi-Schwinger functions must satisfy

Sk:n(xk · · · x1; y1 · · · yn) = S∗
n:k(yn · · · y1; x1 · · · xk) (2.4)

so (f, g)M = (g, f)∗M .
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E.3 Cluster properties:

Sk:n(xk, · · · , x1; y1, · · · , yn) =
∑∏

Sc
ki:ni

(xki, · · · , x1i; y1i, · · · , yni) (2.5)

where the Sc
ki:ni

satisfy [E.1-E.2],
∑
ki = k and

∑
ni = n. The sum runs over

all partitions of the initial and final variables into clusters containing at least one

initial and one final coordinate in each cluster. For a given partition the products are

over clusters in the partition. The Sc
ki:ni

vanish as distributions whenever any of the

coordinates are asymptotically separated.

For quasi-Schwinger functions describing identical particles the initial and final variables

are separately symmetric or anti-symmetric under interchange of the Euclidean space time

coordinates. In quantum field theory locality identifies the n-point Schwinger functions

with different numbers of initial and final degrees of freedom [1]. In this work the locality

requirement is relaxed which allows for the possibility of having different n-point functions

for different combinations of initial and final particles.

In this formalism the connected n-point quasi-Schwinger functions replace the n-body

interactions in conventional potential models. The problem is to construct a set of model

quasi-Schwinger functions that lead to predictions consistent with a large class of experi-

ments. The virtue of this type of phenomenology is that if the Schwinger functions of the

field theory could be calculated, the model input could be replaced by the exact Schwinger

functions.

III. THE QUANTUM THEORY

In any quantum theory the fundamental observables are probability amplitudes. These

are represented by Hilbert space inner products of unit normalized vectors. The first step

in the construction of a relativistic quantum model is to specify the structure of the model

Hilbert space. This is a specification of the model degrees of freedom, however in the

Euclidean framework the relation of the representation of the Hilbert space to the particle

content of the theory is more abstract.

Given the representation of the Hilbert space, the invariance of the probability ampli-

tudes under change of inertial coordinate system requires a unitary representation of the

Poincaré group [2]. An equivalent requirement is a set of ten self-adjoint operators that
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satisfy the commutation relations of the Poincaré group. These operators generate unitary

one-parameter groups corresponding to time translation, space translation, rotations and

rotationless Lorentz transformations. Finite Poincaré transformations can be expressed as

products of these one-parameter unitary groups.

In this section I define the model Hilbert space of Euclidean relativistic quantum me-

chanics and construct a representation of the Poincaré Lie algebra on this space.

I assume that a collection of quasi-Schwinger functions satisfying E.1-E.3 is given. The

quasi-Schwinger functions can be used to construct two quadratic forms. The first one is a

pure Euclidean form where the Sk:n serve as kernels of the quadratic form:

(f, g)E =
∑
m,n

∫
f ∗
m(x1, · · · , xm)Sm:n(xm, · · · , x1; y1, · · · , yn)gn(y1, · · · , yn)d4mxd4ny. (3.1)

Here vectors are represented by collections of test functions {gn(yn, · · · , y1)} of Euclidean

space-time variables.

Following Osterwalder and Schrader [1] I use the Euclidean time-reflection operator to

define a second quadratic form

(f, g)M =
∑
m,n

∫
f ∗
m(x1, · · · , xm)Sm:n(θxm, · · · , θx1; y1, · · · , yn)gn(y1, · · · , yn)d4mxd4ny, (3.2)

where θx = θ(τ,x) = (−τ,x) is the Euclidean time reflection operator.

In both of these forms the integrals are over Euclidean space-time variables. The two

quadratic forms differ by the presence of the Euclidean-time reflections, θ, in all of the final-

state variables. The second quadratic form can be expressed abstractly in terms of the first

form

(f, g)M = (Θf, g)E (3.3)

where Θ represents the operator that reflects all of the final Euclidean times. I distinguish

these forms by the subscripts E for Euclidean and M for Minkowski. The Minkowski

designation of the second form is not obvious at this point.

To understand the motivation for introducing the second form note that the Euclidean

invariance property, E.1, ensures that the representation UE(O, a) of the four-dimensional

Euclidean group, defined by

((UE(O, a)fm)(y1, · · · , ym) := fm(Oy1 + a, · · · , Oym + a), (3.4)
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satisfies the unitarity condition

(UE(O, a)f, UE(O, a)g)E = (f, g)E (3.5)

in the sense that it leaves the first quadratic form invariant.

Each of the one-parameter subgroups of UE(O, a) can be formally expressed as the ex-

ponential of i multiplied by a Hermitian infinitesimal generator in the (, )E quadratic form.

The Euclidean time-reversal operator Θ changes the sign of the infinitesimal generators of

UE(O, a) that are linear in Euclidean time or derivatives with respect to Euclidean time.

There are four generators with one of these properties. They are the generator of Eu-

clidean time translation and the three generators of rotations in Euclidean space-time planes,

(x0, x, 0, 0), (x0, 0, y, 0), (x0, 0, 0, z). The additional sign change makes these four generators

anti-Hermitian in the (, )M quadratic form. These can be made Hermitian with respect to the

(, )M quadratic form by multiplying each one by −i. With this change these four generators

become Hermitian with respect to the quadratic form (, )M . In addition, a direct calculation

shows that when combined with generators of ordinary rotations and space translations, the

resulting set of 10 operators satisfy the Poincaré commutation relations.

The reason for this connection is because the covering groups of both the complex or-

thogonal groups and complex Lorentz groups are identical. Because of this relationship the

group of real orthogonal transformations can be considered to be a subgroup of the complex

Lorentz group.

To understand this relation note that the determinants of the matrices

X :=

 t+ z x− iy

x+ iy t− z

 and X :=

 iτ + z x− iy

x+ iy iτ − z

 (3.6)

are (up to sign) the Minkowski and Euclidean line elements respectively. The determinant

of both X and X are preserved by the same linear SL(2,C)× SL(2,C) transformation

X ′ = AXBT X′ = AXBT (3.7)

where A and B are SL(2,C) matrices. While these transformations preserve the Euclidean

and Minkowski displacements, they do not generally preserve the reality of the corresponding

coordinates. Thus, the resulting transformations can be considered representations of either

complex orthogonal or complex Lorentz transformations.
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The Hermiticity of the modified generators on (, )M implies that they can be exponenti-

ated to construct a unitary representation of the Poincaré group with respect to the form

(, )M . The only problem is that when the test functions, {fm(xm, · · · , x1)}, are unrestricted,

this quadratic form has negative norm vectors. This is easily seen by choosing f(· · · ) to be

odd with respect to Euclidean time reflection. An indefinite inner product is not suitable

for a quantum-mechanical interpretation.

Osterwalder and Schrader [1] solve this problem by restricting the test functions to have

support for positive relative Euclidean times 0 < x01 < x02 < · · · < x0m−1 < x0m and limiting the

types of acceptable Schwinger functions to what they refer to as reflection-positive Schwinger

functions.

Following Osterwalder and Schrader we call a collection of quasi-Schwinger functions

{Sk:n} satisfying

(f, f)M ≥ 0 (3.8)

for functions with positive time and positive relative time support reflection positive. Re-

flection positivity is a property of the collection of quasi-Schwinger functions. The quadratic

form (, )M can be completed to a Hilbert space inner product if the quasi Schwinger functions

are reflection positive. In this case vectors are equivalence classes of collections of positive

relative time test functions, where f ∼ g if and only if (f − g, f − g)M = 0. This space is

completed by including Cauchy sequences of these equivalence classes. The resulting Hilbert

space is denoted by HM . For identical particles the symmetry of the quasi-Schwinger func-

tions means that test functions with non-overlapping Euclidean time support can always be

reordered to have positive relative time support.

One problem with this realization of the Hilbert space is that the Euclidean time trans-

lations and rotations in Euclidean space-time planes do not generally preserve the positive

Euclidean time-support constraint. Nevertheless, for suitable quasi-Schwinger functions,

semigroup methods can be used to establish that the generators, extracted from infinites-

imal versions of these transformations, are self-adjoint operators on HM . Formally the

one-parameter group of Euclidean time translation on HE becomes a contractive Hermitian

semigroup [3] on HM and the one-parameter groups of rotations in Euclidean space-time

planes in HE become local symmetric semigroups [4][5][6] of Lorentz transformations with

imaginary rapidity on HM . Both of these semigroups have self-adjoint generators on HM

for quasi-Schwinger functions where the continuity properties of the semigroups can be es-
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tablished. In what follows I assume that the model quasi-Schwinger functions satisfy these

conditions.

Explicit expressions for the Poincaré generators are constructed by computing the gen-

erators of the one-parameter subgroups of UE(O, a) on suitable domains and multiplying

by the appropriate factors of 1 for the generators that commute with Θ and −i by the

generators that anti-commute with Θ. The parameters of the Euclidean group are angles

of rotation and displacements of spacetime coordinates. The resulting Poincaré generators

have the following representations:

〈x|H|f〉 := − d

da
〈x− (a, 0, 0, 0)|f〉|a=0e =

{0, ∂

∂x011
f1(x11),

(
∂

∂x021
+

∂

∂x022

)
f2(x21, x22), · · · } (3.9)

〈x|P|f〉 = i∇∇∇a〈x− (0, a)|f〉||a=0 =

{0,−i ∂

∂xxx11
f1(x11),−i

(
∂

∂xxx21
+

∂

∂xxx22

)
f2(x21, x22), · · · } (3.10)

〈x|J|f〉 := {0,−ixxx11 ×
∂

∂xxx11
f1(x11),

−i
(
~x21 ×

∂

∂xxx21
+ xxx22 ×

∂

∂xxx22

)
f2(x21, x22), · · · } (3.11)

〈x|K|f〉 := {0,
(
xxx11

∂

∂x011
− x011

∂

∂xxx11

)
f1(x11),(

xxx21
∂

∂x021
− x021

∂

∂xxx21
+ xxx22

∂

∂x022
− x022

∂

∂xxx22

)
f2(x21, x22), · · · }. (3.12)

Here H is the Hamiltonian, P is the linear momentum operator, J is the angular momentum

operator and K is the rotationless boost generator. These expressions can be used to get

the following representation for the square of the mass operator

M2 = H2 − P 2 (3.13)

〈x|M2|f〉 := {0, −∇2
11f1(x11),−(∇21 +∇22)

2f2(x21, x22), · · · } (3.14)

where ∇2 is the 4-dimensional Euclidean Laplacian.
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The easiest dynamical quantities to calculate in this representation are matrix elements

of e−βH , which are the result of translating all of the initial Euclidean time variables to the

right by the same positive constant β:

〈x|e−βH |f〉 := {f0, f1(x21 − βτ̂ττ), f2(x21 − βτ̂ττ , x22 − βτ̂ττ), · · · }. (3.15)

The representation of the Poincaré Lie algebra (3.9-3.12) on the model Hilbert space HM

defines the Euclidean representation of a relativistic quantum theory.

In addition to giving a Euclidean representation of the Hilbert space scalar product,

reflection positivity and repeated applications of the Schwartz inequality [7] give the in-

equalities

‖e−βH |ψ〉‖M ≤ ‖e−2nβH |ψ〉‖1/2
n

M ‖|ψ〉‖1−1/2n

M ≤ ‖|ψ〉‖1/2
n

E ‖|ψ〉‖1−1/2n

M (3.16)

for and n and β > 0. Taking the limit as n→ ∞

‖e−βH |ψ〉‖M ≤ ‖|ψ〉‖M (3.17)

shows that e−βH is a contractive semigroup on HM , which means that H has a spectrum

bounded from below.

For most purposes e−βH can be used to replace the Hamiltonian, where β is treated as an

adjustable scale setting parameter. e−βH has the same eigenstates as H, the eigenvalues are

simply related, and −e−βH can be used in place of the Hamiltonian to formulate a scattering

theory. The operator e−βH has the additional advantage that it is bounded.

IV. REFLECTION POSITIVITY AND PARTICLES

The Minkowski designation of the scalar product (, )M , where everything is Euclidean, is

surprising at first glance since no analytic continuations have been performed.

The best way to understand this is to consider the example of the two-point Schwinger

function for a particle of mass m. If this is the only Schwinger function in the model then

the “Minkowski” inner product is [7]

(f, f)M =

∫
f ∗(x)S1:1(θx; y)f(y)d

4xd4y

=
1

(2π)4

∫
f ∗(x)

eip·(θx−y)

p2 +m2
f(y)d4xd4yd4p (4.1)
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=
1

(2π)4

∫
d4xd4yd4pf(x)

e−ip0·(x0+y0)+ip·(x−y)

(p0 + iωm(p ))(p0 − iωm(p ))
f(y)

=

∫
d3p

2ωm(p )
|ψ(p)|2 ≥ 0 (4.2)

where ωm(p) =
√
m2 + p2 is the energy of a particle of mass m and momentum p. The

wave function ψ(p), expressed as a square integrable function of momentum, is related to

the Euclidean positive-time support function f(x) by

ψ(p) :=
1

(2π)3/2

∫ ∞

0

dx0

∫
dxxxf(x)e−ωm(p)y0−ip·xxx. (4.3)

In this example the calculation of the norm involves only Euclidean quantities, while the

final result has the familiar Minkowski form involving the Lorentz invariant measure for a

free particle of mass m. This calculation also demonstrates that the Schwinger function for

a scalar field of mass m is reflection positive.

Another simple calculation shows that the representation (3.9) of the Hamiltonian has

the correct interpretation:

(f,Hf)M =

∫
f ∗(x)S1:1(θx; y)

∂

∂y0
f(y)d4xd4y (4.4)

=

∫
d3p

2ωm(p )
ωm(p )|Ψ(p,m)|2 (4.5)

where integration by parts was used to show that the Hamiltonian has the interpretation of

the energy of a free particle of mass m. The spectral condition is clearly satisfied.

Direct calculations also shows that for this Schwinger function, any f is an eigenstate of

M2 with eigenvalue m2,

(g,M2f)M =

∫
g∗(x)S1:1(θx; y)∇2

yf(y)d
4xd4y (4.6)

= m2(g,M2f)M . (4.7)

Reflection positive two-point Schwinger functions for particles with any m > 0 and spin

are given in the appendix.

This one-particle example illustrates how Lorentz invariant inner products emerge from

calculations involving purely Euclidean quantities. This example also shows how reflection

positivity gives both the Minkowski scalar product as well as the spectral condition on the

Hamiltonian.
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V. REFLECTION POSITIVITY

One difficulty with constructing reflection positive multipoint functions is that there are

non-trivial functions associated with zero norm vectors. This can be seen in the integral,

(4.3), which can be expressed as a partial Fourier transform over the spatial variables and

Laplace transform over the Euclidean time variable

ψ(p) :=

∫ ∞

0

dy0

∫
d3yf̃(y0,p)e−ωm(p)y0 . (5.1)

If f̃(y0,p) is orthogonal to e−ωm(p)y0 as a function of y0 for each value of p, then this vanishes,

leading to a non-trivial positive Euclidean-time-support function, f̃(y0,p), corresponding to

a 0 norm vector.

If a free quasi-Schwinger functions is perturbed by adding a small connected perturba-

tion that is only required to be Euclidean invariant, then a function representing a zero

norm vector with respect to the product of the free quasi-Schwinger functions might have

a non-zero contribution due to the perturbation. This contribution can always be made

negative using the freedom to adjust the sign of the perturbation. The means that reflection

positivity is not stable with respect to small Euclidean invariant perturbations. The prac-

tical consequence of this observation is that the solution of the Euclidean Bethe-Salpeter

equation,

S2:2 = S1:1S1:1 + S1:1S1:1KS2:2, (5.2)

with a model Euclidean invariant kernel, is not automatically reflection positivity, even if

the kernel is small. I am not aware of any general results about what kind of restrictions are

needed on Euclidean invariant Bethe-Salpeter kernels K for S2:2 to be reflection positive.

An alternative strategy is to explore the direct construction of connected reflection posi-

tive four-point functions. The resulting four-point quasi-Schwinger functions could be used

directly or used to deduce sufficient properties of Bethe-Salpeter kernels by expressing them

in terms of known reflection-positive quasi-Schwinger functions:

K = S−1
1:1S

−1
1:1 − S−1

2:2 . (5.3)

In this expression the inverses are interpreted as inverses of operators on the “Euclidean”

Hilbert space.
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Since cluster properties imply that the four-point function can be expressed as a sum of

products of two-point functions and a connected four-point function,

S2:2 =
∑

S1:1S1:1 + Sc
2:2, (5.4)

in order to show S2:2 is reflection positive it is sufficient to show that the connected four-point

function, Sc
2:2, is reflection positive.

In one dimension there is a result due to Widder [8][9][10] from classical analysis that gives

the general structure of reflection positive two-point functions. Widder’s theorem points out

that any kernel k(s) satisfying the reflection positivity condition∫
f(θs)k(s− t)f(t)dsdt =

∫
f(s)k(−s− t)f(t)dsdt ≥ 0 (5.5)

can be expressed in the exponential form

k(−τ ′ − τ) =

∫
e−λ(τ ′+τ)ρ(λ)dλ (5.6)

for some positive density ρ(λ). Since in this example, τ ′, τ > 0, we can write the kernel as

k(−τ ′ − τ) =

∫ ∞

0

λ

π
ρ(λ)dλ

∫ ∞

−∞
ds
e−is(τ ′+τ)

s2 + λ2
. (5.7)

This has the form of a one-dimensional version of the Källén-Lehmann representation of a

two-point Schwinger function.

The Widder result suggests that connected four-point quasi-Schwinger functions with the

structure ∫
d4p1d

4p2d
4p3dmadmcdmbe

−ip1·(y′−x′)e−ip2·(x′−x)e−ip3·(x−y)×

v(ma, p1,mc, p2,mb, p3)

(p21 +m2
a)(p

2
2 +m2

c)(p
2
3 +m2

b)
. (5.8)

would be reflection positive for suitable Euclidean invariant kernels, v(ma, p1,mc, p2,mb, p3).

This structure does not provide a general representation for a Euclidean invariant reflection

positive four point functions, as one gets in Widder’s theorem. On the other hand Widder’s

theorem suggests that reflection positivity and Euclidean covariance strongly constrain the

class of reflection positive four-point functions.

The “Minkowski” scalar product over Euclidean spacetime variables for quasi-Schwinger

functions of the form (5.8) is∫
d4xd4yd4x′d4yd4p1d

4p2d
4p3dmadmcdmbf

∗
e (−y0′,y′)g∗e(−x0′,x′)e−ip1·(y′−x′)×
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e−ip2·(x′−x)e−ip3·(x−y) v(ma, p1,mc, p2,mb, p3)

(p21 +m2
a)(p

2
2 +m2

2)(p
2
3 +m2

b)
fe(y

0,y)ge(x
0x). (5.9)

I assume that the functions satisfy the support condition, fe(y
0,y) and ge(x

0,x) can be

non-zero only for 0 < x0 < y0.

The most straightforward assumption is to choose v(ma, p1,m2, p2,mb, p3) analytic in the

upper-half p0i planes. In this case the p0i integrals can be performed as in the 1 dimensional

case, where the convergence in the upper-half plane is ensured by the Euclidean time-support

constraints provided the kernel is polynomially bounded, and the Minkowski boundary value

is a tempered distribution. The integral over the vector variables leads to Fourier transforms

of the vector variables and results in the expression

(2π)9
∫
dx0dy0dx0′dy0′dp1dp2dp3dmadmcdmbf̃

∗
e (y

0′,−p1)g̃
∗
e(x

0′,p1 − p2)×

e−ωma (p1)(y0′−x0′)e−ωmc (p2)(x0′+x0)e−ωmb
(p3)(y0−x0)×

v(m1, (iωma(p1),p1),mc, (iωmc(p2),p2), (iωmb
(p3),p3),mb)

2ωma(p1)2ωmc(p2)2ωmb
(p3)

f̃e(y
0,p3 − p2)g̃e(x

0,−p3).

(5.10)

The kernel, which was initially a Euclidean invariant function of Euclidean scalar product

becomes a Lorentz invariant function of Lorentz invariant inner products when all of the

p0 → iωmi
(pi). This connected quasi-Schwinger function will be reflection positive if

v(ma, (iωma(p1),p1),mc, (iωmc(p2),p2), (iωmb
(p3),p3),mb) (5.11)

is a positive symmetric matrix in p1,ma and p3,mb for all values of p2 and mc. This is not

a difficult condition to realize.

This simple construction demonstrates the existence of a large class of reflection posi-

tive connected four-point quasi-Schwinger functions. Exchange symmetry puts additional

constraints on the quasi-Schwinger functions. The elements of this construction provide a

framework for investigating the reflection positivity of a larger class of quasi-Schwinger func-

tions. In what follows this class of reflection-positive quasi-Schwinger functions will be used

to test the existence of scattering wave operators in this Euclidean formulation of relativistic

quantum mechanics.
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VI. SCATTERING THEORY

In theories like quantum field theory, where the dynamics is encoded in the kernel of

the quantum mechanical scalar product, there is no natural asymptotic dynamics on the

physical Hilbert space to formulate scattering asymptotic conditions.

One way to formulate scattering in this situation [11][12] is to use a method that is

sometimes used in non-relativistic scattering theory, which involves introducing a secondary

Hilbert space of scattering asymptotes [13] [14], where the asymptotic states are treated as

free particles on a second Hilbert space and wave functions defining the internal structure

of the asymptotic separated particles are treated as mappings into the dynamical Hilbert

space. In the field theory case [15][16] this approach has the advantage that scattering

observables can be computed using strong limits, as in non-relativistic quantum mechanics.

The price for this is that it is necessary to solve the subsystem “bound state” problems

to formulate the scattering asymptotic condition. The benefit is that it is possible to do

scattering calculations using purely Euclidean methods.

While the two-Hilbert space formulation of scattering can be used more generally, I

consider the special case of a model with a fixed number of particles. In this case the

dynamics is given by a single 2n-point quasi Schwinger function

Sn:n(x1, · · · , xn : y1, · · · , yn). (6.1)

The cluster condition (E.3) means that for a given partition of the coordinates into asymp-

totically separated clusters of a partition a, the quasi-Schwinger functions can be expressed

as a product of quasi-Schwinger functions for each cluster plus a remainder that vanishes

when the clusters are asymptotically separated:

Sn:n =
na∏
i=1

Snai :nai
+ Sa

n:n. (6.2)

In this expression na denotes the number of non-empty clusters in the partition a, nai are the

number of elements in the ith cluster of a, where
∑na

i=1 nai = n. Sa
n:n is the remainder that

vanishes as a distribution when the coordinates in the different clusters are asymptotically

separated.

There are scattering channels α associated with the partition a if the quasi-Schwinger

functions, Snai :nai
, for each cluster of a has point spectrum eigenstates of the square of the

cluster mass operator (3.13).
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These asymptotic one-particle eigenstates are represented by functions of the Euclidean

variables,

〈x1, · · · , xnai
|mi〉. (6.3)

associated with the ith cluster of a satisfying the mass eigenvalue problem

〈x1, · · · , xnai
|M2|mi〉 = m2

i 〈x1, · · · , xnai
|mi〉 (6.4)

where M2 is the square of the mass operator defined by (3.13).

These mass eigenstates can be decomposed into simultaneous eigenstates of this mass,

spin, linear momentum, and 3-component of the canonical spin using the translation and

rotation subgroups of the Poincaré group:

〈x1, · · · , xnai
|mi,pi〉. =

∫
da

(2π)3/2
e−ip·a〈x1 + aaa, · · · , xnai

+ aaa)|mi〉 (6.5)

and

〈x1, · · · , xnai
|(mi, ji),pi, µi〉 =∫

SU(2)

dR

ji∑
ν=−ji

〈R−1x1, · · · , R−1xnai
|mi, R

−1pi〉Dji∗
µi,ν

(R). (6.6)

where the integral in (6.6) is over the SU(2) Haar measure. Note that if the original mass

eigenstates have compact positive Euclidean time support, this condition is unchanged by

spatial translations or rotations. The resulting irreducible states |(mi, ji),pi, µi〉 can be

renormalized as desired.

The SU(2) representation property follows by direct computation

〈x1, · · · , xnai
|U(R)|(mi, ji),pi, µi〉 =∫

SU(2)

dR′
ji∑

ν=−ji

〈R′−1R−1x1, · · · , R′−1R−1xnai
|mi, R

′−1pi〉Dji∗
µi,ν

(R′) =

∫
SU(2)

dR′′
ji∑

ν,µ′
i=−ji

〈R′′−1x1, · · · , R′′−1xnai
|mi, R

′′−1Rpi〉Dji∗
µ′
i,ν
(R′′)Dji

µ′
i,µi

(R) =

ji∑
µ′
i=−ji

〈x1, · · · , xnai
|(mi, ji), Rpi, µ

′
i〉D

ji
µ′,µi

(R). (6.7)

By construction, the states

〈x1, · · · , xnai
|(mi, ji),pi, µi〉 (6.8)
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transform irreducibly with respect to the Poincaré group:

〈x1, · · · , xnai
|Uαi

(Λ, a)|(mi, ji),pi, µi〉 =

∑
νi

〈x1, · · · , xnai
|(mi, ji),ΛΛΛpi, νi〉Dji

νiµi
(Rw(Λ, pi))

√
ωmi

(ΛΛΛpi)

ωmi
(pi)

eiΛpi·a (6.9)

where the factor
√

ωmi (ΛΛΛpi)

ωmi (pi)
arises because I have chosen to normalize these states with a

δ(p−p′) normalization. This demonstrates how to perform finite Poincaré transformations

on Poincaré irreducible eigenstates associated with masses in the point spectrum of the mass

operator.

These one-particle states can be used to construct a mapping from the mass mi spin ji

irreducible subspace of the Poincaré group to the Hilbert space associated with cluster quasi-

Schwinger function Snai :nai
for the variables in the ith cluster of a. I define the mapping Φαi

from the irreducible representation space, Hmiji , of square integrable functions of ψi(pi, µi)

to functions of the Euclidean space-time variables (x1, · · · , xnai
) by

〈x1, · · · xnai
|Φαi

|ψi〉 :=
∫
dpi

ji∑
µi=−ji

〈x1, · · · , xnai
|(mi, ji),pi, µi〉ψi(pi, µi). (6.10)

Taking tensor products defines the channel α injection operator Φα:

Φα := ⊗na
i=1Φαi

(6.11)

from the tensor product of the na irreducible representation spaces of the Poincaré group

associated with the scattering channel α:

Hα = ⊗na
i=1Hmαi ,jαi

(6.12)

to the Hilbert spaceHM . In (6.12) α denotes the scattering channel labeled by the subsystem

bound states α1 · · ·αni
corresponding to each cluster of the partition a. In general a given

partition a can be associated with any number of channels. The multi-particle interpretation

of these states is only realized in asymptotic regions where the residual part, Sa
n:n, of Sn:n in

(6.2) does not contribute to the inner product.

In order to be in the Hilbert space HM the function needs to have positive relative time

support. This is true for the individual cluster mass eigenstates. The supports of each of

these one-particle solutions can be shifted to the right using Euclidean time translations:

〈x1, · · · , xnai
|e−βH |(mi, ji),pi, µi〉 = 〈x1, · · · , xnai

|(mi, ji),pi, µi〉e−β
√

p2
i+m2

i
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〈x1 − βτ̂ττ , · · · , xnai
− βτ̂ττ |(mi, ji),pi, µi〉. (6.13)

Since the Hamiltonian commutes with the linear momentum, all components of the spin and

the mass, the resulting irreducible eigenstates are unchanged. Comparing these expressions

leads to the identification

〈x1, · · · , xnai
|(mi, ji),pi, µi〉 =

〈x1 − βτ̂ττ , · · · , xnai
− βτ̂ττ |(mi, ji),pi, µi〉e

√
pi

2+m2
i β. (6.14)

In this case the equality means that both functions belong to the same equivalence class.

The support of the second function representing this class is shifted to the right in the

Euclidean time variables by a factor β relative to the function on the left. Using different

Euclidean time translations on each cluster, the support of each cluster bound state can be

translated so they have positive relative time support with respect to some ordering of the

Euclidean times.

This shows that Euclidean time translations behave something like gauge transforma-

tions when they act on irreducible eigenstates in the sense that they transform functions

representing irreducible basis vectors to different functions in the same equivalence class.

The asymptotic Hilbert space HA is defined to be the direct sum of all of the channel

subspaces (including one-cluster channels if applicable)

HA = ⊕αHα. (6.15)

The injection operator

Φ : HA → HM (6.16)

is a mapping from the asymptotic Hilbert space to the “Minkowski” Hilbert space defined

by the sum of the channel injection operators

Φ :=
∑
α

Φα. (6.17)

There is a natural unitary representation of the Poincaré group on HA defined by

UA(Λ, a) = ⊕α∈A (⊗na
i=1Uαi

(Λ, a)) (6.18)

where the Uαi
(Λ, a) are given by (6.9).
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Scattering wave operators are mappings from the asymptotic Hilbert space HA to the

“Minkowski” Hilbert space defined by the strong limits

Ω± := lim
t→±∞

eiHtΦe−iHA t (6.19)

where HA is the Hamiltonian associated with (6.18). The existence of these limits depends

on properties of the quasi-Schwinger functions.

Conventional methods [17] can be used to derive sufficient conditions for this limit to

exist. The first step is to write the limit as the integral of a derivative

lim
t→±∞

eiHtΦe−iHAt = Φ+

∫ ±∞

0

d

dt

(
eiHtΦe−iHAtdt

)
=

Φ+ i

∫ ±∞

0

eiHt(HΦ− ΦHA)e
−iHAtdt. (6.20)

A sufficient condition for the existence of the wave operator is the convergence of the integral

(6.20). A sufficient condition for the convergence of this integral is the Cook condition [17],

which exploits the unitarity of the time evolution operator∫ ∞

a

‖(HΦ− ΦHA)e
∓iHAt|ψ〉‖dt <∞ (6.21)

and provides a bound on the norm of the integral in (6.20).

The quantities appearing in (6.21) depend on the quasi-Schwinger functions. It is suffi-

cient to consider this integral one channel at a time. Then the integrand becomes

‖(HΦα −HαΦα)e
∓iHαt|ψ〉‖ =

(ψα, e
±iHαt(Φ†H − Φ†Hα)(Θ

∏
Snai :nai

+ΘSa
n:n)(HΦα − ΦαHα)ψα)

1/2 (6.22)

where I have used (6.2) to express the quasi-Schwinger function as the sum of a term that

involves a product of the subsystem quasi-Schwinger functions associated with a partition a

into asymptotically separated subsystems plus a remainder term Sa
n:n that vanishes asymp-

totically.

I consider the example of the four-point quasi-Schwinger function∫ ∞

0

(
ψ, e∓iH0t(Φ†H −H0Φ

†)e±iH0tΘS2:2(HΦ− ΦH0)e
∓iH0tψ

)1/2
dt <∞. (6.23)

In (6.23) HΦ − ΦH0 replaces the non-relativistic potential. U0(t) is the time evolution

operator for the asymptotically free eigenstates. H0 is the sum of the energies of the particles

in each asymptotically cluster

H0 =
∑√

m2
ai
+ pai . (6.24)
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I will argue that for sufficiently well-behaved four-point quasi-Schwinger functions the in-

tegrand in (6.23) falls off like t−3/2, which is sufficient for the Cook condition (6.21) to be

satisfied.

To see this first note that cluster properties imply that the quasi-Schwinger function is

the sum of a product of two-point Schwinger functions and a connected term. I consider a

connected term that has the structure discussed in (5.8)∫
d4q1d

4q2d
4q3dmadmcdmb

eiq1·(x1−x2)+iq2·(x2−x3)+iq3·(x3−x4)

(q21 +m2
a)(q

2
2 +m2

c)(q
2
3 +m2

b)
v(q1,ma, q2,mc, q3,mb) (6.25)

where mc > ma,mb and the spectrum of mc should be continuous for scattering. I have

already established that this connected quasi Schwinger function is reflection positive for

suitable v(q1,ma, q2,mc, q3,mb).

First I consider the structure of the asymptotic states. If the two-point functions have

only a single mass eigenstate, as in (4.1), then the one-body problem becomes trivial. If the

two-point function has several discrete mass eigenvalues then

Πj =
∏
i6=j

∇2 −m2
i

m2
j −m2

i

. (6.26)

projects the initial or final state on the asymptotic j-th mass subspace. If the two-point

Lehmann weight also has continuum eigenstates then it is necessary to project on the ap-

propriate one-particle subspace. In what follows I consider that simplest case where mass

operator associated with the two-point function has a single discrete eigenvalue. This means

that the two point functions have the from (4.1).

In this case it is enough to consider asymptotic states Φ|e∓iH0t|ψ〉 of the form

〈x1, x2|Φ|e∓iH0tψ〉 =
2∏

i=1

fi(x
0
i )

∫
dpi

(2π)3/2
ψi(pi)e

ipi·xi∓iωmi (pi)t (6.27)

where the fi(x
0
i ) are sharply peaked with compact support and integrate to 1.

With this choice of wave packets

〈x1, x2|(HΦ− ΦH0)e
∓iH0t|ψ〉 =

(2π)3
(
∂

∂x01
+

∂

∂x02
− ωm1(p1)− ωm2(p2)

)
f1(x

0
1)f2(x

0
2)×∫

dp1dp2

(2π)3
ψ1(p1)ψ2(p2)e

ip1·x1∓iωm1 (p1)t+ip2·x2∓iωm2 (p2)t. (6.28)
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The integrand in the Cook condition uses (6.25) and (6.28) in

(ψ, e∓iH0t(Φ†H −H0Φ
†)Θ(S1:1S1:1 + Sc

2:2)(HΦ− ΦH0)e
±iH0tψ)E. (6.29)

In this expression the partial derivatives in (6.28) with respect to the Euclidean times can

be integrated by parts. When (−) the Euclidean time derivatives act on the product of

the two-point functions S1:1S1:1 they generate a energy factors (4.5) that exactly cancel the

asymptotic energy factors in (6.28), making (6.29) vanish.

This means that only the connected part of the four-point quasi-Schwinger functions

contributes to the integral (6.29). Thus, the connected part of the four-point function plays

an analogous role to the interaction in the non-relativistic case.

What remains has the form

(2π)6
∫
d4q1d

4q2d
4q3dmadmcdmbdx

0
1dx

0
2dx

0
3dx

0
4 (ωmc(q2)− ωm1(q1)− ωm2(q2 − q1))×

f1(x
0
1)f2(x

0
2)ψ

∗
1(q1)ψ

∗
2(q2 − q1)e

±iωm1 (q1)t±iωm2 (q2−q1)t×

e−ωma (q1)(x01−x02)−ωmc (q2)·(x02+x03)−ωmb
(q3)(x03−x04)

(q21 +m2
a)(q

2
2 +m2

c)(q
2
3 +m2

b)
×

e±iωm1 (q1)t∓iωm2 (q2−q1)tv(q1,ma, q2,mc, q3,mb)×

(ωmc(q2)− ωm3(q3)− ωm4(q2 − q3)) f1(x
0
3)f2(x

0
4)ψ1(q3)ψ2(q2 − q3) (6.30)

The large-time behavior of this integral is relevant for the Cook condition. To estimate the

large time behavior write

−ωma(q1)(x
0
1 − x02)± iωm1(q1)t =

−(ωma(q1)− ωm1(q1))(x
0
1 − x02)

−ωm1(q1)(∓it+ (x01 − x02)) (6.31)

and

−ωmb
(q3)(x

0
3 − x02)± iωm3(q3)t =

−(ωmb
(q3)− ωm3(q3))(x

0
3 − x02)

−ωm3(q3)(∓it+ (x01 − x02)). (6.32)

We assume that the mb ≥ m3 and ma ≥ m1, which is the easiest case to consider.
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To put (6.29) in a manageable form I make some simplifying assumptions. First I assume

that the fi(x
0) are sharply peaked to factor the integrand out of the integral. The resulting

approximation leads to in a constant multiplied by the integrand evaluated at points at x0i

in the support of fi(x
0). Similarly I change to total and relative momentum variables and

use the translational invariance to eliminate the center of momentum degrees of freedom.

Specifically I assume that the total 3-momentum support of the wave functions is near zero.

One total momentum integral is eliminated by the momentum conserving delta function.

The second is approximated by setting the total momentum equal to zero and multiplying by

the volume of the total momentum support. What remains, up to a multiplicative constant,

has the form (
ψ,U0(±t)(HΦ− ΦH0)U

†
0(t)ψ, θS

c
2:2(HΦ− ΦH0)U0(∓t)ψ

)
→∫

(ωmc(0)− ωm3(k
′)− ωm4(k

′))×

ψ∗
3(−k′)ψ∗

4(k
′)eiωm4 (

1
2
k′)t+iωm3 (

1
2
k′)t

e−ωma (k
′)(x04−x03)−ωmc (0)(x

0
3+x01)−ωmb

(k)(x01−x02)

dkdk′

ωma(k
′)ωmc(0)ωmb

(k)(
ωmc(0)− ωm1(

1

2
k)− ωm2(

1

2
k)

)
×

ψ1(k)ψ2(−k)e∓iωm1 (k)t∓iωm2 (k)t. (6.33)

where k is the momentum of one of the particles in the zero momentum frame.

The time dependence in this expression comes from the k and k′ integrals. If we use

(6.31-6.32) in these expression, assuming that ma ≥ m1 and mb ≥ m2 the integral 6.33 has

the general form ∫ ∞

0

k2dk

ωm1(k
2)
h(k2)e−ωm1 (k

2)(x01−x02±2it) (6.34)

where h(k2) is a well-behaved function of k2. This can be put in a form where it is possible

to see the asymptotic behavior by making the substitution k = m1 sinh(η) and ωm1(k
2) =

m cosh(η) which leads to an integral of the form

m3
2

∫ ∞

0

sinh2(η)e−m1 cosh(η)(x01−x02−2it)h(sinh2(η))dη. (6.35)
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If I ignore the h(sinh2(η)) this integral can be done exactly. The time dependence is

I → 1

m1(x01 − x02 ∓ 2it)
K1(m1(x

0
1 − x02 ∓ 2it)) (6.36)

where for large arguments

Kn(z) →
√

π

2z
e−z(1 +

n2

2z
+ · · · ). (6.37)

Using (6.37) in (6.36) shows that this integral falls off like 1
t3/2

for large time. Each extra

power of k in h(sinh2(η)) introduces another factor of t−1/2. The same factor is generated

by both the k and k′ integrals. This shows that the Cook condition (6.21) is satisfied

for the reflection quasi-Schwinger functions of the form (5.8). The large-time behavior is

asymptotically identical to what one finds in non-relativistic scattering theory, however in

this case it is controlled in part by the relative Euclidean time support condition.

The relativistic invariance of the S matrix can be established using similar methods. The

required condition in terms of the wave operators are the intertwining conditions

U(Λ, a)Ω±α = Ω±αUα(Λ, a) (6.38)

for both asymptotic conditions. For the space translations and rotations this condition is

a consequence of the translational and rotational invariance of the injection operators, Φα.

For time translations this follows from the existence of the wave operators. For the boosts

a sufficient condition is

lim
t→±∞

‖(KΦα − ΦαKα)e
∓iHαt|ψ〉‖ = 0 (6.39)

As in the scattering case, the non-zero contributions to this expression before taking the

limit come from the part Sa
n:n (see 6.22) of the quasi-Schwinger function that vanishes as

the clusters of a are separated. In the two-body example above, this depends on properties

of the connected four-point function. When (6.39) holds finite Lorentz transformations on

the scattering eigenstates can be realized by transforming the asymptotic states using (6.9)

VII. COMPUTATIONAL ISSUES

This paper gives a representation of a model Hilbert space whose vectors are equivalence

classes of functions of Euclidean spacetime variables with certain support conditions, and a
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representation of the Poincaré Lie algebra on this space. Given a Hilbert space representation

and a set of Poincaré generators in this representation it is in principle possible to calculate

any dynamical quantity.

The new features in this Euclidean formulation are that the dynamics enters in the

kernel of the Hilbert space inner product and the Hilbert space vectors are represented

by equivalence classes of functions. Computational strategies must be designed with these

properties in mind.

What is easy to calculate in this formalism are matrix elements of e−βH which only involve

a translation of the all of the Euclidean time variables in the wave functions by a common

constant and a quadrature.

The brute force way to treat the large degeneracy would be use start with a dense set

of vectors, use the Gram Schmidt method to generate an orthonormal basis and compute

matrix elements of e−βH in that basis. Working in an orthonormal basis eliminates the

large degeneracy, and having matrix elements of −βH in a complete orthonormal basis is in

principle sufficient to compute any dynamical quantity.

The most interesting observables are scattering observables. While these could in princi-

ple be calculated using the method discussed in the previous paragraph, it is not the most

efficient way to proceed. An alternative is to utilize the time-dependent representation of

the S matrix elements, which in the two-Hilbert space representation has the form

〈ψαf |S|ψγi〉 = lim
t→∞

〈ψαf |eiHαtΦ†
αe

−2iHtΦγe
iHγt|ψγi〉. (7.1)

In normal formulations of scattering theory [18] this is the starting point. The derivation of

the usual time-independent formula assumes that the wave packets are sufficiently narrow

and the kernel of the transition operator is sufficiently smooth that the kernel of the tran-

sition operator can be factored out of the integral, resulting in a representation of the cross

section that is independent of the choice of wave packet.

This can be turned around by using sufficiently narrow wave packets centered about

p1, · · · ,pnα and p1, · · · ,pnγ and keeping them for the entire calculation. In both cases the

result leads to (approximate) sharp-momentum values the transition matrix

〈p′
1, · · · ,p′

nα
|t(Eγ + i0)|p1, · · · ,pnγ〉 ≈

i

2π

〈ψαf |(S − I)|ψγi〉
〈ψαf |δ(Eα − Eγ)|ψγi〉

. (7.2)

All of the quantities in this expression can be computed from (7.1).
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While (7.2) may be difficult to compute directly, one expects that the Kato-Birman

invariance principle [19][20] can be used to make the replacement H → −e−βH in (7.1)

giving the following equivalent expression for the S-matrix elements

〈ψαf |S|ψγi〉 = lim
n→∞

〈ψαf |e−ine−βHα
Φ†

αe
2ine−βH

Φγe
−ine−βHγ |ψγi〉. (7.3)

This is an identity rather than an approximation. β is a parameter that can be used to set

an energy scale. The result is independent of β, but the wrong choice of β would make the

limit difficult to evaluate.

While (7.3) looks more complicated than (7.1), what is relevant is that because of the

spectral condition (3.16), e−βH , has a spectrum in the unit interval. Since e2inx can be

uniformly approximated by a polynomial on the compact interval [0, 1], it follows that if

|P (x)− e2inx| < ε ∀x ∈ [0, 1] (7.4)

then

‖P (e−βH)− e2ine
−βH‖ < ε (7.5)

where the same ε appears in both expressions. This is important because it means that it

is sufficient to test the convergence of the approximation using (7.4) rather than the more

complex (7.5).

The result of this sequence of approximations is that sharp transition matrix elements

can formally be expressed in terms of matrix elements of polynomials in e−βH , which in the

Euclidean framework can be calculated using (3.15).

The calculation outlined above involves four approximations that must be performed in

a specific order.

1. Solve for Φα. This requires solving the one-body problem for subsystems. This can be

trivial or difficult depending on the spectral properties of the quasi-Schwinger func-

tions. The accuracy of the subsequent approximations will be sensitive to how well

the one-body solution is isolated from the rest of the subsystem mass eigenstates.

2. The next approximation is to choose sufficiently narrow wave packets. These are

needed to extract sharp momentum transition operators. The error on the sharp

momentum transition matrix elements decreases as the width of the wave packet de-

creases.
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3. The large n limit in (7.3). This replaces the large time limit in the expressions for

the wave operators. The value of n needed for convergence will increase as the wave

packets become narrower. The parameter β can be used to minimize the values of

n need for convergence. The convergence is strong for well-behave connected quasi-

Schwinger functions.

4. The degree of the polynomial needed to approximate e2inx increases as n increases.

This can be tested directly using (7.4).

The virtue is that each of the above approximations converges. Since each approxima-

tion effects the subsequent approximations it is clear that these approximations must be

performed in the order prescribed above. The last three approximations were tested in the

context of a solvable model, where it was possible to independently investigate the accuracy

of each of the last three approximations [21]. What was found, in the context of a simple

model, was that in order to get three-significant figure accuracy on sharp-momentum two-

body transition matrix elements, the wave packet width needed to be about 1/10 of the

beam momentum. This was observed for incident momenta between .05 to 2 GeV.

Ten significant figure accuracy could be realized in the approximation of S-matrix ele-

ments with n. These results were realized using wave packets that were sufficiently narrow

to get three significant figure accuracy in the sharp-momentum transition operators. Values

of n needed for ten significant figure accuracy for these wave packets were in the 100− 400

range for incident momenta between .05 - 2.0 GeV, when β was chosen close to the inverse

of the working energy scale.

Ten significant figure accuracy could be realized in the approximation of e2ine
−βH

by

Chebyshev polynomials in e−βH . In the model calculations of [21] the degree of the poly-

nomials was between 300-700. The coefficients of the Chebyshev polynomial expansion of

e2inx were determined using Gauss-Chebychev quadrature, which made it possible to handle

polynomials of large degree.

The demonstrated convergence of the last three of the four approximations listed above

in the model calculations of [21] strongly suggest that few-GeV scale scattering calculations

are possible. The largest source of error is associated with the width of the wave packets.

The three significant figure accuracy for the sharp momentum transition matrix elements

achieved in these model calculations is sufficient for few-GeV scattering calculations. In the
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two-body case, where the two-point functions are given by free Euclidean Green functions,

the one-body problem becomes trivial. What remains are the three approximations that

were successfully tested in the model calculations. This suggests that the approximation

methods discussed above should be sufficient to solve a two-body model with a four-point

function of the form (5.4), where S1:1 are free field Schwinger function and the connected

four-point function has the form (5.8). The existence of the limits that define the wave

operators suggest the possibility that time-independent equations based on (7.3) might also

be possible.

A number of open problems remain. The first one is to develop a strategy for constructing

quasi-Schwinger functions that define realistic models. The difficulty with the Bethe-Salpeter

approach, in addition to the stability discussed in section V, is that because S1:1 does not map

the positive-time subspace to the positive-time subspace, the reflection positivity applied to

the kernel involves the full matrix of the kernel, rather than the restriction the positive

Euclidean time subspace. The construction of realistic reflection positive quasi-Schwinger

functions is most important remaining open problem.

A second open problem is how to obtain accurate solutions to the one-body problem

when the subsystem quasi-Schwinger functions also contains continuum mass eigenstates.

The Lehmann weights for realistic two-point Schwinger functions have both discrete and

continuous mass eigenstates. The challenge is how to construct a projection operator on the

one-body subspace of HM . These are needed in order to realize the strong convergence of

the scattering theory.

The third open problem is how to perform quadratures with sufficient accuracy to suc-

cessfully implement the above strategy. This problem is not special to this formalism.

Finally the ultimate goal is to apply these methods to QCD, where the connection with

the spectral condition (3.16) suggests that reflection positivity may only be satisfied for

initial and final states that are color singlets. The methods discussed above can in principle

be applied in this case, since the asymptotic one-body states would be color singlets, and

the S matrix should map singlets to singlets.
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VIII. SUMMARY

In this paper I exhibited a class connected four-point quasi-Schwinger functions satisfying

reflection positivity. Their structure was motivated by a theorem of Widder which applies

only to the one-dimensional case. Widder’s result suggests that reflection positivity is a

fairly restrictive condition. The general structure of reflection positive four-point functions

is still an open problem. More importantly, the construction of quasi-Schwinger functions

for realistic models remains an open problem. In this paper I used time-dependent methods

to demonstrate the existence of scattering wave operators for models based on the reflection

positive quasi Schwinger functions of the form (5.8). The basic observation is that the Cook

condition that is normally used as a sufficient condition for the existence of non-relativistic

wave operators can be applied in this formulation of Euclidean relativistic quantum me-

chanics. The t−3/2 asymptotic behavior that ensures the existence of the wave operator

for short-ranged potentials in the non-relativistic case is realized in the relativistic case for

sufficiently well behaved connected quasi-Schwinger functions.

Time-dependent methods for computing transition matrix elements using purely Eu-

clidean methods were suggested. Models calculations suggest that these methods should in

principle be applicable to few-GeV scale scattering calculations.

This work was supported by the U. S. Department of Energy, Office of Nuclear Physics,

under contract No. DE-FG02-86ER40286.

IX. APPENDIX - SPIN

Quasi-Schwinger functions that lead to any positive-mass irreducible representation space

of the Poincaré group are constructed in this appendix.

A basis for vectors in a positive-mass irreducible representation space of the Poincaré

group are simultaneous eigenstates of the mass, spin, linear momentum, and z-component

of some kind of spin (canonical, Jacob-Wick helicity, light-front, · · · ). These states have the

following transformation property

U(Λ, a)|(m, j)pµ〉 =

∑
ν

e−iΛp·a|ΛΛΛp, ν〉Dj
µν [B

−1(Λp/m), a)ΛB(p/m)]

√
ωm(Λp)

ωm(p)
(9.1)
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whereB−1(Λp/m), a)ΛB(p/m) is a Wigner rotation. The choice of Lorentz boost, B(p/m)µν ,

in the Wigner rotation determines the type of spin [22]. For any kind of spin the Wigner

D functions, which are also finite dimensional representations of SL(2,C) and it can be

factored into products. Multiplication of both sides of (7.1) by

Dj
µν [B

−1(p/m)] (9.2)

leads to

U(Λ, a)|(m, j)pµ〉Dj
µσ[B

−1(p/m)]
√
ωm(p) =

e−iΛp·a|ΛΛΛp, ν〉Dj
µσ′ [B

−1(Λp/m)]
√
ωm(Λp)D

j
σ′σ[Λ]. (9.3)

The vectors

|p, j, σ〉 := |(m, j)pµ〉Dj
µσ[B

−1(p/m)]
√
ωm(p) (9.4)

transform in a Lorentz covariant manner

U(Λ, 0)|p, j, σ〉 = e−iΛp·a|Λp, j, σ〉Dj
σ′σ[Λ]. (9.5)

The transformation U(Λ, 0) is unitary with respect to the inner product

ψ(p, j, σ) = 〈p, j, σ|ψ〉, (9.6)

〈ψ|φ〉 =
∫
ψ∗(p, j, µ)Dj

µσ[B(p/m)B†(p/m)]m
dp

ωm(p, j, σ)
φ(p) (9.7)

where p0 = ωm(p) is the energy. The kernel simply removes the momentum-dependent

SL(2, C) Wigner functions from the covariant representation. Because the SL(2,C) matrices

cancel in computing matrix elements - the result is the same independent of whether the

right or left-handed representations of SL(2,C) are used.

Note that in SL(2,C) a general boost has a polar decomposition

B(p) = P (p)R(p) (9.8)

where P (p) is the positive Hermitian operator,

P (p) = eρρρ·σσσ/2, (9.9)

ρρρ is the rapidity vector and R(p) is an SU(2) matrix (generalized Melosh rotation) that

determines the type of spin. It follows that

B(p/m)B†(p/m) = P (p)R(p)R†(p)P (p) = P 2(p) = eρρρ·σσσ = σ · p. (9.10)
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In this expression the Melosh rotations cancel, so the result is independent of the choice of

spins. Thus this scalar product can be expressed as∫
ψ∗(p, j, α)Dj

αβ[p · σ]m
dp

ωm(p)
ψ(p, j, β) = (9.11)

∫
ψ∗(p, j, α)Dj

αβ[p · σ]2md
4pδ(p2 +m2)ψ(p, j, β). (9.12)

This is essentially identical to the form found in [23] (see eq. 1.57). The important observa-

tion is that σ ·p is a positive Hermetian matrix for timelike p. The same holds for Dj
µσ[p ·σ],

Dj
µσ[p · σ∗], and Dj

µσ[p · σ−1].

The following quasi-Schwinger function is a Euclidean covariant rather than Euclidean

invariant distribution ∫
2mDj

αβ[pe · σe]
p2e +m2

d4pee
ipe·(x−y) (9.13)

that leads exactly to the representation (9.7) of a mass m spin j irreducible representation.

These considerations show that the following Euclidean scalar product is reflection posi-

tive ∫
g∗α(Θx)

2mDj
αβ[pe · σe]

p2e +m2
d4pee

ipe·(x−y)gβ(y)d
4xd4yd4pe =

ψ∗(p, j, α)Dj
αβ[p · σ]2md

4pδ(p2 +m2)ψ(p, j, β) (9.14)

with

ψ(p, j, β) =

∫
g(x0, x)e−ωm(p)x0eip·x. (9.15)

This shows how to construct reflection-positive quasi-Schwinger functions for any irreducible

representation of the Poincaré group. While I did not choose to double the representation,

doubled representations can be realized by replacing Dj
αβ[p · σ] by a direct sum of a right

and left handed representation , Dj
α′β′ [pσ2 · σ ∗ σ2], which is also positive for positive energy

timelike p.

The kernel of the resulting Lorentz covariant measure is modified by the presence of

Dj
µµ′ [p · σ] where p = (ωm(p),p):

dp

2ωm(p)
Dj

µµ′ [p · σ]Dj
νν′ [p · σπ]]
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where σσσπ = σ2σσσ
∗σ2. The transformation properties of multipoint quasi-Schwinger function

are the same as products of these two-point quasi Schwinger functions.
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