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Experiments can only determine a theory up to an overall scattering equivalence. The freedom to
use different scattering equivalent theories is a useful tool for simplifying the structure of dynamical
models of physical systems. This paper illustrates how scattering equivalences can be used to
simplify current operators in relativistic constituent quark models.
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I. INTRODUCTION

Scattering equivalences are unitary transformations
that leave the scattering matrix unchanged [5]. They pa-
rameterize the freedom to change the Hamiltonian and
its eigenfunctions without changing experimental observ-
ables. In models with confining interactions, where scat-
tering is not relevant, scattering equivalences are dis-
tinguished because they leave the constituent particle
masses unchanged. In this paper a scattering equivalence
is applied to a constituent quark model to construct an
equivalent model with a point-like quark current opera-
tor.

The constituent quark model of Carlson, Kogut and
Pandharipande [1] is used to illustrate the construction.
This model is designed to fit the meson mass spectrum.
The Hamiltonian in [1] is interpreted as the mass opera-
tor of a relativistic constituent quark model with a light-
front kinematic subgroup. The construction of a consis-
tent dynamical representation of the Poincaré group can
be done following ref. [2][3][4].

It is possible [5] to find a conserved covariant quark
current operator that is consistent with this model and
fits the data [6][7] for the charge form factor of the pion.
That this current cannot be a point-like impulse cur-
rent is seen by direct calculation. The dashed curves
in figures 1 and 2 show the pion charge form factor
that would be predicted in this model if the quark cur-
rent was a point-like current in the light-front impulse
approximation[8][9]. Both the low- and high-momentum
transfer predictions are inconsistent with the data.

A scattering equivalence is used to construct an equiv-
alent model, with the same meson mass spectrum, where
the quark current operator is transformed to an opera-
tor that can be accurately approximated by a point-like
light-front impulse current operator.

The mass operator in the Carlson, Kogut, and Pand-
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TABLE I: Interaction Parameters

Interaction m [GeV ] λ1 [GeV ] λ2 λ3 [GeV ]2 λ4 [GeV ]−1

Vc .360 −.777 −.5 .197 .66
V̄c .360 −.911 −.14 .049 .35

haripande model has the form
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The parameters λ1, · · · , λ4 of the original Carlson Kogut
and Pandharipande model are listed on the first line of
table 1.

The eigenvectors and eigenvalues of M are denoted by

M |mn〉 = mn|mn〉 (4)

where the n = 0 state is the π meson state and m0 = mπ.
A scattering equivalence is a unitary operator of the

form A = I + ∆, where ∆ satisfies [12]

lim
τ→±∞

‖∆e−iM0τ |ψ〉‖ = 0. (5)

In this paper ∆ is taken to be proportional to a one-
dimensional projection operator.

To construct ∆ let |m̄π〉 be the lowest mass eigenstate
of an operator M̄ obtained from M by adjusting param-
eters {λ1, · · · , λ4} → {λ̄1, · · · , λ̄4} in the confining inter-
action:

M̄ = M0 + V̄c M̄ |m̄π〉 = m̄π|m̄π〉 (6)

V̄c = Vc(λ̄1, · · · , λ̄4). (7)

until the lowest mass eigenstate of M̄ fits the pion charge
form factor data using a point-like quark current in the
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FIG. 1: Pion form factor at low Q2.

light-front impulse approximation. Denote this vector
by |m̄π〉. The spectrum of M̄ does not agree with the
observed meson masses. It should not be interpreted as
a mass operator; its role is to generate candidates for the
transformed ground state wave function that depend on
a small number of parameters.

In this model the parameters on the second line of
table 1 lead to a state |m̄π〉 that predicts the charge form
factors given by the solid lines in figures 1 and 2 in the
light-front impulse approximation. These curves are in
better agreement with the experimental results.

To construct the desired transformation define two or-
thogonal bases on the two-dimensional subspace spanned
by the vectors |mπ〉 and |m̄π〉. The orthonormal basis
functions are

|mπ〉, |m⊥〉 :=
|m̄π〉 − |mπ〉 cos(θ)

sin(θ)
(8)

and

|m̄π〉, |m̄⊥〉 :=
|mπ〉 − |m̄π〉 cos(θ)

sin(θ)
(9)

respectively, where

cos(θ) = cos(θ)∗ := 〈mπ |m̄π〉 sin(θ) > 0. (10)

The overlap 〈mπ|m̄π〉 = cos(θ) can be chosen to be real
as a consequence of the time-reversal invariance of Vc and
V̄c.

The operator A is constructed to satisfy

A|mπ〉 = |m̄π〉 (11)

A|m⊥〉 = |m̄⊥〉 (12)

and

A|ψ〉 = |ψ〉 for 〈mπ|ψ〉 = 〈m⊥|ψ〉 = 0. (13)

A scattering equivalence A satisfying (11),(12) and
(13) is given by:

A = I + ∆ =
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FIG. 2: Pion form factor at high Q2.

I−|mπ〉〈mπ |−|m⊥〉〈m⊥|+ |m̄π〉〈mπ|+ |m̄⊥〉〈m⊥|. (14)

After some algebra ∆ can be expressed as multiple of a
one-dimensional projection operator:

∆ = −ρ(|mπ〉 − |m̄π〉)(〈mπ | − 〈m̄π|) (15)

where

ρ =
cos(θ) + 1

sin2(θ)
. (16)

In this example the overlap parameter is

cos(θ) := 〈mπ|m̄π〉 = .731. (17)

The scattering equivalence A is used to define a trans-
formed mass operator

M ′ := A†(M0 + Vc)A = M0 + V ′
c (18)

which leads to an equivalent quark model with confining
interaction

V ′
c = Vc + ∆M +M∆† + ∆M∆† =

Vc + ρ(|mπ〉 − |m̄π〉)〈m̄π |(Vc − V̄c)

+ρ(Vc − V̄c)|m̄π〉(〈mπ | − 〈m̄π |)

+ρ2(|mπ〉−|m̄π〉)〈m̄π|(Vc− V̄c)|m̄π〉(〈mπ|−〈m̄π|). (19)

The method of constructing |m̄π〉 leads to a confining in-
teraction with separable terms that has the same struc-
ture as the original confining interaction.

By construction the mass operator M ′:

a.) Has the same spectrum as M .

b.) Has the same pion wave function as M̄
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FIG. 3: Comparison of k-space wave functions.

c.) Differs fromM by the short range modification (19)
to the confining interaction.

Because the operator ∆ is kinematically invariant, the
operator M ′ is also a mass operator for a unitary repre-
sentation of the Poincaré group with the light-front kine-
matic subgroup.

Even though the scattering equivalence A is con-
structed to transform the ground state wave function,
it also transforms the n > 0 states to preserve orthogo-
nality. The transformed states have the form

|m′
n〉 = A|mn〉 = |mn〉+ρ〈m̄π|mn〉 (|mπ〉 − |m̄π〉) . (20)

The operator M ′ has the same mass spectrum as the
original Carlson, Kogut, Pandharipande mass operator
and has a pion eigenstate that can be used with a point-
quark impulse quark current to obtain the measured pion
charge form factor. The pion charge form factor in this
model is given by the solid curves in figures 1 and 2.

Figures 3 and 4 compare the coordinate (figure 3) and
momentum space (figure 4) wave functions of the pion
for the mass operators M (dotted curve) and M ′ (solid
curve). The calculation of the wave functions are done
using the method described in [10]. The Carlson, Kogut,
and Pandharipande wave functions have a smaller size in
configuration space and more high-momentum compo-
nents than the wave-functions of the transformed mass
operator.

The transformation A has the overall effect of soften-
ing the wave functions of the original Carlson, Kogut,
and Pandharipande model. This is consistent with the
calculations of Cardarelli et. al. [11] who use a similar
constituent quark model and introduce single-quark form
factors to obtain measured pion charge form factors.

The effect of the transformation A is to add an addi-
tional short range structure to the original confining in-
teraction. Compared to the original Carlson, Kogut, and
Pandharipande interaction, the additional short-ranged
part contains non-localities. In a relativistic quantum
theory there is no preferred reason to favor a local over a
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FIG. 4: Comparison of r-space wave functions.

non-local interaction except for mathematical simplicity.
Local and non-local interactions have similar strengths
and defects. In relativistic models with short-ranged in-
teractions, both the local and non-local interactions are
consistent with two-body cluster properties, but both fail
to be consistent with microscopic locality. Microscopic
derivations of local interactions necessarily make implicit
assumptions that lead to local interaction, however these
assumptions are not based on physics principles. There
is no reason to consider the transformed interaction to
be any more or less fundamental than the original inter-
action.

II. CONCLUSIONS

In this paper the freedom to change the mass opera-
tor and wave functions without changing the underlying
physics is used to construct a constituent quark model
that fits the meson mass spectrum and reproduces the
pion form factor using only point-like constituent quarks.

In this example the desired scattering equivalence is an
easily constructed rank-one perturbation of the identity.
The only required input is the new state vector |m̄π〉 and
the overlap 〈mπ |m̄π〉. The new representation does not
require constituent quark/antiquark form factors.

While two-body currents are implicitly generated in
the light-front impulse approximation [8], they are not
explicitly needed to compute the form factor.

The choice of ∆ affects the predictions for elastic and
transition form factors involving other mesons. Scatter-
ing equivalences with higher rank ∆s can be used to fur-
ther simplify the current in these models if it is warranted
by the physics.

In general it may not be possible to find a scatter-
ing equivalence that completely removes the many-body
contributions to a current operator. In this example,
while figure 1 shows considerable improvement in the
agreement with experiment when it is compared to the
original model, the agreement at lower values of mo-
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mentum transfer is not within the small experimental
error bars. Wave functions that provide good fits to
both the high and low-momentum transfer data using
point-like impulse currents are easily constructed in con-
stituent quark models models with slightly lower con-
stituent quark masses [9]. While these wave functions
could be used in the construction of ∆, the results
would be different because the constituent quark mass
also appears in the Clebsch-Gordan coefficients [3] of the
Poincaré group that are used to compute matrix elements
of the point-like current operators.

This example started with a relativistic constituent
quark model with a light-front kinematic symmetry, and
produced another relativistic model with the same light-
front kinematic symmetry, the same mass spectrum,
where the pion charge form factor can be computed in
the point-quark impulse approximation. This example
illustrates that the constraints imposed by the choice of
kinematic subgroup and mass spectrum do not determine
the form factors.

The freedom to choose a particular scattering equiva-
lent representation for a dynamical computation is anal-
ogous to choosing a convenient coordinate system. This
freedom may prove to be important because scattering
equivalences in few-body models naturally lead to mod-

ifications of the corresponding many-body theory. This
freedom could be used to reduce the strength of many-
body interactions and current operators.

Scattering equivalences are also known to exist [12] be-
tween models with different kinematic subgroups. These
relationships can also be exploited to construct equiv-
alent current operators for models with different forms
of dynamics. Existing calculations show that the repre-
sentation of the currents in different forms of dynamics
can be very different [8][9][11][13][14][15][16]. This same
freedom also exists in local quantum field theory, where
theories in the same Borchers class [17] are scattering
equivalent. While the ambiguities in representations of
the dynamics are sometimes considered a liability, this
paper shows that they lead to a flexibility that can lead
to a simplification of the dynamics.
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