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Abstract We solved the three-nucleon Faddeev equation in a Poincaré invariant model

of the three-nucleon system. Two-body interactions are generated so that when they

are added to the two-nucleon invariant mass operator (rest energy) the two-nucleon

S matrix is identical to the non-relativistic S matrix with a given nucleon-nucleon

interaction. Cluster properties of the three-nucleon S-matrix determine how these two-

nucleon interactions are embedded in the three-nucleon mass operator. Differences in

the predictions of the relativistic and corresponding non-relativistic models for elastic

and breakup processes are investigated. Of special interest are effects of relativity on

the elastic scattering angular distribution and total cross sections, the lowering of the

Ay maximum in elastic nucleon-deuteron (Nd) scattering below ≈ 25 MeV caused by

the Wigner spin rotations and the significant changes of the breakup cross sections in

certain regions of the phase-space.
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Table 1 The AV18 and CD Bonn potential relativistic (r) and nonrelativistic (nr) total cross
sections

Elab σr
tot σnr

tot σr
el

σnr
el

σr
br

σnr
br

[MeV] [mb] [mb] [mb] [mb] [mb] [mb]
AV18 AV18 AV18 AV18 AV18 AV18

13.0 855.44 856.84 692.10 686.70 163.42 164.74
26.0 455.27 457.05 303.57 304.14 151.70 152.91
70.0 145.83 146.95 61.57 61.86 84.26 85.09
97.5 100.66 101.63 34.83 35.02 65.83 66.61
135.0 74.73 75.65 20.82 20.94 53.91 54.70
200.0 58.60 59.62 12.20 12.28 46.40 47.34
250.0 53.54 54.74 9.50 9.58 44.05 45.16

CD Bonn CD Bonn CD Bonn CD Bonn CD Bonn CD Bonn
13.0 853.16 854.25 687.14 686.70 166.02 167.55
26.0 457.50 459.15 304.01 304.50 153.48 154.65
70.0 147.89 148.96 62.50 62.75 85.39 86.21
97.5 102.21 103.16 35.39 35.56 66.83 67.61
135.0 75.77 76.70 21.05 21.17 54.72 55.53
200.0 59.11 60.13 12.24 12.30 46.87 47.83
250.0 53.85 54.98 9.52 9.57 44.33 45.41

Keywords Faddeev equations · elastic scattering and breakup · relativistic effects

1 Introduction

The study of elastic and breakup nucleon-deuteron (Nd) processes reveals cases where

the non-relativistic description based on nucleon-nucleon (NN) interactions only is

insufficient to explain the data. These discrepancies generally increase with energy.

The elastic Nd angular distribution in the region of its minimum and at backward

angles is the best studied example [1] (see Fig.1). Another is the total cross section

for neutron-deuteron (nd) scattering [2,3]. Only in some cases the inclusion of certain

types of three-nucleon (3N) forces lead to an improvement. A relativistic treatment of

the dynamics implies a different off-shell treatment of the NN interactions [4], leading

to the possibility of additional effects beyond standard 3N forces. We refer to [5–8] for a

detailed presentation and focus here on effects of relativity on the Nd elastic scattering

angular distribution and total cross sections, the Ay puzzle and pronounced relativistic

effects in Nd breakup.

2 Relativistic Faddeev equation

The 3N Faddeev equation is set up for a breakup operator and solved in momentum

space and partial wave projected. In the relativistic case the equations have the same

operator form as the non-relativistic equations. In the relativistic case Jacobi momenta

are constructed using Lorentz boosts instead of Galilean boosts, the resolvents involve

relativistic kinetic energies, the two-body interactions in the three-body problem ap-

pear inside of square roots in a manner dictated by S-matrix cluster properties, and

the permutation operators include Wigner rotations [9] which are evaluated using the

Balian-Brézin method [10].
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Fig. 1 (Color online) The Nd elastic scattering cross sections at 70 MeV and 250 MeV lab. en-
ergy of the incoming nucleon. In the left column predictions based on AV18 [13], CD Bonn [14],
NijmI and Nijm II [15] NN potentials alone and on their combinations with the TM99 3NF [16]
are shown by the light shaded (red) and dark shaded (blue) band, respectively. In the right
column the relativistic predictions based on the boosted CD Bonn ((red) solid line) and AV18
((blue) dashed line) potentials are compared with the nonrelativistic CD Bonn ((red) dashed
line) and AV18 ((blue) dotted line) predictions. The 70 MeV pd data (x-es) are from [17]. The
250 nd (x-es) and pd (open circles) data are from [18] and [19], respectively.

3 Results

In Fig.1 we present relativistic effects for the nd elastic scattering cross sections at

two energies. Only at the largest angles deviations from the nonrelativistic results

are discernible and their magnitude grows with energy. Relativity increases slightly

the nonrelativistic cross sections at backward angles but the effect is far too small to

explain the large gap between data and theory even when standard three-nucleon forces

are included.

In Fig.2 we show relativistic effects for Ay at two low energies. Below ≈ 25 MeV

the non-linear embedding of the two-body interaction in the three-body mass operator

lowers the maximum of Ay by ≈ 2% while the inclusion of Wigner spin rotations

increase that lowering effect up to ≈ 10%. Above ≈ 25 MeV relativistic effects for Ay

are negligible.
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Fig. 2 (Color online) The nucleon analyzing power Ay for nd elastic scattering at 5 MeV
and 65 MeV lab. energy of the incoming neutron. The solid (red) line is the nonrelativistic
CD Bonn potential prediction. The dashed (blue) and dotted (black) lines are CD Bonn based
relativistic predictions without and with Wigner spin rotations, respectively. The 5 MeV nd
data (x-es) are from [20] and 65 MeV pd data (x-es) are from [21].

For the breakup cross section large relativistic effects are localized in specific re-

gions of phase-space. They lead to a characteristic pattern of relativistic versus non

relativistic cross section changes. Namely, at fixed detector position of the first outgo-

ing nucleon changing the angle of the second outgoing nucleon lead to configurations

in which relativity increases, makes no effect, or decreases the nonrelativistic cross sec-

tion. That is exemplified in Fig.3. At E
lab
N = 200 MeV those changes can be up to

≈ ±60%. At that energy it seems that relativity improves the description of some data

(see Fig.3).

In spite of large relativistic effects in some exclusive breakup configurations the

effects in total cross sections are small. In Table 1 we compare nonrelativistic and

relativistic total cross sections for nd scattering as well as the corresponding total

cross sections for elastic nd scattering and breakup reaction. Relativity lowers slightly

the total cross sections.

4 Summary

An exactly Poincaré invariant formulation of three-nucleon scattering using realistic

interactions leads to significant changes of the breakup cross section at higher energies

and in certain regions of phase space [6,7]. For the elastic scattering cross sections the

small changes are restricted to backward angles [5]. Also relativistic effects are small for

total cross sections. For the low energy analyzing power Ay we found large relativistic

effects of similar magnitude as in [11] but in opposite direction and that increases the

discrepancy to the data. Therefore we expect that 3NF’s in all their complexity [12]

have to be taken into account.
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Fig. 3 (Color online) The five-fold cross section d5σ/dΩ1dΩ2dElab
1

for the breakup reaction
d(n,np)n at Elab = 200 MeV and fixed angles of outgoing nucleons 1 and 2 as indicated in
the figures. The dashed (red) line is the nonrelativistic CD Bonn potential prediction and the
solid (blue) line is the corresponding relativistic result. The d(p,pn)p data (x-es) are from [22].
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