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Abstract

In this paper I exhibit a class of reflection positive Euclidean invariant four-point functions that

can be used formulate a Poincaré invariant quantum theory. I demonstrate the existence of scatter-

ing wave operators, which can be calculated without analytic continuation in this representation.
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I. INTRODUCTION

In this paper I discuss the existence of scattering wave operators in a representation of

relativistic quantum mechanics where the dynamics is introduced through a collection of

reflection positive Euclidean “Green functions”.

This work is motivated by the observation that the physical Hilbert space inner product

in the Osterwalder-Schrader reconstruction theorem of Euclidean field theory [1] can be

expressed as a sesquilinear form involving only Euclidean Green functions and Euclidean test

functions. Furthermore, the properties of the Euclidean Green functions that are needed to

reconstruct a relativistic quantum theory are subset of the properties needed to construct

a local field theory. There are explicit representations of all ten Poincaré generators as

self-adjoint operators in this Euclidean representation of the Hilbert space. The important

observation is that this representation of the relativistic quantum theory does not require

analytic continuation.

The general formalism was presented in a previous paper [2]. In that paper we introduced

methods to compute sharp-momentum transition operators using matrix elements of e−βH in

normalizable states. These matrix elements can be computed using only quadratures in the

Euclidean representation. The computational methods that we introduced were tested using

a solvable model and convergence to the exact transition matrix elements was demonstrated

for energies between 50 MeV and 2 GeV.

The dynamical input is a set of multi-point Euclidean Green functions that are defined

as moments of Euclidean path integrals or solutions of Schwinger-Dyson equations. Actual

computations use finite collections of approximate or model Green functions. The Euclidean

Green functions that define an acceptable quantum theory satisfy a condition called reflection

positivity, which is equivalent to the requirement that vectors in the Euclidean representation

of the Hilbert space have non-negative norm.

Reflection positivity in continuum theories is a restrictive condition. This is expected

since it ensures the existence of an analytic continuation of spacetime variables to Minkowski

space. It is difficult to check because the sum of a reflection positive Green function and

a small Euclidean invariant perturbation is not necessarily reflection positive [3]. In addi-

tion, products of reflection positive operators are not necessarily reflection positive. These

observations imply that the solution of the Bethe-Salpeter equation with reflection positive
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input is not automatically reflection positive. A natural question that arises is are there

real fundamental problems with finding reflection positive Green functions, or do the issues

discussed above just make it difficult to demonstrate? Having a class of non-trivial exam-

ples would make it clear that there are no fundamental problems in constructing reflection

positive Green functions.

This paper addresses two questions which were not addressed in [2]. The first question,

discussed in the previous paragraph, is “Are there any non-trivial reflection-positive multi-

point Green functions?” The second question, assuming that first question is answered in

the affirmative, is “Do these reflection positive Green functions lead to a non-trivial scat-

tering theory?” This is the Euclidean version of determining what class of potentials lead

to a non-trivial scattering in non-relativistic quantum mechanics.

This paper does not provide a general solution to this problem, but it exhibits a represen-

tative class of reflection positive Euclidean invariant four-point functions that are motivated

by a one-dimensional structure theorem. This paper also shows that scattering wave oper-

ators exist for this class of four-point functions. This paper also includes a short discussion

of issues related to applying these methods to QCD as well as a discussion of how to extend

the framework presented in [2] to treat states of any spin.

The advantages of this approach are (1) all relevant calculations can be performed entirely

in Euclidean space, (2) there is numerical evidence that GeV-scale scattering calculations

can be performed without analytic continuation (3) and finite Poincaré transformations can

be performed without leaving Euclidean space.

In the next section I introduce notation and summarize needed results from [2]. In

section three I exhibit a class of reflection positive four-point Green functions. In section

four I discuss the formulation of the scattering problem when the dynamics is in the kernel of

the scalar product and demonstrate the existence of scattering wave operators based on the

Green functions introduced in section three. In section five I briefly review computational

methods that can be applied to the examples of sections three and four. Section six provides

a brief summary of the key results of this paper and a discussion of remaining open problems.

The appendix discusses the structure of two-point Euclidean Green functions for arbitrary

spin.

3



II. DEFINITIONS AND ASSUMPTIONS

This section summarizes the essential background material from [2].

A relativistic Euclidean quantum theory is defined by a collection of Euclidean invariant

distributions, Sm:n(xm, · · · , x1; y1, · · · , yn), where the xi and yj are final and initial Euclidean

space-time variables. The collection can be finite or infinite.

A dense set of Hilbert space vectors are represented by test functions

{fm(x1, · · · , xm)} (2.1)

with support for positive relative Euclidean times

0 < x01 < x02 < · · · < x0m. (2.2)

The physical Hilbert space inner product is

〈f |g〉 =
∑
m,n

∫
f ∗
m(x1, · · · , xm)Sm:n(θxm, · · · , θx1; y1, · · · , yn)gn(y1, · · · , yn)d4mxd4ny, (2.3)

where θx = θ(x0,x) = (−x0,x) is the Euclidean time reflection operator. The Hilbert space

generated by the functions (2.1) with inner product (2.3) is denoted by H.

The collection of Green functions in (2.3) is reflection positive if

〈f |f〉 ≥ 0. (2.4)

This inner product has zero norm-vectors, so the actual Hilbert space vectors are equivalence

classes of functions of the form (2.1-2.2), under the equivalence relation that the norm of

the difference between equivalent functions is zero.

In quantum field theory microscopic locality requires that the collection of Green func-

tions is infinite and there is no distinction between the initial and final variables; in rela-

tivistic quantum mechanical models both of these conditions can be relaxed. Relaxing these

conditions leads to violations of microscopic locality, however all of the other observable

requirements (axioms) of a relativistic quantum theory remain satisfied [1]. Computable

models involve finite numbers of degrees of freedom, so the full set of requirements of the

field theory will not be realized, but it is still desirable to retain the relativistic invariance

of the quantum theory.
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In addition, the collection of Green functions should be Hermitian,

Sk:n(xk · · · x1; y1 · · · yn) = S∗
n:k(yn · · · y1; x1 · · · xk), (2.5)

so 〈f |g〉 = 〈g|f〉∗ and satisfy cluster properties,

Sk:n(xk, · · · , x1; y1, · · · , yn) →
∏

Ski:ni
(xki, · · · , x1i; y1i, · · · , yni), (2.6)

as distributions, which means that they become products of fewer-point Green functions

when different clusters of initial and final variables are asymptotically separated.

The Poincaré generators on H have simple expressions. The Hamiltonian and square of

the invariant mass operator are

〈x|H|f〉 := − d

da
〈x− (a, 0, 0, 0)|f〉|a=0 =

{0, ∂

∂x011
f1(x11),

(
∂

∂x021
+

∂

∂x022

)
f2(x21, x22), · · · } (2.7)

and

M2 = H2 − P 2 (2.8)

〈x|M2|f〉 := {0, −∇2
11f1(x11),−(∇21 +∇22)

2f2(x21, x22), · · · } (2.9)

where ∇2 is the 4-dimensional Euclidean Laplacian. The generators of spatial translations

and rotations follow in the usual way from the translational and rotational invariance of the

Green functions. Matrix elements of the form 〈f |e−βH |g〉 are important in applications and

can be computed by quadrature by replacing

gn(y1, · · · , yn) → gn(y1 − (β,0), · · · , yn − (β,0)) (2.10)

in (2.3).

III. REFLECTION POSITIVITY

One difficulty with constructing reflection positive multipoint functions is that there are

non-trivial functions associated with zero norm vectors.

If a free Euclidean Green function is perturbed by adding a small connected perturba-

tion that is only required to be Euclidean invariant, then a function representing a zero

norm vector with respect to the product of the free Euclidean Green functions might have
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a non-zero contribution due to the perturbation. This contribution can always be made

negative using the freedom to adjust the sign of the perturbation. The means that reflection

positivity is not stable with respect to small Euclidean invariant perturbations. The prac-

tical consequence of this observation is that the solution of the Euclidean Bethe-Salpeter

equation,

S2:2 = S1:1S1:1 + S1:1S1:1KS2:2, (3.1)

with a model Euclidean invariant kernel, K, is not automatically reflection positive, even if

the kernel is small. I am not aware of any general results about what kind of restrictions are

needed on Euclidean invariant Bethe-Salpeter kernels for S2:2 to be reflection positive. In

addition, reflection positivity ensures the existence of an analytic continuation to Minkowski

space in space-time variables, which suggests that it is a restrictive condition.

The absence of any general methods for constructing reflection positive Green functions

is a problem if one wants to make phenomenological models of Euclidean Green functions

to use in this framework. Fortunately, a general structure theorem exits for the two-point

function in the one-dimensional case. In what follows this one-dimensional result will be

used to motivate the construction of a class of reflection positive four-point functions.

Since cluster properties imply that four-point functions can be expressed as a sum of

products of reflection-positive two-point functions and a connected four-point function,

S2:2 =
∑

S1:1S1:1 + Sc
2:2, (3.2)

in order to show S2:2 is reflection positive it is sufficient to show that the connected four-point

function, Sc
2:2, is reflection positive.

In one dimension there is a result due to Widder [4][5][6] from classical analysis that gives

the general structure of reflection positive two-point functions. Widder’s theorem points out

that any kernel k(s) satisfying the reflection positivity condition

∫
f(θs)k(s− t)f(t)dsdt =

∫
f(s)k(−s− t)f(t)dsdt ≥ 0 (3.3)

can be expressed in the exponential form

k(−τ ′ − τ) =

∫
e−λ(τ ′+τ)ρ(λ)dλ (3.4)

for some positive density ρ(λ). Since in this example, τ ′, τ > 0, we can write the kernel as

k(−τ ′ − τ) =

∫ ∞

0

λ

π
ρ(λ)dλ

∫ ∞

−∞
ds
e−is(τ ′+τ)

s2 + λ2
. (3.5)
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This has the form of a one-dimensional version of the Källén-Lehmann representation of a

two-point Euclidean Green function.

The Widder result suggests that connected four-point Euclidean Green functions with

the structure

Sc
2:2(x2, x2; y1, y2) =∫

d4p1d
4p2d

4p3dmadmcdmbe
−ip1·(x2−x1)e−ip2·(x1−y1)e−ip3·(y1−y2)×

v(ma, p1,mc, p2,mb, p3)

(p21 +m2
a)(p

2
2 +m2

c)(p
2
3 +m2

b)
(3.6)

would be reflection positive for suitable Euclidean invariant kernels, v(ma, p1,mc, p2,mb, p3).

The relevant observation is that this reduces to the one-dimensional case if there is enough

symmetry between the initial and final variables. This structure does not provide a general

representation for a Euclidean invariant reflection positive four point functions, as one gets

in Widder’s theorem. On the other hand, Widder’s theorem suggests that reflection posi-

tivity and Euclidean covariance strongly constrain the class of reflection positive four-point

functions.

The contribution to the Hilbert space norm from connected Green functions of the form

(3.6) is

‖|fg〉‖2c =∫
d4x1d

4x2d
4y1d

4y2d
4p1d

4p2d
4p3dmadmcdmbf

∗
e (−x02,x2)g

∗
e(−x01,x1)e

−ip1·(x2−x1)×

e−ip2·(x1−y1)e−ip3·(y1−y2)
v(ma, p1,mc, p2,mb, p3)

(p21 +m2
a)(p

2
2 +m2

2)(p
2
3 +m2

b)
fe(y

0
2,y2)ge(y

0
1,y1) (3.7)

where the functions satisfy the support condition, ge(y
0
1,y1) and fe(y

0
2,y2) can be non-zero

only for 0 < y01 < y02.

The most straightforward assumption is to choose v(ma, p1,m2, p2,mb, p3) to be symmet-

ric with respect to p1,ma ↔ p3,mb and analytic in the upper-half p0i planes. In this case the

p0i integrals can be performed as in the one-dimensional case, where the convergence in the

upper-half plane is ensured by the Euclidean time-support constraints provided the kernel

is polynomially bounded, and the Minkowski boundary value is a tempered distribution.

The integral over the vector variables leads to Fourier transforms of the vector variables and

results in the expression

(2π)9
∫
dx0dy0dx0′dy0′dp1dp2dp3dmadmcdmbf̃

∗
e (x

0′
2 ,−p1)g̃

∗
e(x

0′
1 ,p1 − p2)×
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e−ωma (p1)(x02−x01)e−ωmc (p2)(x01+y01)e−ωmb
(p3)(y02−y01)×

v(m1, (iωma(p1),p1),mc, (iωmc(p2),p2), (iωmb
(p3),p3),mb)

2ωma(p1)2ωmc(p2)2ωmb
(p3)

f̃e(y
0
2,p3−p2)g̃e(y

0
1,−p3). (3.8)

The kernel, which was initially a Euclidean invariant function of Euclidean scalar products

becomes a Lorentz invariant function of Lorentz invariant inner products when the residues

are evaluated at the poles p0 → iωmi
(pi). This connected Euclidean Green function will be

reflection positive if

v(ma, (iωma(p1),p1),mc, (iωmc(p2),p2), (iωmb
(p3),p3),mb) (3.9)

is a positive symmetric matrix in p1,ma and p3,mb for all values of p2 and mc. This is not

a difficult condition to realize.

This construction demonstrates the existence of a large class of reflection positive con-

nected four-point Euclidean Green functions. Exchange symmetry puts additional con-

straints on the Euclidean Green function functions. This construction provides a class of

non-trivial reflection positive Green functions that can be used to investigate properties of

non-trivial models.

The second question that can now be addressed is whether the relativistic quantum

models defined by these Green functions have non-trivial scattering operators.

IV. SCATTERING THEORY

In theories like quantum field theory, where the dynamics is encoded in the kernel of

the quantum mechanical scalar product, there is no natural asymptotic dynamics on the

physical Hilbert space to formulate scattering asymptotic conditions.

Instead, in order to formulate the scattering theory, cluster properties of the Green func-

tions are utilized to formulate the asymptotic conditions. Cluster properties imply that

in each asymptotic region the Green functions break up into products of subsystem Green

functions. Since the Green functions define the structure of the Hilbert space, in each asymp-

totic region the Hilbert space looks like the tensor product of Hilbert spaces associated the

dynamics of asymptotically separated subsystems. Scattering asymptotic conditions can

be formulated by finding eigenfunctions associated with the point spectrum of each of the

subsystem mass operators using (2.9). These can be further decomposed into simultaneous
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eigenstates of mass, linear momentum, spin and spin projection using the space transla-

tions and rotations (see (4.4) equations and (4.6) of [2]). These vectors are a basis for an

irreducible representation space of the Poincaré group. Products of these subsystem bound-

state eigenfunctions define a mapping from a Hilbert space of scattering asymptotes, which

is the tensor product of Poincaré irreducible representation spaces, to H.

In order to illustrate the main concepts I consider the special case of two-particle scat-

tering. Also for simplicity I assume that 1 and 2 correspond to different types of scalar

particles. In this case the dynamics is given by a 4-point Euclidean Green function

S2:2(x2, x1 : y1, y2). (4.1)

The cluster condition means that the four-point function has the form

S2:2(x2, x1 : y1, y2) =

S1:1(x1 : y1)S1:1(x2 : y2) + Sc
2:2(x2, x1 : y1, y2) (4.2)

where Sc
2:2(x2, x1 : y1, y2) is a connected four-point function and S1:1(xi : yi) are two-point

functions.

I also assume that S1:1(xi : yi) is the two-point Euclidean Green function for a free scalar

particle of mass mi. In this case every vector in the Hilbert space associated with S1:1(xi : yi)

is a mass eigenstate with eigenvalue mi so there is no need to solve the mass eigenvalue

problem discussed above. These asymptotic one-particle eigenstates are represented by

functions of the Euclidean variables,

〈xi|mi〉 = ψi(xixixi)hi(x
0
i ) = hi(x

0
i )

∫
dp

(2π)3/2
eippp·xxxiψ̃i(p) (4.3)

where hi(x
0
i ) is a smooth function that has compact support for positive Euclidean time.

The freedom to choose the functions hi(x
0
i ) is related to the fact the vectors are represented

by equivalence classes of functions. Specifically, in the asymptotic region, the different hi’s

are all associated with the same one-body Poincaré irreducible basis states.

I define a mapping, Φ from the tensor product of the space of square integrable functions

of the pppi to the Hilbert space H by

〈x1, x2|Φ|ψ1 ⊗ ψ2〉 = h1(x
0
1)h2(x

0
2)

∫
dppp1

(2π)3/2
dppp2

(2π)3/2
eippp1·xxx1ψ̃1(ppp1)e

ippp2·xxx2ψ̃2(ppp2) (4.4)
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where the hi can be chosen so their supports do not intersect. Since the particles are spin zero

particles, this defines a mapping from the tensor product of two irreducible representation

spaces of the Poincaré group (mass m1, spin 0 and mass m2, spin 0), H0, to the Hilbert

space, H. The functions h1(x
0
1)h2(x

0
2) are considered as part of the mapping.

Scattering wave operators are mappings from the asymptotic Hilbert space H0 := Hm1 ⊗

Hm2 to H defined by the strong limits

Ω± := lim
t→±∞

eiHtΦe−iH0t (4.5)

where H0 =
√
m2

1 + p2
1 +

√
m2

2 + p2
2 is the Hamiltonian associated with the asymptotically

free particles. The existence of these limits depends on properties of the connected four-point

Euclidean Green function. This will be shown below.

Conventional methods can be used to derive sufficient conditions for this limit to exist.

The first step is to write the limit as the integral of a derivative

lim
t→±∞

eiHtΦe−iH0t = Φ+

∫ ±∞

0

d

dt

(
eiHtΦe−iH0tdt

)
=

Φ+ i

∫ ±∞

0

eiHt(HΦ− ΦH0)e
−iH0tdt. (4.6)

A sufficient condition for the existence of the wave operator is the strong convergence of

the integral (4.6). A sufficient condition for the convergence of this integral is the Cook

condition [7], which exploits the unitarity of the time evolution operator∫ ∞

a

‖(HΦ− ΦH0)e
∓iH0t|ψ〉‖dt <∞ (4.7)

and provides a bound on the norm of the integral in (4.6).

The quantities appearing in (4.7) depend on the Euclidean Green function functions. In

this case the integrand has the form

‖(HΦ−H0Φ)e
∓iH0t|ψ〉‖ =

(ψ, e±iH0t(Φ†H − Φ†H0)(θS1:1S1:1 + θSc
2:2)(HΦ− ΦH0)ψ)

1/2 (4.8)

where (, ) represents the Euclidean inner product and I have used (4.2) to express the four-

point Green function as the sum of a product of two-point functions with a connected

four-point function that vanishes asymptotically.
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The second goal of this paper will be realized by showing that condition (4.7) holds for

the four-point Green functions (3.6), which is sufficient for the existence of the strong limits

(4.5). To do this it is necessary to show∫ ∞

0

(
ψ, e∓iH0t(Φ†H −H0Φ

†)e±iH0tθS2:2(HΦ− ΦH0)e
∓iH0tψ

)1/2
dt <∞. (4.9)

In (4.9)HΦ−ΦH0 replaces the non-relativistic potential. U0(t) is the time-evolution operator

for the asymptotically free eigenstates.

I will argue that the integrand in (4.9) falls off like t−3/2, which is sufficient for the Cook

condition (4.7) to be satisfied.

To see this first note that cluster properties imply that the Euclidean Green function

is the sum of a product of two-point Euclidean Green functions and a connected term. I

consider a connected term that has the structure discussed in (3.6)

S(x1, x2; x3, x4) =∫
d4q1d

4q2d
4q3dmadmcdmb

eiq1·(x1−x2)+iq2·(x2−x3)+iq3·(x3−x4)

(q21 +m2
a)(q

2
2 +m2

c)(q
2
3 +m2

b)
v(q1,ma, q2,mc, q3,mb) (4.10)

where mc > ma,mb and the spectrum of mc should be continuous for scattering. I have

already established that this connected Euclidean Green function is reflection positive for

suitable v(q1,ma, q2,mc, q3,mb).

In this case the asymptotic states Φ|e∓iH0t|ψ〉 have the form

〈x1, x2|Φ|e∓iH0tψ〉 =
2∏

i=1

hi(x
0
i )

∫
dpi

(2π)3/2
ψi(pi)e

ipi·xi∓iωmi (pi)t (4.11)

where I choose the functions hi(x
0
i ) to be sharply peaked with compact support and integrate

to 1.

With this choice of wave packets

〈x1, x2|(HΦ− ΦH0)e
∓iH0t|ψ〉 =

(2π)3
(
∂

∂x01
+

∂

∂x02
− ωm1(p1)− ωm2(p2)

)
h1(x

0
1)h2(x

0
2)×∫

dp1dp2

(2π)3
ψ1(p1)ψ2(p2)e

ip1·x1∓iωm1 (p1)t+ip2·x2∓iωm2 (p2)t. (4.12)

The integrand in the Cook condition uses (4.10) and (4.12) in

(ψ, e∓iH0t(Φ†H −H0Φ
†)Θ(S1:1S1:1 + Sc

2:2)(HΦ− ΦH0)e
±iH0tψ). (4.13)
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In this expression the partial derivatives in (4.12) with respect to the Euclidean times can

be integrated by parts. When the Euclidean time derivatives act on the product of the

two-point functions S1:1S1:1 they generate energy factors ( see equations (6.4) and (6.5) of

[2]) that exactly cancel the asymptotic energy factors in (4.12), making the S1:1S1:1 terms

in (4.13) vanish.

This means that only the connected part of the four-point Euclidean Green function

contributes to the integral (4.13). Thus, the connected part of the four-point function plays

an analogous role to the interaction in the non-relativistic case.

What remains has the form

(2π)6
∫
d4q1d

4q2d
4q3dmadmcdmbdx

0
1dx

0
2dx

0
3dx

0
4 (ωmc(q2)− ωm1(q1)− ωm2(q2 − q1))×

h1(x
0
1)h2(x

0
2)ψ

∗
1(q1)ψ

∗
2(q2 − q1)e

±iωm1 (q1)t±iωm2 (q2−q1)t×

e−ωma (q1)(x01−x02)−ωmc (q2)·(x02+x03)−ωmb
(q3)(x03−x04)

(q21 +m2
a)(q

2
2 +m2

c)(q
2
3 +m2

b)
×

e±iωm1 (q3)t∓iωm2 (q2−q3)tv(q1,ma, q2,mc, q3,mb)×

(ωmc(q2)− ωm1(q3)− ωm2(q2 − q3))h1(x
0
3)h2(x

0
4)ψ1(q3)ψ2(q2 − q3). (4.14)

The large-time behavior of this integral is relevant for the Cook condition. To estimate the

large time behavior write

−ωma(q1)(x
0
1 − x02)± iωm1(q1)t =

−(ωma(q1)− ωm1(q1))(x
0
1 − x02)

−ωm1(q1)(∓it+ (x01 − x02)) (4.15)

and

−ωmb
(q3)(x

0
3 − x02)± iωm1(q3)t =

−(ωmb
(q3)− ωm1(q3))(x

0
3 − x02)

−ωm3(q3)(∓it+ (x01 − x02)). (4.16)

We assume that the ma,mb ≥ m1, which is the easiest case to consider. These assumptions

ensure that the integrals are all convergent.

To put (4.13) in a manageable form I make some simplifying assumptions. First I assume

that the hi(x
0) are sharply peaked to factor the integrand out of the integral. The resulting

12



approximation leads to a constant multiplied by the integrand evaluated at points at x0i in

the support of hi(x
0). Similarly, I change to total and relative momentum variables and

use the translational invariance to eliminate the center of momentum degrees of freedom.

I assume that the total 3-momentum support of the wave functions is near zero. One

total momentum integral is eliminated by the momentum conserving delta function. The

other total momentum integral is approximated by setting the total momentum to zero and

multiplying by the volume of the support of the total momentum. What remains, up to a

multiplicative constant, has the form(
ψ,U0(±t)(HΦ− ΦH0)U

†
0(t)ψ, θS

c
2:2(HΦ− ΦH0)U0(∓t)ψ

)
→∫

(ωmc(0)− ωm1(k
′)− ωm2(k

′))×

ψ∗
3(−k′)ψ∗

4(k
′)e±iωm2 (k

′)t±iωm1 (k
′)t

e−ωma (k
′)(x04−x03)−ωmc (0)(x

0
3+x01)−ωmb

(k)(x01−x02)

dkdk′

ωma(k
′)ωmc(0)ωmb

(k)

(ωmc(0)− ωm1(k)− ωm2(k))×

ψ1(k)ψ2(−k)e∓iωm1 (k)t∓iωm2 (k)t. (4.17)

where k is the momentum of one of the particles in the zero momentum frame.

The time dependence in this expression comes from the k and k′ integrals. If I use (4.15-

4.16) in this expression, assuming that ma ≥ m1 and mb ≥ m2 the integral (4.17) has the

general form ∫
dk

ωm1(k)
g(k)e−ωm1 (k

2)(x01−x02±2it) (4.18)

where g(k) is a well-behaved function of k.

It follows from the lemma on page 157 of [8] that, for the case that the wave functions

ψi(k) are smooth with compact support, integrals of this form fall off like t−3/2 for large

time.

This shows that the Cook condition (4.7) is satisfied for the reflection positive Euclidean

Green functions of the form (3.6). The asymptotic large-time behavior is identical to the

behavior found in non-relativistic scattering theory.
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The relativistic invariance of the S matrix can be established using similar methods. The

required condition in terms of the wave operators are the intertwining conditions

U(Λ, a)Ω± = Ω±U0(Λ, a) (4.19)

for both asymptotic conditions. For the space translations and rotations this condition is

a consequence of the translational and rotational invariance of the injection operators, Φ.

For time translations this follows from the existence of the wave operators. For the boosts

a sufficient condition is

lim
t→±∞

‖(KΦ− ΦK0)e
∓iH0t|ψ〉‖ = 0 (4.20)

where expressions for the boost generators are given in [2]. As in the scattering case, the

non-zero contributions to this expression before taking the limit come from Sc
2:2 (see 4.8).

In the two-body example above, this depends on properties of the connected four-point

function. When (4.20) holds finite Lorentz transformations on the scattering eigenstates

can be realized by transforming the asymptotic states using (4.19).

V. COMPUTATIONAL ISSUES

In this paper we have demonstrated the existence of a class of reflection positive Euclidean

Green functions and shown that this class of Euclidean Green functions leads to non-trivial

scattering operators. The scattering operators were constructed using conventional time-

dependent methods, where cluster properties of the Green functions were used to formulate

the scattering asymptotic conditions.

The result is that having established the existence of wave operators and knowing how

to compute matrix elements of e−βH in a basis of normalizable states (see 2.10), there is

enough information to compute transition matrix elements.

The strategy adopted in [2] to perform this computation utilized three controlled approx-

imations. The first is to use narrow wave packets to extract sharp momentum transition

matrix elements from S-matrix elements

〈p′
1, · · · ,p′

nα
|t(Eγ + i0)|p1, · · · ,pnγ〉 ≈

i

2π

〈ψαf |(S − I)|ψγi〉
〈ψαf |δ(Eα − Eγ)|ψγi〉

. (5.1)

The convergence of these approximations is determined by the smoothness of the transition

matrix elements.
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The S matrix elements needed as input were expressed, using the invariance principle

[9][10], as matrix elements of ei2ne
−βH

in normalizable eigenstates

〈ψαf |S|ψγi〉 = lim
n→∞

〈ψαf |e−ine−βHα
Φ†

αe
2ine−βH

Φγe
−ine−βHγ |ψγi〉. (5.2)

The convergence with n depends on the width of the wave packets. Ten significant figure

accuracy was achieved in the test model of ref ([2]).

The third approximation that we used was to uniformly approximate e2ine
−βH

by a poly-

nomial in e−βH . This was possible because the spectrum of e−βH is bounded. Because of

the uniform convergence the error is identical to the error in approximating

|e2inx − P (x)| < ε x ∈ [0, 1] (5.3)

by a polynomial. Ten significant figure accuracy was again realized using Chebyshev poly-

nomials with Gauss-Chebyshev quadratures. This method requires that the approximations

be performed in the specified order.

In more realistic models an additional approximation is needed, which is the solution of

point spectrum mass eigenstates of the subsystem Green functions. These appear in the

multi-channel generalization of the mapping Φ and are needed to get the strong convergence

needed to satisfy the Cook condition (4.7). They can also appear in the two-point function

if it has a non-trivial Lehmann weight.

In general, given an explicit Hilbert space representation and knowing that the scattering

theory exists, there are many other techniques that could be used to calculate scattering ob-

servables without analytic continuation. The method discussed above provides one method

that has been tested, but it may not be the most efficient method available.

VI. QCD

Ultimately one would like to use Euclidean methods to compute GeV scale scattering

observables in QCD. Lattice, path integral, and Schwinger-Dyson formulations of QCD all

yield Euclidean Green functions.

In QCD, because of confinement, the Euclidean Green functions of the theory are not

expected to be reflection positive. However reflection positivity should hold for color singlet

initial and final states. In addition the scattering asymptotic states should also be reflection
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positive. The Euclidean methods discussed in this paper are still be applicable if these two

conditions hold.

VII. SUMMARY

In this paper the existence of non-trivial reflection positive Euclidean Green functions

was demonstrated by exhibiting an explicit class of reflection positive connected four-point

Euclidean Green functions. The structure of this class of Green functions was motivated by

a theorem of Widder that exhibited the structure of a general one-dimensional reflection-

positive two-point function. The general structure of reflection positive four-point functions

is still an open problem. More importantly, the structure of Euclidean Green functions for

realistic models remains an open problem.

In this paper time-dependent scattering methods were used to demonstrate the exis-

tence of scattering wave operators for models based on the reflection positive Euclidean

Green functions of the form (3.6). The basic observation is that the Cook condition that is

normally used as a sufficient condition for the existence of non-relativistic wave operators

can be applied in this formulation of Euclidean relativistic quantum mechanics. The t−3/2

asymptotic behavior of the integrand in (4.7) that ensures the existence of the wave operator

for short-ranged potentials in the non-relativistic case is realized in the relativistic case for

sufficiently well-behaved connected Euclidean Green function functions.

The results of this paper imply that the Euclidean methods tested in [2], when applied

to models defined by the class of reflection positive Green function in section three, should

converge to transition matrix elements for a range of energies up to the few GeV scale.

This work was supported by the U. S. Department of Energy, Office of Nuclear Physics,

under contract No. DE-FG02-86ER40286.

VIII. APPENDIX - SPIN

Two point Euclidean Green functions that lead to any positive-mass irreducible repre-

sentation space of the Poincaré group are constructed in this appendix.

A basis for vectors in a positive-mass irreducible representation space of the Poincaré

group consists of simultaneous eigenstates of the mass, spin, linear momentum, and z-
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component of some kind of spin (canonical, Jacob-Wick helicity, light-front, · · · ). These

states have the following transformation property

U(Λ, a)|(m, j)p, µ〉 =

∑
ν

e−iΛp·a|ΛΛΛp, ν〉Dj
νµ[B

−1(Λp/m)ΛB(p/m)]

√
ωm(Λp)

ωm(p)
(8.1)

where B−1(Λp/m)ΛB(p/m) is a Wigner rotation. The choice of Lorentz boost, B(p/m)µν ,

in the Wigner rotation determines the type of spin [11]. For any kind of spin the Wigner

D functions, which are also finite dimensional representations of SL(2,C), can be factored

into products. Multiplication of both sides of (8.1) by

Dj
µν [B

−1(p/m)] (8.2)

leads to ∑
µ

U(Λ, a)|(m, j)p, µ〉Dj
µσ[B

−1(p/m)]
√
ωm(p) =

∑
νσ′

e−iΛp·a|ΛΛΛp, ν〉Dj
νσ′ [B

−1(Λp/m)]
√
ωm(Λp)D

j
σ′σ[Λ]. (8.3)

The vectors

|p, j, σ〉 :=
∑
µ

|(m, j)p, µ〉Dj
µσ[B

−1(p/m)]
√
ωm(p) (8.4)

transform in a Lorentz covariant manner

U(Λ, 0)|p, j, σ〉 =
∑
σ′

e−iΛp·a|Λp, j, σ′〉Dj
σ′σ[Λ]. (8.5)

The transformation U(Λ, 0) is unitary with respect to the inner product

ψ(p, j, σ) = 〈p, j, σ|ψ〉, (8.6)

〈ψ|φ〉 =
∑
µσ

∫
ψ∗(p, j, µ)Dj

µσ[B(p/m)B†(p/m)]
mdp

ωm(p)
φ(p, j, σ) (8.7)

where p0 = ωm(p) is the energy. The kernel simply removes the momentum-dependent

SL(2, C) Wigner functions from the covariant representation. Because the SL(2,C) matrices

cancel in computing matrix elements - the result is the same independent of whether the

right or left-handed representations of SL(2,C) are used.

Note that in SL(2,C) a general boost has a polar decomposition

B(p) = P (p)R(p) (8.8)
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where P (p) is the positive Hermitian operator,

P (p) = eρρρ·σσσ/2, (8.9)

ρρρ is the rapidity vector and R(p) is an SU(2) matrix (generalized Melosh rotation) that

determines the type of spin. It follows that

B(p/m)B†(p/m) = P (p)R(p)R†(p)P (p) = P 2(p) = eρρρ·σσσ = σ · p. (8.10)

In this expression the Melosh rotations cancel, so the result is independent of the choice of

spins. Thus this scalar product can be expressed as∑
αβ

∫
ψ∗(p, j, α)Dj

αβ[p · σ]m
dp

ωm(p)
φ(p, j, β) = (8.11)

∑
αβ

∫
ψ∗(p, j, α)Dj

αβ[p · σ]2md
4pδ(p2 +m2)φ(p, j, β). (8.12)

This is essentially identical to the form found in [12] (see eq. 1.57). The important observa-

tion is that σ ·p is a positive Hermetian matrix for timelike p. The same holds for Dj
µσ[p ·σt],

Dj
µσ[p · σ∗], and Dj

µσ[p · σ−1].

The following Green function is a Euclidean covariant rather than Euclidean invariant

distribution ∫
2mDj

αβ[pe · σe]
p2e +m2

d4pee
ipe·(x−y) (8.13)

that leads exactly to the representation (8.7) of a mass m spin j irreducible representation.

These considerations show that the following Euclidean scalar product is reflection posi-

tive ∑
αβ

∫
g∗α(θx)

2mDj
αβ[pe · σe]

p2e +m2
d4pee

ipe·(x−y)gβ(y)d
4xd4yd4pe =

∑
αβ

ψ∗(p, j, α)Dj
αβ[p · σ]2md

4pδ(p2 +m2)ψ(p, j, β) (8.14)

with

ψ(p, j, β) =

∫
gβ(x

0, x)e−ωm(p)x0eip·x. (8.15)

This shows how to construct reflection-positive two-point Euclidean Green functions for

any irreducible representation of the Poincaré group. While I did not choose to double the

representation, doubled representations can be realized by replacing Dj
αβ[p · σ] by a direct
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sum of a right and left handed representation , Dj
α′β′ [p · σ2σ∗σ2], which is also positive for

positive energy timelike p.
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