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I. INTRODUCTION

Scattering equivalences are unitary transformations
that leave the scattering matrix unchanged[5]. They
parameterize the freedom to change the representation
of the wave function without changing experimental ob-
servables. In models with confining interactions, where
scattering is not relevant, scattering equivalences are dis-
tinguished because they leave the constituent masses un-
changed. In this paper a scattering equivalence is applied
to a constituent quark model to construct an equivalent
model with a point-like quark current operator.

The constituent quark model of Carlson, Kogut and
Pandharipande [1] is used to illustrate the construction.
This model is designed to fit the meson spectrum. The
Hamiltonian in [1] is interpreted as the mass operator of
a relativistic constituent quark model with a light-front
kinematic subgroup. The construction of a consistent
dynamical representation of the Poincaré group can be
done following ref. [2][3][4].

It is possible [5] to find a conserved covariant quark
current operator that is consistent with this model and
fits the data [6][7] for the charge form factor of the pion.
That this current cannot be a point-like impulse cur-
rent is seen by direct calculation. The dashed curves
in figures 1 and 2 show the pion charge form factor
that would be predicted in this model if the quark cur-
rent was a point-like current in the light-front impulse
approximation[8][9]. Both the low- and high-momentum
transfer predictions are inconsistent with the data.

A scattering equivalence is used to construct an equiv-
alent model, with the same meson mass spectrum, where
the quark current operator is transformed to an opera-
tor that can be accurately approximated by a point-like
light-front impulse current.

The mass operator in the Carlson, Kogut, and Pand-
haripande model has the form

M = M0 + Vc M0 =
√

m2
q
+ k2 +

√

m2
q̄ + k2 (1)
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TABLE I: Interaction Parameters

Interaction m (GeV ) λ1 (GeV ) λ2 λ3 (GeV )2 λ4 (GeV )−1

Vc .360 −.777 −.5 .197 .66
V̄c .360 −.911 −.14 .049 .35

Vc(λ1, · · · , λ4) = λ1 +
λ2

r
+ λ3r + δ~sq · ~sq̄e

− r
2

2λ2
4 (2)

δ = − λ2

3m2
q
λ3

4

√
π
. (3)

The parameters λ1, · · · , λ4 of the original Carlson Kogut
and Pandharipande model are listed on the first line of
table 1.

The eigenvectors and eigenvalues of M are denoted by

M |mn〉 = mn|mn〉 (4)

where the n = 0 state is the π meson state and m0 = mπ.
The scattering equivalence is taken as a rank-one per-

turbation of the identity

A = I + ∆ (5)

where ∆ is proportional to a one-dimensional projection
operator.

To generate ∆ let |m̄π〉 be the lowest mass eigenstate of
an operator M̄ obtained fromM by adjusting parameters
{λ1, · · · , λ4} in the confining interaction:

M̄ = M0 + V̄c M̄ |m̄π〉 = m̄π|m̄π〉 (6)

V̄c = Vc(λ̄1, · · · , λ̄4). (7)

until the lowest mass eigenstate of M̄ fits the pion charge
form factor data using a point-like quark current in the
light-front impulse approximation. Denote this vector
by |m̄π〉. The spectrum of M̄ does not agree with the
observed meson masses. It should not be interpreted as
a mass operator; its role is to generate candidates for the
transformed ground state wave function.

In this model the parameters on the second line of
table 1 lead to a state |m̄π〉 that predicts the charge form
factors given by the solid lines in figures 1 and 2 in the
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FIG. 1: Pion form factor at low Q2.

light-front impulse approximation. These curves are in
better agreement with the experimental results.

The operator A is constructed to satisfy

A|mπ〉 = |m̄π〉 (8)

A|m⊥〉 = |m̄⊥〉 (9)

and

A|ψ〉 = |ψ〉 for 〈mπ|ψ〉 = 〈m⊥|ψ〉 = 0. (10)

To construct the desired transformation define two or-
thogonal bases on the two-dimensional subspace spanned
by the vectors |mπ〉 and |m̄π〉. The orthonormal basis
functions are

|mπ〉, |m⊥〉 :=
|m̄π〉 − |mπ〉 cos(θ)

sin(θ)
(11)

and

|m̄π〉, |m̄⊥〉 :=
|mπ〉 − |m̄π〉 cos(θ)

sin(θ)
(12)

respectively, where

cos(θ) = cos(θ)∗ := 〈mπ |m̄π〉 sin(θ) > 0. (13)

The overlap 〈mπ|m̄π〉 = cos(θ) can be chosen to be real
as a consequence of the time-reversal invariance of Vc and
V̄c. A unitary scattering equivalence A satisfying (8),(9)
and (10) is given by:

A = I + ∆ =

I−|mπ〉〈mπ |−|m⊥〉〈m⊥|+ |m̄π〉〈mπ |+ |m̄⊥〉〈m⊥|. (14)

After some algebra ∆ can be expressed as the rank-one
operator:

∆ = −ρ(|mπ〉 − |m̄π〉)(〈mπ | − 〈m̄π|) (15)
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FIG. 2: Pion form factor at high Q2.

where

ρ =
cos(θ) + 1

sin2(θ)
. (16)

In this example the overlap parameter is

cos(θ) := 〈mπ|m̄π〉 = .731. (17)

The scattering equivalence A is used to define a trans-
formed mass operator

M ′ := A†(M0 + Vc)A = M0 + V ′
c

(18)

which leads to a quark model with confining interaction

V ′
c

= Vc + ∆M +M∆† + ∆M∆† =

Vc + ρ(|mπ〉 − |m̄π〉)〈m̄π |(Vc − V̄c)

+ρ(Vc − V̄c)|m̄π〉(〈mπ | − 〈m̄π |)

+ρ2(|mπ〉−|m̄π〉)〈m̄π|(Vc− V̄c)|m̄π〉(〈mπ|−〈m̄π|). (19)

The method of constructing |m̄π〉 leads to a confining in-
teraction with separable terms that have the same struc-
ture as the original confining interaction.

By construction the mass operator M ′:

a.) Has the same spectrum as M .

b.) Has the same pion wave function as M̄

c.) Differs fromM by the short range modification (19)
to the confining interaction.

Because the operator ∆ is kinematically invariant, the
operatorM ′ is also the mass operator for a unitary repre-
sentation of the Poincaré group with the light-front kine-
matic subgroup.
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FIG. 3: Comparison of k-space wave functions.

Even though the scattering equivalence A is con-
structed to transform the ground state wave function,
it also transforms the n > 0 states to preserve orthogo-
nality. The transformed states have the form

|m′
n
〉 = A|mn〉 = |mn〉+ρ〈m̄π|mn〉 (|mπ〉 − |m̄π〉) . (20)

The operator M ′ has the same mass spectrum as the
original Carlson, Kogut, Pandharipande mass operator
and has a pion eigenstate that can be used with a point-
quark impulse quark current to obtain the measured pion
charge form factor. The pion charge form factor in this
model is given by the solid curves in figures 1 and 2.

Figures 3 and 4 compare the coordinate (fig. 3) and
momentum space (fig. 4) wave functions of the pion
for the mass operators M (dotted curve) and M ′ (solid
curve). The calculation of the wave functions are done
using the method described in [10]. The Carlson, Kogut,
and Pandharipande wave functions have a smaller size in
configuration space and more high-momentum compo-
nents than the wave-functions of the transformed mass
operator.

The transformation A has the overall effect of soften-
ing the wave functions of the original Carlson, Kogut,
and Pandharipande model. This is consistent with the
calculations of Cardarelli et. al. [11] who use a similar
quark-antiquark model and introduce single-quark form
factors to obtain measured pion charge form factors.

The effect of the transformation A is to add an addi-
tional short range structure to the original confining in-
teraction. Compared to the original Carlson, Kogut, and
Pandharipande interaction, the additional short-ranged
part contains non-localities. In a relativistic quantum
theory there is no preferred reason to favor a local over a
non-local interaction except for mathematical simplicity.
Local and non-local interactions have similar strengths
and defects. In relativistic models with short-ranged in-
teractions, both the local and non-local interactions are
consistent with two-body cluster properties, but both fail
to be consistent with microscopic locality. Microscopic
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FIG. 4: Comparison of r-space wave functions.

derivations of local interactions necessarily make implicit
assumptions that lead to local interaction, however these
assumptions are not based on physics principles. There
is no reason to consider the transformed interaction to
be any more or less fundamental than the original inter-
action.

II. CONCLUSIONS

In this paper the freedom to change representation
without changing the underlying physics is used to con-
struct a constituent quark model that fits the meson mass
spectrum and reproduces the pion form factor using only
point-like constituent quarks.

This is done using scattering equivalences, which are
unitary operators of the form A = I + ∆, where ∆ is
asymptotically zero [12].

In this example the desired scattering equivalence is an
easily constructed rank-one perturbation of the identity.
The only required input is the new state vector |m̄π〉 and
the overlap 〈mπ |m̄π〉. The new representation does not
require constituent quark/antiquark form factors.

While two-body currents are implicitly generated in
the light-front impulse approximation [8], they are not
explicitly needed to compute the form factor.

The choice of ∆ affects the predictions for elastic and
transition form factors involving other mesons. Scatter-
ing equivalences with higher rank ∆s can be used to fur-
ther simplify the current in these models if it is warranted
by the physics.

In general it may not be possible to always find a scat-
tering equivalence that completely removes the many-
body contributions to a current operator. In this exam-
ple, while figure 1 shows considerable improvement in the
agreement with experiment for the transformed model,
the agreement at lower values of momentum transfer
is not within the experimental error bars. This is be-
cause it is difficult to simultaneously fit both the high
and low-momentum transfer data without changing the
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constituent quark masses[9]. Scattering equivalences are
designed to leave the constituent particle masses un-
changed. Wave functions that bring both the low and
high momentum transfer to within experimental uncer-
tainties can be found for systems of constituent quarks
with smaller constituent masses[9]. These are associated
with dynamical models that fit the meson spectrum with
smaller constituent quark masses [9].

This example started with a relativistic constituent
quark model with a light-front kinematic symmetry, and
produced a new relativistic model with the same light-
front kinematic symmetry, the same mass spectrum,
where the pion charge form factor can be computed in
the point-quark impulse approximation. This example
illustrates that the constraints imposed by the choice of
kinematic subgroup and mass spectrum do not determine
the form factors.

Experiments can only determine a theory up to an
overall scattering equivalence. The freedom to choose a
particular scattering equivalent representation for a dy-
namical computation in analogous to choosing a conve-
nient coordinate system. This freedom may prove to be
particularly important because scattering equivalences at

the few-body level naturally lead to changes in the cor-
responding many-body theory.

Scattering equivalences are also known to exist [12] be-
tween models with different kinematic subgroups. These
relationships can also be exploited to construct equiva-
lent current operators for models with different forms of
dynamics. Existing calculations show that the represen-
tation of the currents in different forms of dynamics can
be very different [8][9][11][13][14][15][16]. This same free-
dom also exists in local quantum field theory, where scat-
tering equivalent theories are partitioned into Borchers
classes [17]. While the ambiguities in representations of
the dynamics are sometimes considered a liability, this
paper shows that they lead to a flexibility that can lead
to a simplification of the dynamics.
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