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I. SINGLE NUCLEON HILBERT SPACE - RELATIVISTIC TREATMENT OF
SPIN

The single nucleon on-shell four momenta (m = nucleon mass) are:

P1, D2 Pi = (\/pz2 +mz2,Pi) = (wmi(P),Pi) 1=1,2. (1)

It is convenient to use the 2 x 2 matrix representation of four vectors for the relativistic

treatment of spin. Four vectors can be represented by 2 x 2 Hermitian matrices:

Wm(p> +D: Dz— ipy

P :=p'o, = » o, = (1,0), (2)
Dz + ’pr wm(p> — Pz
where o are the Pauli matrices. The identity
Tr(ou0,) = 26, (3)

can be used to extract the components of the four vector p* from the matrix P
1
pt= iTr(UuP)~ (4)

Note
P=P'  det(P) = (p°)* — p? = m? (5)

Since the determinant is the proper (time)? of the four vector, real Lorentz transformations
are linear transformations that preserve the determinant and Hermiticity (reality) of P.

They have the general form
P — P =4+APA"  det(A) = 1. (6)
The — sign is for space-time reflections. For det(A) # 0:
A=eM  det(A) =elXOD =1 Ty(M) = 2rin. (7)

Since any 2 x 2 matrix M can be expressed as M = M°I + M - ¢ with Tr(a) = 0 it follows

that (7) requires 2M° = 2min which means

A= Mo, (8)



In this case both signs lead to the same transformation. The matrix in the exponent is

complex. It can be expressed in the form
1 .
M-azﬁ(p—i-zo)-a (9)

where 6 is the angle of a rotation and p is the rapidity of a canonical (rotationless) Lorentz

boost:
i0.0 0 .. 0,
e2”? =gy COS(§)+ZSIH(§)0-0’ (10)
loo p . P A
e2P? = gy cosh(i) + smh(?p o (11)
where
cosh(p) = p°/m  sinh(p) = |p|/m  p=p. (12)

The corresponding 4 x 4 Lorentz transformations A*, are related to the 2 x 2 matrix A by
1 f
AF, = §Tr(auAchA ). (13)

A general 2 x 2 A has a polar decomposition as a product of a unitary matrix R followed

by a positive Hermitian matrix P:
A= PR = (AA)Y2(AAT)71/2A (14)

where

1 .

(AADY2 = e2pe .= p=PT  (ANT) V2N = €22 = R = (R")™! (15)

which means that any Lorentz transformation can be expressed as a rotation followed by a
rotationaless boost. Since a rotation leaves (m, 0,0,0) unchanged, A and P = (AAT)'/2 are
both boosts to the same final momentum. They differ by the rotation R = (AA")~1/2A. The
rotationless boost P = e3P€ is special because A is a positive Hermitian matrix. It is also
called the canonical boost.

Remark - these represent passive coordiante changes rather than active transformations.

Spin is defined as the angular momentum of a particle or system in its rest frame. A
natural question is how to compare spins in different frames.

One way to compare the spins of particles with different momenta is to boost them to a
common frame with a standard type of boost. The common frame is usually taken as the

rest frame. There are many possible choices of the standard boost. Each choice of standard



boost defines a different spin observable - it is the spin that would be measured in the rest
frame if the particle was boosted to the rest frame with the chosen standard boost.

The inverse of the boost A = PR it is Rf P! which means that the angular momentum in
the rest frame depends on the choice of boost. If we let A = B,(p) be a boost parameterized
by momentum, (actually they are parameterized by the 4 velocity) a spin operator can be

defined by

= S AB; () WA B () oT (16)

where (1) J,, is the angular momentum tensor,

A(Ba?l(pop))iu (17)

is the 4 x 4 matrix representation of the boost B, !(p) with the parameter p* replaced by the
corresponding operator ph . It follows from these definitions and the Poincaré commutation
relations that

[si,57] = i€l sh (18)

T Tx
independent of the choice of boost, where all components of s, commute with pf, for any
choice of boost.
Using p;, Z-s,, the total and z-component of isospin as commuting observables, the single

nucleon basis vectors are:
11

[(m, 5. 5

where my; is the projection of the isospin of the nucleon.

)pamszamtz> (19)

The choice of boost used to define the spin is consistent with the following Lorentz

transformation property

11 11 Wi (P
)0 msumtz> - |(m a _)pamszamtz> ( )

U(Ba(p/m)|(m, 5. 5 5 "

(20)

where the spin defined with the z-boost remains unchanged in boosting from the rest frame to
the frame where the particle has momentum p with B, (p/m). The square root factors ensure
that this transformation is unitary when the basis vectors have delta-function normalizations:

11

2 2)p7 M, mtz> — 5(13 - p)(;m mm(smt M4 (2]—>

11
<(m7 57 §)p,7 m;ﬂ m1,57,|(
Since rotations leave the rest vector invariant, they can only transform the spin

11
U(R)Kma 57 5)07 Mg, mti> -



11
> lm. 5. 5)0,mi mi) D2 (R (22)

where

D2 (Rli= (2wl U(R) S ma) (23)

M Msi 2 2
is the Wigner D-function. Since any Lorentz transformation can be expressed in terms of

boosts to and from the rest frame and rotations in the rest frame, it follows that

11
UA)|(m, 5 §)k7 Misiy M) = (24a)

nlBOP 1/ 1 (nyy 1 AB, (p/m)]. (24b)

11
=, 2)JA(p), My, M) ,
|(m> 9’ 2) (p)v Mgy, T > wm(p> mi,Ms;

The subscript z on the states indicates the type of spin that is used as a commuting
observable. Equation (102) defines a unitary representation of the Lorentz group on the

single-nucleon subspace. The matrix
Ry, (A, p) == B (Ap/m)AB,(p/m) (25)

is a SU(2) Wigner rotation. The subscript = indicates that Wigner rotations depend on the
choice of boost, B,(p/m).
The canonical boost is special because it has the property that the Wigner rotation of a

rotation is the rotation:

B (Rp/m)RB.(p/m) = R. (26)
This can be rewritten as
RB.(p/m)R™" = B.(Rp/m). (27)
This follows because
RB.(p/m)R™* = RezPO R~ — e3P (RoR™Y) _ o5(0) AR o _ 3(MR)p)o (28)

which is the desired result. The important property is that the canonical boost Wigner
rotation of the rotation is the rotation, independent of p. This is needed for adding spins
in a many-body system, where each particle has a different momentum. Sinc they all rotate
the same way the spins can be added with ordinary SU(2) Clebsch-Gordon coefficients. The

canonical spin is the only spin with this property.



If the spin is not canonical, it can be converted to canonical spin using a momentum-
dependent rotation:
|(ma )p17msw17mt1>

m
0 STl TN

= U(Bq(pi/m))|(m

l\:>|>—l l\3|>—‘

N | —

m

= OB/ m)U (B () U (B ) (m. 5. 5101 mess ) | — s

= OBy fm) . 5. 5)00 i) D2 B2 /) Bl )]
= [, 5 )P ma) DEE (B () Bup ) (29)

2
where [B. ! (p;/m)B,(p;/m)] is a momentum-dependent SU(2) rotation called a generalized
Melosh rotation. In these expression the subscript ¢ =canonical spin, x=spin constructed

with the = boost. The rotation (29) relates the z-spin and canonical spin basses.

II. TWO-BODY BASES AND PARTIAL WAVE ANALYSIS

Most few-body calculations use a partial wave basis. In the relativistic case the relevant
generalization is a Poincaré irreducible basis.

A basis for the two-free-nucleon system is the tensor product of 2 single nucleon states:
11 11
|(m, 5 §)P17 M1, My1) X |(m, 3 5)132; M, Mia). (30)

In what follows these basis vectors are expressed as linear superpositions of basis vectors that
transform irreducibly. To do this first define the total four momentum of non-interacting

system:

Py = p{ + v (31)

The invariant mass of non-interacting system is

1 0 0 O
0-1 0 0

Mg = 1, Py Py Ny = 00 Lo ) (32)
00 0 -1



The four velocity of non-interacting system is
= PJ' /M. (33)

Also define

k' = A(B;H(Qo))" vy (34)
which represents the momentum of particle ¢ if it was transformed to the rest frame with
an z-boost. Here A(B;1(Qo))", is considered to be a matrix of multiplication operators.
The k; are operators whose eigenvalues are the momentum of each nucleon (particle) when
it is transformed to the 0 total momentum frame with the boost B, '(Q). Here I assume
that the boost used to define k; is the same as the one used to define the spin. Note that
ki + ks = 0. It is important to note that k* does not transform like a 4-vector. Instead it

undergoes Wigner rotations:
k" = A(B~'(AP)Ap; = B~ (AP)AB(P))* kY (35)

The next step is to consider canonical spin two-body basis states (30) in the non-

interacting two-body rest frame
11 11
|(m7 57 §)k17 Msic, mt1> X ‘<m7 57 5) - k17 Ms2e, mt2> (36)

since ko = —k; this only depends on k;. Here these vectors represent products of ordinary
single-particle states in the system rest frame. Next we use spherical Harmonics to perform

a partial wave decomposition of the angle dependence of k;

(M, 1,

) 0 ml7mslcamt17m8267mt2> =

l\DIn—
l\'JIH
N —

1
2’

- 11 11 N
[ diilm. 5. e < [, 5. 5) = i, )V, ()

Because the spins are canonical this vector transforms covariantly under ordinary rotations

1111
U(R)|(M,]1, 335 5)0 My, Migie, M1 Mig2e, My2) =
S35, 2. 5), 0, m),m! )DL (RIDY2 (RIDY? [R]. (37)
2 2a2a2 ) 7ml7m51c7mt1m52c7mt2 m/ml mlsc1mscl m/562m562 .

It follows that we can couple the spins and orbital angular momenta with ordinary Clebsch-
Gordan coefficients

|(M7j7la8127 )

)0 m]amtlamt2> =

DN | =
DN | —
l\DI»—l
N | —



7272
s 11 .
le(k1>0(5127 579’ msleamsclamSCQ)C(j7l7812;mj7ml7m3612)- (38)

Now we return to the case of a spin associated with a general boost, B,(p). We use Melosh

rotations to express the single particle canonical spins in terms of the z spins

|(M7j7la8127 )Oamjamtlamﬂ) =

b

1
"2

N —
[\DI»—t
l\DI»—l

11
Z/dkl k17m81x7mt1> X |<m 5 5) klam82$7mt2>x

D2 o[ Be (kl/m)Bc(kl/m)]Dir{izmm[ By (ka/m) Be(ka/m)] Yy, (ki)
11
272’

Finally we boost both sides with B, (P/My) to get an irreducible state with an z-spin. On

O( 512,

y Mse12, Mesel msc2)0(ja l7 5125 mjv my, msle)- (39)

the left side of (39), since it is a rest state we get the = boost will leave the total xz-spin

unchanged

CL)M(P)
IV

The square root factors ensure unitarity. On the right hand side of (39) k; is the momentum

|(M>j7la3127_7 5o )P7mjamt1amt2> (4())

of particle ¢ in the non-interacting two nucleon rest frame. The boost B,(P/M;) acts on
each of the k; and boosts them to the single particle momenta p; and causes the spins to

Wigner rotate

wy (P
)Pumjamtlamt2> ]\;[\2 ) =

11 11
Z/df)1|(m>§7§)k1amslx>mt1> x [(m, 575) — ko, M2z, Mu2) X

D2 12 (01 /m) Bo(P/M) Bk /m)| D2, L, (B (p2/m) By (P/M) B (ks /m)) x

slx s2z/

‘<M7j7178127

)

11
7272

N | =
N |

Mgy

Winy (P1)Wm3 (P2) 11/ 1k Im m)DY/2 (ko /m m
\/wm(kl)wm(@)Dmswmm[Bx (k1 /m) Be(ky/m)|Dy2 (B (ko /m) Be(ky/m)]x

11
22’

In this expression there are both Wigner and Melosh rotations. If the spin is canonical

ny” (E1)C(512,

m80127m8017m502)c(j’ l7812;mj7mlam8012) (41>

the Melosh rotations are replaced by the identity, while if B,(B) is a light-front preserving

boost, there are no Wigner rotations (because the light front boosts form a subgroup). The



variables p; represent the momentum of each particle in the two-particle rest frame. Since

they are eigenvalues of the operator
ki = A(B; (P/My))p, (42)

they are related to p; by the z-boost. The spins on the right side of (41) are the ones that

couple to currents, while the state on the left transforms irreducibly. Also note

My = \/m3 +13 + y/m3 41 (43)

This basis is the relativistic version of the two-body partial wave basis.
It is useful to replace the general form by the instant and light front forms

Instant form partial wave basis in terms of instant form tensor product basis:

, 1111
(M, j,1, s12, 3737’ §)Pam]7mt17mt2> = (44a)
11
Z / dk1|(ma §a _>p1a Msic, mt1> X |(m7 o) _) — P1, Ms2c, mt2> X (44b)
Dy2 o, (B (p1/m) Bo(P/M) B.(ky /m)] x (44c)
D% [Be (92 /m) Bo(P/M) B (ks /m)] X (44d)
. 11 .
Yyal(kl)C(SlZ; b% 55 Mise12, Miser, Misc2)C (4, 1, 512; mgj, my, Mige12) X (44e)
Wmy (pl)me <p2>MO (44f>
Wmy (kl)wm2 (kQ)WMo (P)
Front form partial wave basis in terms of instant form tensor product basis:
, 1111
‘(ML]? lu S12, 57 57 57 §)P+7 PJ.? M, My, mt?) - (453)
N 11 11
Z/dkﬂ(m, b} §)P1Lapu,m51f7mt1> X |(m, 2 §)P;,P2¢7m52f,mt2>>< (45b)
Dy? i [By (ke fm) Be(ky fm)] D, L (B (ke /m) Be(ka fm)] (45¢)
. 11 4
Y} (k) x C(s2, 5 é;mscl%mscl;mch)C(]ala 812; M, My, Misc12) (45d)
pips M, (45¢)
Win, (K1 )wpm, (ko) V PF

Normally calculations are performed in the partial wave basis

|(Maj7l75127 )Pvmjvmtlamt2> (46)

N | —

Y

DN | —

1
’27

DN | —

10



or in the light front case

)P+7PJ_7mj7mt17mt2> (47)

N | —

Y

N —

. 1
|(Mvj7l78127 757

N

The internal variables in both of these bases are spectrally equivalent, the differences being

in the treatment of the total momentum and total spin.

From these expressions we can read off the overlap coefficients

11 11 . 1111
<(m7 57 §)p17m3107mt1; (m7 57 5) - pl;mSQCamt2|(M7j7l7 512, 57 57 57 i)Pamj7mt17mt2> =
ok —k i (K1) Wi, (k P
S 5P py A B2 o B ) P)
k1 wm1<p1>wm2(p2) MO

D)2 . (B (p1/m)Bo(P/M)Be(ky/m)|D}2 . [Br'(p2/m)Be(P/M)B.(kz/m)] x

Mis1cMgy o/ s2¢!
er”(fﬁ)c(sn, %, %; Misc12, Mscl m302>0(j7 [, s12; mg, my, msclz)

(48a)

(48)

(48c¢)

(48d)

and for the light front case

11



Dyl o [ By (R fm) Be(ky /m)I DL L [B7* (ka/m) Be(ka/m)]Y,, (ki)

11 11 . 1111
<(m7 57 §>p;r’ P11, Ms1f, M35 (m7 57 5)]);7 p2J.7m82f7mt2|(M7]7 l7 512, 57 57 57 §>P+J PJ.; M, My,
ok —k Winy (K1 )wm,., (k P+
5(P+ _ p1+ _ p;)52<PJ— — Pl — p2J—) ( (2p1p2)) 1( 1) u 2( 2) T
ki D1 P2 Moy

Ms1fMslc Ms2fMs2c my
11 .
0(3127 57 §§ Msc12, Msel s mch)C(ja [, 512; mg, my, mscl2>
(49a)
(49Db)
(49¢)
(49d)
(49e)

III. DYNAMICS AND THE DEUTERON

In this section I discuss how non-relativistic interactions fit to data can be reinterpreted
as relativistic interactions. This avoids any need to refit the parameters of the interaction.
For a relativistic treatment of the Deuteron let V' be any realistic non-relativistic nucleon-
nucleon interaction that gives the correct Deuteron binding energy and experimental phase
shifts as a function of the center of mass momentum of one particle when used in the non-

relativistic Schrodinger equations.

Rl = % V) = el) (50)

where

12

mt2>



is the momentum of particle 1 boosted to the two body rest frame with a Galilean boost.

= myma/(my + ms) is the non-relativistic reduced mass of the two-body system, and
P2
h=H—— 52
Wi (52)
is the Hamiltonian in the 2 body rest frame.
Note that the experimental data that determines V' is measured experimentally - it is not

“non relativistic”.

Define the interacting mass operator for the two nucleon system:

M= \fm3 + K +2uV + y/m3+ 13 + 20V (53)

where k; is the relativistic k; which replaces the non-relativistic k; in the expression for
the potential. This operator is a function of the non-relativistic Hamiltonian. This means
that the wave functions and phase shifts, as a function of k;, are identical to the non-
relativistic quantities. The only caveat here is that we have to identify the operator defined
by boosting the momentum of one particle to the rest frame with a Lorentz transformation
with the operator defined by boosting the momentum of one-particle to the rest frame with
a Galilean boost. This assumes that the cross sections are measured as a function of these
variables .

Note that most experimentalists use relativistic kinematics when they measure cross
sections.

Thus it is not necessary to diagonalize M directly. We can check that M gives the correct

Deuteron binding energy up to a small correction:

M = \/m% + 2uh+\/m§ + 2uh — \/m% - 2u6+\/m§ —2ue = myy/1 — 2ue/mi+may/1 — 2ue/mi ~
mo ma 2 62

2 2
mae mj B
mi + mg — € — €+ 5 T + =

ma(my + my)?

i )+ (54)

€ m3 m?
2(m1 + mQ) (m1 + mg)ml (m1 + m2)m2

This gives the observed binding energy up to corrections that are about (1/2000)e (about 1

KeV).

(m1 + m2) (m1 + mg) ml(ml + mg)

mip+mo —€e—+e€

While the phase shifts can be directly read off of the wave functions, the result can also

be obtained using the invariance principle

S = lim e Hrote2iHrtgttirot — iy ¢
t—o0 t—00

iMT0t672iMTteiMT0t —

13



thm eihnrote—Qihnrteihnrot — thm eiHnr0t6_2iHnrteiHnr0t — 627:6 (55)
—00 —00
where
k? P2
h:ﬁﬂ/ H:WJrh (56)

which shows that the relativistic and non-relativistic scattering operators exactly reproduce
the measured scattering data as a function of k;. This means that there is no need to refit
data, standard potentials can be used directly. Note that the non-relativistic limit of the
relativistic calculation is not the same as the non-relativistic calculation - that because the
non-relativistic calculation is not fit to the non relativistic limit of the data; it is fit to the

same data as the relativistic model.

The non-relativistic calculations of transition operators can be used to calculate on shell,
half shell and fully on shell relativistic transition matrix elements. For the (right) half
shell transition matrix elements we use the fact that the scattering wave functions in the

relativistic and non-relativistic cases are identical:

(kp | Tollles) = (kgl|Vallki) = (ks Hn — Honlk;) =
2 2

K -k2
(e (=5 7

(wi (ki) + wa (k) — wi(ky) — walky))
wi (ki) + wa(k;) — wi(ky) — wa(ky)

|5
(k7 — k)
2p(wi (ki) + wa (ki) —wi(ky) — wa(ky)
- kD) (101, — Mo) i) =
2p(wi(k;) + wa(ki) — wi(ky) — wa(ky)) '
(p; —k7)
2p(wi (ki) + wa (ki) —wi(ky) — wa(ky))

In these expressions an overall 3-momentum conserving delta function has been factored

)

ki) =

(kp|((wi(ki) + walks) — wi(ky) —wa(ks)k; ) =

(ks |75 [[k:) (57)

out:
(P K|T[P, k) = 3(P' — P) (K| T][k) (58)
The singular parts of the coefficient in front cancel:

(k} —k3) _
2p(wi (ki) + wa (ki) — wi(ky) — walky))

14



(k; —k3)
2p(wi (ki) — wi(ky) + walks) — wa(ky))
(kf —k7) 1

20 (=13 (k2

wi (kq)+wi(ky) w2 (k;)+wa(ky)

1 (ki) + wi(ky)) (wa (ki) + wa(ky))
2/1 (JJl(ki) + wl(kf) + WQ(kZ') + w2(kf)

(59)

Thus
(wi (ki) +wi(ky)) (wa(ki) + wa(ky))
wl(ki) + w1 (kf) -+ WQ(ki) + WQ(kf)

20k s | T ki) = (ks | T [ki). (60)

or

wi(k;) +wi(ky) + wa(k;) +wa(ky)
(w1 (ki) +wi(ky))(walks) + wa(ky))

This result is valid for either the right or left half shell transition matrix elements. If we

(k¢[|T0[[ki) = 2p (kg | T ) (61)

evaluate these on shell |k;| = |k¢| this becomes

wi (ki)wa(ky))
wa (ki) + wa(k;)

20k || T [ki) = 2 (ks T3 k) (62)

or

wo (ki) + wa(k;)
wi (ki)wa(ky))

(ks || 7 1es) = po (ks |75 ki) (63)

Note that the relation between the scattering operator and the transition operators in the

relativistic and non-relativistic cases are (spin and isospin degrees suppressed )

(P k¢l S: P k) = 6(Pp — Py) (L — 2mid(m; — my)(k¢|| T (m + i€) | k;) (64)
1
L=V, +V,———F—V, 65
+ m — M + e (65)
(Pr, k¢|Sn|Pi ki) = 0(Pp —Py)(I — 2mid(h; — hy) (ks || T (R + i€)| ki) (66)
Ty = Vi VoV, (67)
h—h+ie

The corresponding expressions for the differential cross sections are

do, = @kaHTr(m +i€) ||k;) 25 (m — m/)k

vl

?%d@(l&f) (68)
V., =M — M, (69)

i _ 1 - w1(kz‘)w2(ki)

v kifwr(ke) 4 i/wa (k)| [kl (wi (ki) + wi (k)

15



above are initial; below are final

wikpwa(ly) _,  wilkp)ws(ky)
(wi(ky) + wa(ky)) (wi(ky) 4+ wa(ky))

combining with the velocity factor

42 wi (ki)wa (k)
0 = A e e (ks) + (k)

dm
k|?— = |k,|?
|f|dk,1 |f|k1

wi(ky)wa(ky)
(wi(ky) +wa(ky))

131 [(flIT(m + i) ko) Pd(ky)  (72)

for elastic scattering

w1 (k)u)g (k)
(w1 (k) +wi(k

G ) LT n + i) () (73)

In the non-relativistic case the corresponding formula is

o — (277)4 ie NE 2 M A a
<4w2u>2|%||<kfrm<h o)) Pd(ky) = (74b)

2 wl(k)wg(k) 2 . 9 A
(1m0 ) o+ i) e (71c)

which is identical to the relativistic expression, where we have used the on shell identity
(62). This is no surprise, since we have already established that the on shell relativistic
and non-relativistic cross sections are identical (this is equivalent to the wave functions and
phase shifts being the same). This means that for two-particle physics you can use most of
the non-relativistic results unchanged.

Remark - while it is a simple matter to multiply by the appropriate function of the
momentum to express the relativistic half-shell transition matrix elements in terms of the
non-relativistic half shell transition matrix elements, it is also possible to calculate the fully
off shell one in terms of the non-relativistic fully off shell transition matrix elements. This

is relevant for three-body scattering. To do this note

1 1 1 1
Zl_M:ZQ_M+22_M(Z2_Z1)21_M (75)
which implies
1
T(Zl) = T(ZQ) + VZQ — M(ZQ - 21)21 _ MV (76)
This is equivalent to
1
T =T T — T(z1). 7
(21) (22) + (22)Z1 — 0(22 21)22 — M, (21) (77)

16



Given T'(z2) on the left half shell (obtained from the non-relativistic 7'(z3), this equation
can be used to shift the energy denominator to T'(z;) is fully off shell.

1 1
2 — ]\4//<’22 o Zl)—dk”<k””T(zl)Hk>
0

(ko[ T'(21) k) = <k2||T(Zz)Hk>+/<kQHT(22>Hk”> 29 — MY

(78)

This requires half-shell input for all energies in the mesh, which means the equation has

to be solved for each half shell momentum in the integration grid. Note that this equation

has 2 integrable singularities, but because we are only interested in z; # zy they are at

different places. The point is that it is possible to use non-relativistic half-shell matrices to

calculate the fully off-shell relativistic 7' matrix. You never have to deal with the relativistic
interaction that contains the square roots of the nucleon-nucleon potential.

The differences between the relativistic and non-relativistic theory arises when the partial

wave basis is converted to a tensor product of single particle bases. This is important for

scattering experiments involving electroweak probes.

Note that since V' commutes with j, the internal 2-body free total angular momentum,
by simultaneously diagonalizing M, P, j2, j.. or M, P* P, j* j.; the resulting eigenstates
transform irreducibly under the Poincaré group. The dynamical unitary representation of

the Lorentz group becomes

U(A>’(Mn7]a I)P7 my, mt> =

Wn(AA)P /o [B; ' (A(A)P/M,)AB,(P/M,)].

war, (P) 7 maimer

> (Mo, j. 1))A(A) P), mf, my)

(79a)

(79b)

This is different than the free tensor product representation because the dynamical mass
eigenvalues, M,,, appear in the coefficients of the transformation.

What is needed to compute current matrix elements are scattering wave functions. Be-

cause the relativistic mass operator is a function of the non-relativistic center of mass Hamil-

tonian, the scattering wave functions are identical to the non-relativistic wave functions.
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IV. SPINOR REPRESENTATIONS OF LORENTZ TRANSFORMATIONS:

Four vectors can be represented by 2 x 2 Hermitian matrices using the Pauli matrices as

a basis for Hermitian matrices (with real coefficients):

2

2+ —ix 1
X =alo, = ' = -Tr(Xo,) (80)
ot +ix? 20— 23 2
where
o, =(I,0) Tr(ou0,) =26, o= O’L (81)

are the 2 x 2 identity and the traceless Hermitian Pauli matrices. Note that
det(X) = (2°)* — (x)* = 2°. (82)

is the Lorentz invariant proper time squared.
This means that any transformation that preserves both the determinant and Hermiticity

of X is a 2 x 2 spinor representation of a real Lorentz transformation. The determinant and

X' = AXAT (83)

where A is a complex 2 x 2 matrix (SL(2, C)) satisfying

Hermiticity will be preserved if

det(A) = 1. (84)

It can be shown that all Lorentz transformations continuously connected to the identity can

be put in this form. For the discrete transformations space-time reflection are given by
X—>X=-X (85)

while space reflections involve a complex conjugation

) a2V — 23—t +iz?
X = UQX*O'Q = . (86)

—xt —gx? V423

The discrete Lorentz transformations are not considered relativistic symmetries because
they are broken by the weak interaction, however space reflections are relevant in neutrino

physics.
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The most general 2 X 2 matrix with determinant 1 can be expressed as
A=e% (87)

where z is a complex 3-vector. The factor of 1/2 is included for later convenience. The
matrix A has a polar decomposition as a product of a positive Hermitian matrix P times a

unitary matrix R:

A = (AATA)V2(AAT)V2A = PR (88)
7 R

The positive Hermitian matrix,

P =P >0, (89)
corresponds to a rotationless (canonical) boost and has the general form
P=e2 =0y cosh(g) +p- asinh(g) p = rapidity (90)
while the unitary matrix R is a SU(2) matrix
RR" = (AAT)"V2(AATY(AAD) V2 =1 (91)
that can be expressed in the familiar form
0.0

R=¢72 =0y cos(g) +if - asin(g). (92)

Note that from the definition of rapidity it follows that

0
P2 = PtPp = PP! = ¢#7 = gycosh(p) + p-osinh(p) =0 + 2 .o =L 5| (93
m m m

which we will use later. Because of the relation to p in (93) we use the notation
P = P(p). (94)

Equation (88) means that any Lorentz transformation continuously connected to the identity
can be factored into a rotation R followed by a rotationless Lorentz transformation P(p).
Since a rotation does not change a rest 4-vector, the final momentum is determined by the

positive matrix P(p). This means the we can express a general boost B(p) as

B(p) = P(p)R(p), (95)



with the property

B(p)Bf —PpP tp — p? — o b _r. 96
(p)B'(p) = P(p)R(p)R' P(p) (p) =00+ —-0=—"-0 (96)
which is independent of the type of boost.
It follows from the general representation
A=e% z = complex vector (97)
that
/N\ = (AT)_I == O'QA*O'Q. (98)
The related notation
G, 1= 090,09 = (00, —0) (99)

will also be used. The definitions imply following identities that will be used in what follows
(M =AY (A=Al (100)

Equations (80) and (83) imply that
X' =ato, = A,20, = AXAT = Ao,z"AT. (101)

Equating the coefficients of ¥ gives the following transformation properties of the matrices

o, under Lorentz transformations

1
Ao, AT =, A, A, = §Tr(aMA0VAT). (102)

Note when there is no obvious ambiguity we will use A to represent both the 2 x 2 SL(2,C)
matrix and 4 x 4 Lorentz transformation related by (102).
If we take complex conjugates and multiply both sides of (102) by oy on the right and
left we get
AO-QO-;O'QZ\T = 030,09\, (103)

or equivalently

A, AT = &,A", (104)

which gives the correct transformation for a space reflected four vector.
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V. THE EQUIVALENCE OF TWO AND FOUR COMPONENT SPINORS

Recall the relation between the 2 x 2 and 4 x 4 representation of Lorentz transformations
A = STr(o, A AT 105
= 5 Tr(o, Ao, A, (105)

Since the 4 x 4 Lorentz matrix, A*,, is real, taking complex conjugate of (105) gives

* 1 * k %k *
A, = A, = ETr(UuA ot AT (106)
Since Tr(AB) = Tr(BA) (106) can be replaced by
A,y o= ST a0\ a0 02 73) = S Tr(E, (A7) 5,47 (107)
v = 5 r 0'20'“0'20'2 020920,,02 O9) = 5 r UH Oy .

The relevant observation is both the right and left handed (space reflected) representations
give the same Lorentz transformation.

To understand the equivalence of Poincaré covariant representations and Lorentz covari-
ant representations consider the unitary representation of the Poincaré group acting on
simultaneous eigenstates of mass, spin, linear momentum, and spin projection with a delta

function normalization,

((m, j)p, pl(m', 7Y, 1) = (P — P)6ppw 05 O

U(A)[(m, j)p, 1 Z |A(m, j)p, v </;€)OisDiu[Bl(Ap)AB(p)] -

S 1m0 (A PV pi 1B (Ap) (A (B () (108)

where we used R = (RT)_ in the Wigner rotation in the second line of (108). Here B(p) =
P(p)R(p) represents a general choice of SL(2,C) boost.
The Wigner functions,

D’ ,IR] = (s, p|U[R]|j, i) =

Jtu

G+ G+ )G =G = ) b piti—k pitu—k ph—p—p!
RY  RTHTERITETEREETH 109
Zk‘]ﬂt- NG+ =Bk —p— )T " (109)
where
R, R, ; N
R = AR =397 = ¢ COS(Q) +10 - asin(g) (110)
R R__ 2 2
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are degree 2j polynomials with real coefficients in the SU(2) matrix elements R;; which are
entire functions of angles. This means that the group representation property and angular
momentum addition laws can be analytically continued to complex angles (i.e. rapidities).

The means that the group representation property and angular momentum addition laws

Z D‘ZMMN [RZ]DZ//#M [Rl] — Dljivll/ [R2R1] = 07 (111)
DBl = 3 Gopliv s o 1) D)L [BID]E L [B) (1, 1y, s, gl ) =0 (112)
Jijopt paph ph
Dillvﬂﬁ [R]DZQ%MIQ [R] o Z<j17 M1, j27 ,u2’j7 IU>DZ,;1,’ [R] <]a :u/‘jla :u,17 j?? H’l2> = 0, (113)
Jjup

are also valid for SL(2,C') matrices, i.e. R — A. Using the group representation properties
the Wigner rotations can be decomposed into products of D-functions of SL(2,C') matrices
and the boosts can be absorbed in the definitions of the states, resulting in new states that

transform covariantly under SL(2,C):

AN |(m,4)p.v)V/1O DL, B (p ZZI m, j)Ap,v)/(Ap)°D )] DJ,[A]

J/

\(m,;);,u),(: [(m, _])/\p Pl
(114)
MY l(m,j)p,)VDODILBI(p)] =Y 0> [Ap.v)/(Ap)° D}, (BT (Ap) D, [(A] | (115)
v P v
(M) Pyt 1 |(m.5) Ap,)icn

where the [c subscript indicates that the states are Lorentz covariant.
The transformations relating |(m, j)p,v), |(m, j)p, V)i, and |(m, J)p, V)i are all invert-
ible, so they are all equivalent ways of representing relativistic states. The differences are

in the representations of Lorentz transformations

U(A)[(m, j)p, n Z\ m, j)p; v)ie Dy, [A] (116)

U(A)|(m,j)p, /L>lc* = Z ‘(muj)p7 V>lc*Diu[A] (117)

While it is known there are no finite dimensional unitary representations of the Lorentz
group, this in not a contradiction because the Hilbert space inner product has a non-trivial
momentum-dependent kernel. This can be seen by expressing the identity in terms of co-

variant states:

I = Z/ [(m, 3)p, wydp{(m, j)p, p| =
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> [ 1m0 DL BB )l ] =
Z/I(m,j)p, (1e2d pd(p* — m*)0(p°) Dl [0 - plic((m, §)p, v| =

Z/ |(m, )P, 1) 16 2d pd (p* — m?)0(p° )wa[(} Plies{((m, 7)p, V| (118)

where we have used (96). The problem is that while R = (R")~! for SU(2) matrices, this is
not true for SL(2,C) matrices. In fact there is no constant similarity transformations that
relates the two representations. They are called inequivalent representations. Equation (86)
implies that the two representations are related by space reflection. What this means that
is that the space reflected states will not transform correctly under Lorentz transformations
in these representations.

One way to construct Lorentz covariant vectors that transform linearly with respect to

space reflection is to replace (116) and (117) by the 45 + 2 component spinor states

. > |(m, j)p,v)Di [B1(p)]
| m, ) s O)coy = 0 4 . . (119)
eI Qeor =V b DA (B (9)

This is a 25 + 1 x 2(2j + 1) matrix in spin degrees of freedom. « takes on 2(2j + 1) values;

corresponding to the rows of this rectangular matrix. a. is used to denote the first (4) or

last (—) 2j + 1 components of a. The transformation properties are

S \m. . ) Dl (B (p)
U(A) 0 Hoe
P\ S 10m )po) Di (B (0]

>, |(m, 5)Ap, 1) Dls[B~ (Ap)] Di, [A] 0
>, |(m, §)Ap, 1) D2 5[ BY[Ap] 0 D%, [(A]
Note the following intertwining property
~ >, Diy[Ru(A,p)] D) [B(p)]
D}, [Ruw(A, p)] . "
2 ! >, Dj[Ru(A,p)|D) s [Bi[p]
>, Di, (B~ (Ap)AB(p)| D}, [B~(p)]
>, DI B~ (Ap)AB(p)| D’ [B[p]

>, DB (Ap)AB(p)]D) 5, B~ (p)]
>, Dl (B~ (Ap)AB(p)ID)5_[B((p)]

(Ap)° (120)
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>, DB~ (Ap)AB(p)ID) 5, B~ (p)]
>, D (BT (Ap) (A1 (B (p)| D) 5_[B'(p)]

Dl [B7'(Ap)] D} o [A] 0
4 et , - (121)
; Dy, [B'[(Ap)] 0 Dj, (A

This shows that this combination of boosts maps Wigner rotations into representations of
SL(2,0).

This is for a general spin. For spin % the covariant basis states have the form

1 22 |(m, 5)p, v ) B (P)va
[(m, 3)ps @)eon = V/1° o L (122)
Zy |(m7 5)]7, V’>(B (p)z/a,)
and the representation of the unitary representation of the Lorentz group is
D2 Al 0 A0
fray [ I | = s (123)
0 Dy [A] 0 A
This defines the 4 x 4 spinor representation of the Lorentz group.
1 >, 1(m, 5)Ap,v) B~ (Ap) AD
U)|(m, 5)p, @)ean = Y v/ (Ap)° : . ) (124)
; S, 10m Dap (B ) ) N0 d)

We remark that these 2 x 4 matrices transform Wigner rotations to representations of the
SL(2,C) group. The key observation is that the doubled 2 and four component representa-
tion are equivalent; it is possible to transform back and forth between them. The pronlem
is that a consistent treatment of space reflection in the covariant representations requires
having both a right and left (space reflected) representation.

We also remark that the kernels in the covariant representations are up to normalization

and change of representation the 2-point Wightman functions of a free field theory.

VI. GAMMA MATRICES FROM SL(2,C)

We define the 4 x 4 representation of SL(2,C') as the direct sum of the right and left

handed representations:

S(A) = (125)
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It follows from equations (102) and (104) that

S(A)<? ““)swl (A 9) (f] U”) (Al 31
g, 0 0 A g, 0 0 A

0 Ao, A 0 o,
L = A, (126)
A, AT 0 o\, 0
This suggests the definition
0 0 &
o= = g (127)
g, 0 o, 0
We also define
, I 0
Y =1y = (128)
0 —1
With definition (127) equation (126) can be expressed as
S(A)7S(A) =D WA, (129)
It also follows from the definition (127) that
v v - _0i 1 i o 0 i Lo o 0
{7“77 }:277u _ZO-O 25[7077]: O-j:§[’yu’y]]:€ijk
0 —0; 0 O
(130)
VII. DIRAC SPINORS
Consider the 2 x 4 matrices
1 B(p),ua+ 1 00
uPpa = —= | - = S(B(p))— (131)
g \/§ B(p)uoz_ \/5 0o
and
1 B<p)ua+ 1 0o
V(P)pa = N S(B(p))—= (132)
V2 ( —B(p)a V2 \ —o
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Note that
(P — m)u(p) = (p"vu — m)S(B(p))u(0) = S(B(p))S~ (B(p))(p"vu — m)S(B(p))u(0) =

S(BP) (" S~ (B(p)1.S(B(p)) — m)u(0) = S(B(p))(p" B~ (p)"y — m)u(0) =
S(BE) (B~ (p)"ur" v — m)u(0) = S(B(p))(myo — m)u(0) =0 (133)

which is the Dirac equation:

Similarly
(P +m)o(p) = ("7, +m)S(B(p))v(0) = S(B(p)S™ (B(p)) (1" yu + m)S(B(p))v(0) =

S(B(p))(@" S~ (B(p)1.S(B(p)) + m)v(0) = S(B(p)) ("% B~ (p)"u +m)v(0) =
SBE)(B~Hp)" w1 +m)v(0) = S(B(p))(myo +m)v(0) =0 (135)

which gives

(P v +m)v(p) = 0. (136)

Given these definitions define u'(p)ay, @(p)ay, V1 (P)ap and v(p)a.,. by

W= ((B10), B ). (137)
W= = (B0, B0 ) = - (870, B70) (138)
V(D) oy = % ( (B (p), —B'(p) ) (139)
and
W= 5 (-8, B0)) = 55 (-B70) B70)). ()
If we multiply these together we get
u(p)u(p) = oo (141)
v(p)u(p) = —0o. (142)
The polar decomposition of B(p) and Bf(p) gives
B(p) = P(p)R(p) (143)



B'(p) = R'(p)P(p) (144)
implies

B(p)B'(p) = P*(p)=p-o

(145)
B(p)Bi(p) = (B'(p))'B'(p) =p- & (146)
These properties can be used to compute
. 1 1 B(p)B'(p) LI 5
uplup) =5 | - A
B(p)B'(p) 1 b1
1 i
%(m + ") (147)
2)5(0) 1 -1 B(p)B'(p) 1~ &2
vip)v\p = - - - =
2\ Bw)B'p) I 2\ e g
1
%(—m + ") (148)
Using the polar decomposition and the property that for SU(2) that R = R gives
t L ot At () B L pipge A1 B2\
u'(p)ulp) = 5(B'(p) B(p) + (B'(p)B(p)) = 5(R'B; ()R + R' B (p)R) =
1 0 0
—R'(c-p+5-pR p—RTUOR = p—ao (149)
2m m m

S(RUBX )R+ RV B2 (p) R) =

(150)

m m
o L L ’
e | T am MmN (151)
2

J kS
(152)
It is useful to summarize all of these properties
u(p)u(p) = —v(p)v(p) = a0 (153)
P
ut(p)u(p) = v (p)v(p) = =00 (154)




u(p)u(p) = %(m +p"v)  v(p)o(p) = %<—m + ") (155)
u(p)u'(p) = %( + ") v(p)oi(p) = %(—m + ") (156)

It also follows that

u(p)v(p) = v(p)u(p) =0 (157)
Note that the rotation in the polar decomposition cancels out in all of these expressions. So
while the spinors depend on the choice of boost, the quantities with the gamma matrices do
not. The exception are the u(p) and v(p) spinors which are used to transform between the
representations.

The operators

wpip) = 5-(m+ o) —v@)) = 5-(n— ') (158)

satisfy
u(p)u(p) — v(p)v(p) = lixa (159)
(u(p)0(p)? = 5 (2m” + 2mpte,) = u(p)a(p) (160
(~o(p)o(p)) g (2m? — 2mp,) = ~v(p)o(p) (161)

are projection operators - although note that they are not Hermitian matrices.

A useful property of S(A) is

01 A O 01 A 0O
YS(A)A° = s = = (S(A)H! (162)
10 0 A 10 0 A
or
Y STHAN = ST(A) (163)

Here are some other spinor identities that are useful for dealing with current matrix elements

P, e ’Vﬁpﬁu () = Pols

w(p')y"ulp) = ap) —=t— o u(p)y Yy ulp) =

22 a(p) (20 = 2i0°)y7) + v (20" = 2i0"))u(p) =
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1

7P (P"s7” — wo™)psy”) + (0" — ipsa™”)u(p) =

%“(p')((p’“ — ipo0™)) + (P — ipgo”?)yu(p) =

1 , i
5w ) (" + ") + i(pl = pa)o™)u(p) (164)
where we used the Dirac equation, o*” = —g"* and 7°y* = (y*)"7°. The identity (164) is

called the Gordon identity, which gives the structure of current operators.

1) u(p) = o) (" + 1) + 88, — pa)o)u(p) (165)

Similarly

_ YD Pabs
u(p )y ulp) = a(p')—=4"y —falBy

B
57 DPp
wlp) =
m m (p) m2

)7y ulp) =

PolB ¢ 1o a
oD ) (o 4 ) =

— o UE) ({7  + *A"h?) +(7) + A D) ulp) =

u(p) (20 — 2i0)7) + 7 (20" — 2i0"?))y u(p) =

— 550N s7” = a0 ™ )pen”) + Dy (0" — ipso™)7 ulp) =

_ﬁu(p’)(—(p’“ — ipl, o)) + (P — ipgo*”)) Y ulp) =
%ﬂ(p’)((p’“ — ")+ i(=pl, + pa)d )y u(p)
1

o W) (" = ) + i), + pa)o)u(p) (166)

or

1

u(p' )"y u(p) = 5 a0 (" = p") + i(ph + pa)o")u(p) (167)

Since vu(p) = v(p) and u(p)y® = v(p) we also have

u(p )y v u(p) = u(p")y"v(p) = o(p")y"u(p) (168)

u(p' )y v v(p) = u(p' )y ulp) = v(p" )y v(p). (169)

We also note that the spinor Feynman propagator is

Pyt +m
p2 —m?2 =i0t)

F(p) =
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Pt +m
T 1 09+ e 07)
m u(p)u(p) v(p)v(p)
N (e e ) )

where we have substituted the residue for each of the poles. This is where the v spinors can

arise in the current. They arise when a charged particle couples to a time reversed Fermion
in flight (the so-called Z-graphs). The expression in terms of the spinors is consistent with

the normalizations used in this section.

VIII. GAMMA MATRIX CONVENTIONS - BJORKEN AND DRELL

In this section I discuss the relation of Bjorken and Drell conventions to the convention
used in the previous section. The starting point is the choice representation of the gamma

matrices. For Bjorken and Drell they are

I 0 0 o 01 A
,YO = v = 75 = o = 5[’7/”7’7 ] (17]‘>
0 —1 —0 0 I0

These are compared to the conventions used in the previous section

01 0 —o I 0 e
v = v = v = o =§h,7] (172)
70 o 0 0 —1I

v

For the lower indices the vector 4 reverses sign in both expressions. These representations

are related the similarity transformation

1 I I

W= — =W (173)
V2 \ 1 -1
I 1 1 1 I -1 I 0
— = (174)
vV2\r-1)\r1o0 I -1)\1 1 0 —1I
1 I 1 0 —0o I 1 —0 0 0
— = (175)
V21 -1 I -1 o 0 —0 0
The starting point of the previous section from (126) is
AO 0 o, ATt 0 0 AUMAJr 0 o, AV
0 A 020202 0 0 Al AO'QO'ZO'QAT 0 090,020 !
(176)
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or

S(A) S_I(A) = A, (177)
090,09 0 0 030,09
where recall
AO
S(A) = . (178)
0 A

The corresponding S(A) in the Bjorken and Drell representation is

A O 1{A+A A=A
Sgp(A) = WS(AW™ = == ) By (179)
0 A 2ZVA—AA+A

The spinors in the BD representation are

ubd<p>:%sBD<P<p>>W Z = Sn(P(p)) (’0 (180)

and
LYoo eonw [ 7 = sancp 0 181
vBD = 75 Bp(P(p)) I Bp(P(p)) o (181)

In this case P(p) = P~1(p) is the inverse of the canonical boost that is obtained by reversing

the sign of the three momentum. The matrix

0 oy
Mo = (182)

0202020

is consistent with my representation of 4#. Note the sign change when the spatial indices

are raised. It shows

-1 _ v
S(A)7S(A)™ = A, (183)
or if we raise indices
S(AYS(A)™H =" Al = A" y" (184)
Multiplying by W on the left and right gives
Sep(MvEpSep(A) ™ = 7EpAl = A ygp (185)

This is a representation because it is related by a similarity transformation to a representa-
tion.

Some general comments:
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1. The explicit form of the u and v spinors depends on both the choice of boost B(p) and
the representation of S(A). Bjorken and Drell use a different representation of S(A) -
see next section. They also use the canonical boost B(p) = P(p) in the definition of
the u(p) and v(p) spinors. Light front spinors in either representation involve replacing

P(p) by a light-front preserving boost.

2. While the u(p) spinor relates the Poincaré covariant and Lorentz covariant represen-
tation of states the v(p) spinors appear in the expression for the Feynman propagator

and will contribute to exchange currents.

3. The expressions for the gamma matrices do not depend on the choice of boost. That

is because the rotations in the polar decomposition cancel in the equations (96).

IX. CURRENT MATRIX ELEMENTS

In a canonical field theory plane wave current matrix elements can be expressed in terms

of free Dirac field and creation and annihilation operators as:

W@l = OB B ()l0) = g \/E (0 )y ulp.v)
(186)
Here we use Bjorken and Drell delta function normalization of states and their normalization
on the free fields -see BD 13.50 and 13.52. Matrix elements of the charge operator in plane
wave states are obtained by integrating matrix elements of the charge density over all space.

This gives matrix elements of the Noether charge in plane wave states:

(»'/| / dx;*(x, 0) p, 1) =

—i(p'—p)x 2
€ meo_ i — m 1 AP ) ) =
/ (271')3 pop/OU(p,y)fy u(p, :u) \/mu (p,V )7 u(p, l/) (p p)

m
Vre m

00d(p — p') = dd(p —p') = (p'.V|p, V) (187)
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which is what we expect for a point charge with charge e = 1. This shows that the one-body

current matrix elements

ei(p/_p)'x m2

', V)" (x)|p, v) = @)’ pop,oﬂ(p’, Vv u(p, 1) (188)

are consistent with the charge normalization.

The space integral over x leads to a momentum conserving delta function. This replaces

ei(®'—p)x

the factor e

by a three-momentum conserving delta function.

Matrix elements of the 3-dimensional fourier transformation of the current operator

7*(q,t) = ok /e TG (z)dx (189)
on the 0 tlme surface are
(0, V5" (a,0)|p,v)o(q +p — p') = u(p, v')v"u(p, n)é(q + p — p') (190)

X. COVARIANT DECOMPOSTION

A basis for 4 x 4 matrices can be expressed in terms of gamma matrices. The independent

madtrices are
{I,4",0" 7%, 7"y} (191)

It follows that 4 X 4 matrix can be represented as

M = al + b" + ¢ + dvy° + e,y (192)
ot = %[7“,7“] Cuy = —Cup (193)

The coefficients can be computed using the following trace identities

1
Tr(l) =4, Tr(v"y") = 3Te({n",7"}) = —4n", (194)
Tr(o") =0, Tr(y°) =0, Tr(y’+") =0, (195)
Tr(y*y79#y" = 4™ — ™0™ + n*'n*) (196)

In addition to these identities we will need
Tr(c") =0 (197)

33



(follows from (?7),

Tr(o"o®) =0 (198)

(follows from odd number of gamma matrices),

Tr(o"'y°) =0 (199)
follows because
Tr(y"9"9°) = 0 (200)
Tr(M) = 4a (201)
since
Tr(4*) = Tr(o") = Tr(y°) = Tr(y°y*) =0 (202)
Tr(yM) =b,Tr(v"y") = —4n""b, = —4b" (203)
since
Tr(y°1) = Tr(y%0") = Tr(y*7°) = Tr(v*y°7*) = 0 (204)
Tr(v°M) = 4d (205)
Te(y*y" M)e, Tr(v°7"y*y") = —e, Tr(y7") == de,n™” = de” (206)
cuwTr(o®P o) = —c,, Tr(n® " —nH P 40 nPt—n P pt4n nor —n iy —p Pk 4pPlger —p
(207)
—16c,w(77°“’77ﬁ“ — 770‘“775”) = 1627 (208)

XI. IMPULSE MATRIX ELEMENTS

To compute matrix elements it is useful to keep track of independent kinematic vari-
ables. The matrix element is a sum of terms with different spectator nucleons. In the Born
terms there are no integrals. All variables can be expressed in terms of the total Deuteron

momentum and the momenta of the two final nucleons.
(P1; v1, Py, V|3 (0)|(D, §)P, s 1, 5) =
(P'—ps, 1|t (0) |1, 1) D3, [B™ (p2) B(P) B(ks)| D32, [B™" (1) B(P) B (k1)) Yim (k(p1, P2)) %

Wl(p1)+w2(p2>\/Wl(kl)w2(k2> j

(k)+

0(312M12;817M1,527M2)C(j/i§lam>512,u12)\/w1(k1)+w2(k2> w1 (p1)w(p2) Is
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(P' — pu, h|54(0)|p2, v2) D2, [B~ ' (p2) B(P)B(ks)| D%}, [B~*(p1) B(P)B(k1)]Yimn (k(p1p2)) X

ZANTS]

wi(p1) +wa(p2) [wi(kr)wa(ks)
wi (k1) + wa(ks) \/wl(pl)w2<p2) (k) (209)

C(Slz,uu; S1, M1, S2, M2)C(jﬂ; [,m; 312#12)\/

where for the first term

pi=P By k=P bl = bt () (20)

and for second term
p: =P —pj kzk(p’l,P—p’l)sz% (;;;rp}[—wl(p’l)) (211)

where for both terms
H=uw(p)+w(p) M=vVH —P? (212)
ko = (wo(k1), —k1). (213)

The boost are given by

DY2B(p)] = B(p) = \/\/TZ/WJF Lo \/\/TZ/W_ L

‘O-H/V:
2 1 2
Vvm? +p?+ \/\/m +p? — Do (214)
2m
DB~ (p)] = B (p) =
\/\/1+p2/m2+1 \/\/1+p2/m2—1 .
2 we
2 2 J2 2 _
me+p +m00,w— mc+p mf)'(f;w- (215)
2m 2m
The current matrix elements are
1 o m , m;
A N2 iy Vildq 0 iy Vi) — — Wy Flu v; 7 216
(27T)3<p v;17; (0)|pi, i) w<pi)ul(p) Uy, (i) (o) (216)

where I'* is similar to (164 or 167) but will generally have form factors. The factors of u(p)
and I'* must be in the same representation.

Note for the BD spinors

S(P() + P~

Topw = 2m

117))=\/”1+p22/m2+1 _ /Tt en(p) (217)
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%(P(p) - P (p) = \/ /1 +p22/m2 — 115-a,w =4/ mzf?;”(p) mi:;(p (218)

which gives

m + W (p) 00 s
SPW) =\ =" e ® (219)
m+wm(p 0-0

which agrees with (3.7) of BD volume 1. The u(p) and v(p) BD spinors are defined by
applying (219) to the rest spinors in the BD representation

uBD(O) = Wﬁ o = 0 (220)

1
UBD(O) = W ( (221)
They are just the columns of the matrix (219)

a0 m + wp(p) a0 1+v0 o

2m p-o Vo
0 m~+wm (p ) 1400

(222)

0 m+ wn(p) | o 1+U0 g
vep(p) = S(P(p)) =\ "5, ®) [ ot L (223)
(oy) o) g0

where v = p*/m is the 4 velocity.

XII. RELATIVISTIC SCATTERING THEORY

A relativistic treatment of scattering is needed to model reactions that are sensitive to
short-distance degrees of freedom. The formulation of scattering in relativistic quantum
mechanics is identical essentially identical to the non-relativistic case.

The elementary quantum mechanical observable in a scattering experiment is the prob-
ability that a system prepared in an initial state is measured to be in a final state. These

states are represented by normalizable solutions of the Schrodinger equation

[¥a(t)) = UO)[Pa(0)),  [¥s(t)) = U®)[¥s(0)), (224)
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where U(t) = e"* is the unitary time evolution operator. For unit normalized vectors the

transition probability for scattering from state 8 to state « is

Pag = [(a(®)[¥s(O))* = |($a(0)|UT )T (£)¢5(0)[* = [{a(0)[125(0)) . (225)

The unitarity of the time evolution operator means that this probability can be evaluated
at any common time.

If t = 0 represents the approximate time of collision, the initial state at a time long-before
the collision is a state representing a target and a projectile where the mean positions of
the target and projectile are separated beyond the range of the interaction and the mean
momentum of the projectile is directed towards the target. Similarly, the final state at a
time long after the collision represents mutually non-interacting asymptotically separated
fragments with their mean momenta directed towards some detectors. The difficulty with
computing the transition probability (225) is that there is no common time when both of
these states have a simple structure. In addition, the initial and final states are not precisely
known in any experiment. Both of these issues will be addressed below.

In applications it is necessary to consider a multichannel formulation of scattering theory.
The formulation must allow for scattering from bound systems of particles and allow bound
reaction products.

In order to evaluate the initial and final states at a common time it is useful to replace
the initials condition in the Schrédinger equation by asymptotic conditions that fix both
the initial and final states at times when they are simple and related to the experimental
preparation. The first step is to describe the system long after or long before the scattering
reaction.

In what follows the projectile, target and the fragments in the initial and final states
are assumed to be particles or stable bound systems of particles. Cluster properties of
the unitary representation of the Poincaré group mean that when it acts on a state of
asymptotically separated subsystems that it can be approximated by a product of subsystem

unitary representations of the Poincaré group:
(U a) = TTUA a)l) =0 (226)

where the state vector for a system of asymptotically separated particles can be represented
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by a product of wave packets for each particle:
) = [T 1e (227)

In (226) [, U;(A, a)) is obtained from U(A, a) by turning off the interactions between each
asymptotically separated particle or subsystem. Particles are identified with point spectrum
eigenstates of the mass operator associated with each U;(A,a). These could be either ele-
mentary particles or subsystem bound states. Mass-spin eigenstates can be expanded in an
irreducible basis. They have to be integrated against wave packets to construct normalizable

states. The normalizable single-particle state vectors have the form
Ji
i) = Z / |(mi, 3i)Pi, i) AP fi(Pi, 114) (228)
Hi=—Js

where f;(p;, it;) is a square integrable function of the momentum and spin of the i-th particle.
|(my, Ji)Ps, pi) is a point spectrum mass eigenstate of U;(A,a). The point spectrum mass
eigenstates, |(m;, J;)Pi, iti), could represent elementary or composite particles with momen-
tum p; and spin projection p;. The functions f;(p;, ;) are wave packets that determine
the mean momentum, position and spin polarization of each particle. For now they can be
taken as minimal uncertainty states of the form

(Pi—Pin)?

C. — 5
il ) = (27r)3/4€Ap¢)3/26 e (229)

where the ¢, are constants that determine the spin polarization. They are just Gaussian
states in momentum space with a given mean momentum and momentum uncertainty. They
are constructed so the uncertainty in the conjugate coordinates are determined by minimal
uncertainty. Later we will construct observables that are insensitive to the structure of the
wave packets.

In the absence of interactions the time evolution of these states is given by U; ([, t)

= Y0 [ U0 s ) dp o) =

Hi=—J;
Ji
/ |(mz‘7ji>pi7/~bi>6_z v p’2+m’2tdpfz‘(Pa M) (230)
Hi=—J;

A two Hilbert space representation is used to formulate multi-particle scattering. A scatter-

ing channel labels a collection of initial or final particles (or bound states). The asymptotic
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Hilbert space for channel « is the Hilbert space spanned by the products of square inte-
grable functions, f;(p;, ;) of the momenta and magnetic quantum numbers of particles
(bound states) in the channel o. The channel-a Hilbert space is denoted by H,.

A mapping ®,, from H, to the Hilbert space of the quantum theory is defined by

q)oz|fa> = H |(m27jl>p’w Mi>f(p1’ M1 Pn, ,un>' (231>

1EQ

The unitary representation of the Poincaré group on H, is defined by

QU(A, a)Pq|fo) = PalUrsa(A, )| fo)- (232)
The transformation properties of Uy, (A, a) on |f,) follow from the definitions

QUi(A, 0)®alfo) = PalUsa(A, a)|fo) =

H / Z Ui(A, a)|[(m, Ji)Pi, ) dPif (P1s fi1 -+~ Pry fn) =

| Wi, (Api
H / Z ’ mza]z Apu Vz> ipia sz(<p]j)> DVzMz [Rw(A>pz)]f(pla M1 Pn, ,un)

. / i -a wmi ; i — —1
11 / S [, )l )™ L%D%M[Rw(A,A Lo LFA=Y - A=Yl ).

Wm; (A lpi
(233)
The channel time evolution operator is
Usa(t) = emiHat — =i jca\/m; R}t (234)

where

Ho =) \/m}+p} (235)

JEQ
Note that if we express

H=H,+V" (236)

where V' represents the interactions in H between paticles in asymptotically separated
cluster of the channel o and H, includes all of the interaction between particles in the same
clusters of « then

H,®, = O H,. (237)

Equation (234) describes the time evolution of the mutually non-interacting particles or

bound states in channel «.
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The scattering probability for multi-channel scattering can be expressed in terms of the

multi-channel scattering operator

P.s = |Sas|*. (238)

The multi-channel scattering matrix is the probability amplitude
Sap = (¥ (0)[¥5(0)) (239)

where o and § are channel labels and where the initial and final scattering states |7 (¢) and
)|W5(t)) are solutions of the time-dependent Schrédinger equation with initial conditions
replaced by the scattering asymptotic conditions

lim W5 (6)) — Bl FEW)] = lim [l |WE(0)) — Boe Mo fEO)) =0 (240)

t—=o0

These equations define time-dependent solutions of the Schrodinger equation that look like
non-interacting particles or bound states in the asymptotic past or future. Because this is a

H

strong limit the unitary operator e’* can be removed replacing equation (240) by

: iHt( —iHt|\,£ o —iHat| £ — 1 + _ iHt —iHat| % —
i [ (e W (0) — Boe o FEO)))]] = T [[[WE(0)) ¢ e £ (0)))] = 0
(241)

which gives an expression for the states that appear in the expression for the scattering
probability amplitude in terms of the free wave packets and bound state vectors.
Wave operators are defined as mappings from the asymptotic channel Hilbert space H,

to the Hilbert space H of the theory
[05(0)) = Qax(H, Do, Ha)| f5(0)) (242)

where the multichannel wave operators are defined by

Qor = lim '@ e ol (243)

t—*+o0

The multichannel scattering operator can then be expressed in terms of the wave operators

as

Sap = Uy (H, Bo, Ho) Qs (H, By, Hy). (244)

In these notes the £ on the scattering states and wave operators indicates the direction

of the time limit (— =past/+ =future), which is opposite to the sign of ie. The operator
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I1,, projects on the different possible scattering channels. The asymptotic and interacting
scattering states are related by the multichannel wave operators

In order to evaluate the wave operators the first step is to express the limit as the
integral of a derivative: Because the limit in (243) is a strong limit it is only defined when

the operators are applied to wave packets, as they are in (242).

+oo +o0

d . . 4

Qaj: — q)a + / p (eth(I)ae—Hat>dt _ (I)a + Z/ eZHtHa(I)ae_ZHatdt. (245)
0 0

where we have used (236). Convergence follows provided
| /ioo e H e~ Holdt| ££(0))|| < oo. (246)
0
A sufficient condition for this to be finite is
/ - et H D e~ Hotdt| f£(0))] < oo (247)
0

or equivalently by unitarity of e

+00
/ | H D e Hotdt]| f5(0))]| < oo. (248)
0

Whether this is true depends on the interactions. The product H®®, is translationally
invariant, but it falls off in all relative directions. Intuitively the combination of the bound
states in @, and the interactions between particles in different bound states in H® lead to
terms that fall off for large time off like inverse powers of ¢ for large ¢t. In non-relativistic
quantum mechanics this is called the Cook condition.

In what follows we assume that the channel Mgller wave operators exist.

The channel Mgller wave operators satisfy the intertwining relations
HQuyy = Qo+ H,,. (249)

To prove (249) note that

1H (t+s) (I)ae—iHa (t+s) eiHas -0

s, = lim e ap€le8, (250)

(t+s)—+too
Differentiation with respect to s, setting s to zero gives (249). This condition ensures that
energy is conserved in the scattering experiment. Let |E,) be an eigenstate of H, with

eigenvalues E,. Then (249) gives
HQ oy |Ey) = Q1 Hy | Ey) = Qar Ey|Ey) (251)
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which shows that 2,4 maps eigenstates of H, with energy E, to eigenstates of H with
the same energy. This is a reflection of the fact that the energy of the scattering state is
conserved and agrees with its values when the particles are asymptotically separated.

It also follows from (249) that

(TS (1) = UM)]TZ(0) = Ut)Qaxf5 (0)) = QasUa()|f5 (0)) = Qasl f5 (1)) (252)

The probability for scattering from a state in channel o to one in channel S can be expressed

directly in terms of the asymptotic free-particle wave packets using channel Mgller operators:
Pap = [(WF(6)|Qh, Qa [ (D) = (/7 (0)|2f; Qa1 f2 () (253)

which is independent of ¢ by (225).
The channel scattering operator, Sg,, is defined by

Spa 1= Qf, Qo (254)

The scattering probability can be expressed in terms of the channel asymptotic states and
Sga as
Pag = |(f5(0)[Ssal fa ONI* = [(f5 (D)Ssal f5 (1)) (255)

If we denote the set of all possible scattering channels by A then we can define multi-
channel versions of the equations above. The asymptotic Hilbert space is the orthogonal

direct sum of the channel Hilbert spaces
HA = @aeAHor (256)

HoHa — Ha (257)

denotes the orthogonal projector from the asymptotic Hilbert to each channel Hilbert space

H.. The asymptotic Hamiltonian is defined by
Hy =Y H,I, (258)
acA

A Multichannel injection operator that maps the asymptotic Hilbert space to the Hilbert
space of the theory is defined by

Dqi= Y Il (259)
acA
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Multichannel wave operators that map the asymptotic Hilbert space to the Hilbert space of

the theory are defined by

Q= QO (H, ,, Hy,) := lim e yeitat (260)
—+o0
S:=Ql0 Hu— Hy (261)

If the initial and final asymptotic states are chosen in channels 8 and « this becomes (255).

If the bound states are included in A and the incoming and outgoing scattering states
both span the subspace orthogonal to the space spanned by the bound states, then the
multi-channel wave operators are unitary mappings from H 4 — . This condition is called
asymptotic completeness, which will be assumed in what follows.

The advantage of expressing the probability in terms of the asymptotic states is that
they have a simple form where the asymptotic momenta an polarizations are controlled by
experiment. The problem is that the probability in principle may depend on the detailed

on the structure of the wave packets.

XIII. TIME INDEPENDENT MULTI-CHANNEL SCATTERING THEORY

In this section the definitions from the previous section are used to formulate the more
familiar time-independent formulation of scattering. This will be used to remove the sensi-
tivity to the choice of wave packets. To do this start with the time dependent expression

for the channel scattering operator, expressing the time limit as the integral of a derivative
(5 OS50l (0)) = (5 O]} Q| (0)) = lim (|5 DL B ) =
FIlRalfe) + [t (sl ale e 1) =
(F3105®al o) + /0 " (i HY e | ) ¢
/00 dt(fg|eiHBt(I)Tﬁe_Qth(—iH“CI)a)eiH"t|fa_> =
0
<f§|@2¢a|f;> + 61_1)1%1+ /Ooo dt(f;|e(iHa—e)t(_i@fﬁHb)e—zz‘th)ae(iHa—e)t|f;>_|_

lim dt / dt(f5|eHo= NP2 (—i 1P, )eHomt| £ 7 (262)
0 0

e—0t
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where we have used (236) again. Introducing the factors of e leaves the result unchanged

provided that the integrals over the wave packets are performed before the time integral. If

the factors of € remain then it is possible to change the order of the time integration and

the integration over wave packets. Thus with the epsilon factors the time integral can be

done by replacing the wave packets by energy eigenstates, and only after the limit ¢ — 0

integrating the wave packets over plane wave energy eigenstates,

In what follows we keep the factors of € and replace [f;") and |f5) by energy eigenstates

|ES) and |Ejy) of H, and Hpg. This has the advantage we can work with “plane-wave energy

eigenstates. At the end of the calculation the wave packets have to be put back in.

With the € factor (262) becomes, after removing the wave packets,

P, +lim | dtPLeFem e M (i H )t P, +
¢ 0

lim dth)Tﬁe(iHﬂ—e)t(_Z'Hb)e—Qthe(iEa—e)tq)a _
0

e—0

1
LD, + lim P
o (B, + Ba)j2— H 1 ic)2)

1
lim @, (i H° d
fim @5 )22'((E5 + E,)/2— H + i¢)2)
We define the average energy by

(tH")P\+

— Eg + E,
Egq = —

With definition (264) equation (263) becomes

1

1
qﬂcb + lim ®F

H*)®,, + lim &% (i (H°
M i (F — H 1 icj2) ) ®a + Ll @5 ()

1 1 1 1
LD, + — lim O — 0P, + = lim ®LH° ——
250 P (Egy — H +ic/2) 2 =0 (Epe — H +ic/2)

The second resolvent identities in the equivalent forms

1 1 , 1 B
(Fon —H 1i6/2) (B — Hy + i02) ([ . z‘e/z>) -

1 1
I H® | —
( T Eoe—H1ie/2) ) Epe — H, 1 i6/2)
are inserted in (265) to get

1
= oL, 1 cb* I+ Hb —
gt g I #(Ege — Hy +ic/2) ( + (Ega — H—l—ie/2))

H D, +
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2i(Epq — H + ic/2)

(263)

(264)

(265)
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1 1 1

Slm®LHY (1 + — — ) _

2 =0 (EBQ—H—FZG/z) (Ega—Ha—i‘ZG/Q)

1 1 1
LD, + = lim ¢l — H + H'— H) @,
ey e ] AR vy e L R

1 1 1
~lim ®F, ( H® + H"— m— () _

2 =0 (Ega — H +i€/2) (Ega — Eo +1€/2)

1 1
dLd, + li ol (( H* + HY — H*) ®,
B S B Ey +ie/2 B( T B H i 2) > *
1 1 1
li o (HY — H* + H* + H'— He ) — —
" Es— Eo +ie/2 P ( TH (Epe — H +i€/2) ) (Ega — Eq +1i€/2)

P+

H—-—H,—H+H
oLd, + lim @, b t Ha
e—0 Es — E, +i€/2

1 1 1
li &l ( H* + H'— H® | ®, =
P (Ea—Eﬁ+ie/2+Eﬁ—Ea+ie/2) ﬁ( T B H i) )

E;—E
o', lim @ C N
e S, B2

1 1 1
lim —— —— ) o (H*+ H" — —H | =
0\ Eg — E, +i€/2 Ez— E, +i€e/2 (Ega — H +1i€/2)

i€/2
lim &' o,
50 P Ey — Bo + ic/2)
. 6/2 + b 1
—21 oL | H*+ H— H) ®,. 267
) (B, — Eg)?+(¢/2)2 7 < * (Ega — H 4 1¢/2) (267)
Taking the limit using
€/2
li =7)(E,— F 268
30 (Eo — Eg)? + (¢/2)? mo( 5) (268)
gives
1
Sap = 05a®L®, — 2mid(E, — Eg)®L ( H* 4+ H H) @, 269
B B B 7”( 5) ,8< + (EQ—H+i€/2> ( )

where the first term vanishes in the limit ¢ — 0 when the channels are different. When the
channels are the same, we have two eigenstates of H, that will be orthogonal unless the
energies are identical, which results in the factor 55aCI>TB. Given the normalization condition
this is just the identity in the channel Hilbert space Hg. Because of the delta functions

Esa = E, = Ep.
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To calculate the scattering probability these states have to be integrated over unit normal-
ized initial and final wave packets. The operator that is needed to compute the non-trivial
part of

. ab
Sup = 05a®0q — 2mi6(E, — Eg)®LT D, (270)

is the transition operator

1 _
T (2) = H* + H? ZH" 2= Eatie (271)

z —

The assumption that the unitary representation of the Poincaré group, U(A,a), satis-
fies cluster properties means that the wave operators satisfy intertwining relations (see the

discussion on page 120 of volume 1 of Weinberg’s book on quantum field theory)
UA,a)Qvrq = QraUs(A, @) (272)
A sufficient condition is that all of the Poincaré generators G; satisfy a Cook-like condition
/ AH][(Gio — Do Gas)e— ot F2(0))] < oo (273)
This implies
Us(A, a)Spa = Us(A, a)Q, Qo = QL U(A, )% = Q) Q0 Us(A, a). (274)
For the full multi-channel scattering operator this means that
[Ua(A,a), 5] =0 (275)

which means that the scattering operator is Poincaré invariant.
In the non-relativistic case the Hamiltonian has the form
H = % + h. (276)
Because of momentum conservation all calculations can be done by replacing H by h, which
is equivalent to working in the rest frame of the system. The Poincaré invariance of the
multi-channel scattering operator (275) means that the relativistic calculations can also be
done in the rest frame of the system. Specifically boost invariance means that we can boost

S to the rest frame without changing the operator. Mathematically if the interactions are

well behaved the Kato-Birman theorem implies

lim ||(eth<PaeiH“t — eig(H)t<I>aeig(Ha)t)|f§(0)>|| =0 (277)

t—+oo
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for sufficiently nice functions g(H). This is because everything Reimann -Lebesgues to death
unless the energy is conserved - which results in operators satisfy intertwining relations. In
the relativistic case choosing ¢ = v/H? — P2 means that we can replace H by M and H, by
M, = \/H2 — P?a etc.. Mathematically the result

lim [|(e"™ @€' — e Do) £ (0))]] = 0 (278)

means that S,g can also be expressed in terms of the mass operator, which is the relativistic

analog of the non-relativistic h:

1
Sup = 65D P0 — 2mid (M, — M) P}, (M“ + Mb(]\/[ v Z.E/Q)M"> P, (279)

In an instant form dynamics the interactions are translationally invariant which allows one
to factor out a 3-momentum conserving delta function in addition to the energy conserving
delta function.

In the particle data book reduced transition matrix elements are defined by

(2m)8(E' — E)(p'|T"|p) = (2m)*6(p" — p){PIT"*||p) (280)

In this work I define the reduced matrix element by simply factoring our the momentum

conserving delta fucntion:

(p'|T"|p) = 6(p' — p){(P'|T"||p) (281)

without the factor of (27)3. This difference appears when we relate our formulas to those

that appear in the particle data book which uses the convention (280).

XIV. CROSS SECTIONS

The problem with the scattering probability is that it depends on the structure of the
initial and final wave packets. While there is some experimental control of the momenta
and spins of the incident and scattered particles, it is not at the level of wave packets. The
purpose of this section is to eliminate the sensitivity of the scattering observables to the
choice of wave packet.

The relevant observable for the final states is the cross section. I develop it following

methods used by Brenig and Haag. An initial state consisting of a target ¢ in a state |f;)
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and beam b in a state |f,) leads to the asymptotic differential probability amplitude for a

n-particle final state in channel a:

(P1, 157+ s Py | fe ) = /(pl,ul “ 0 P Bl Sag Py, 1, Pes 1) APodPe(Pos 1o f1) (Pes e o)
(282)
The differential probability for observing each final particle to be within dp; of p; with spin

polarization p; for this initial state is

AP = |(p1, i1+ Pus ial fi i) 21 - - - dp. (283)

Inserting the expression (270 and 272) for S in terms of the wave packets in (283), assuming
either different initial channels or non-forward scattering, so there is no contribution from

the ®f ® 30,5 part of the scattering operator, gives

arP = dpl e dpﬂ /(27-()2(1317 M1y 5 Pny MnH(DLTaﬁ(I)ﬁHpg)? Mo, p:fa ,ut> (284>

X (P11, s P [ TP DY s i, P 1) (sz P, — pt> 5<ij—p§,’—p2')
J

x 6(Eq — Ey) 6(Ea — Ep,)dpydpidpydpy (P, 11 fo) (Py s 1| fo) ™ (P, 1] fo) (PE s 117 | £2)"(285)

where we have factored out three-dimensional momentum conserving delta functions assum-
ing that the interactions are translationally invariant following (281).
The products of the 4-momentum conserving delta functions in (283) can be replaced by

products of the equivalent four momentum conserving delta functions:
sz vy —p}) o ij sz ph — }) 64 (ph + ph — v — b)) (286)

If the initial wave packets are sharply peaked about the target and beam momenta and the
transition operator varies slowly on the support of these wave packets, then the transition
operators can be factored out of the integral, replacing the beam and target momenta in
the transition matrix elements with the mean target and beam momenta, py, p;. When this
approximation is justified the cross section will be independent of the shape of the wave
packets. The result, after expressing the second four momentum conserving delta function

in (286) using a Fourier representation

1 ; NI RN ]
S0y 1, — 1 ) = (g [ € Ob 0 (287)
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is
o _ _ 2
dpP = (27r)4dp1,---dpn/!(pl,ul--- P (i || RT3 | By, p1obrs p11)| X
X ’<X7 t? Mb‘fb>|2‘<x7tuut’ft>’2dx dto (Z Pi — pb - pt) 0 (Z Epi - I_Eb - Et>(288)

where

(%1, ol fo) = / (267]352/2 6ipb.x_iEb(p)t<P>#|ft> (x,t, el fr) == / (2C7ZTI));,/2 eipthx_iEt(p)%Pa fl f)

(289)
are time-dependent wave packets for the beam and target particles. This is the differential
probability for a single scattering event. The space-time integral picks up a contribution
whenever the beam and target are in the same place at the same time. For a single event
this space-time volume is finite.

In a real experiment there is a beam of particles with current
Jb = Verne (290)

where vy, is the relative velocity between the beam and target particles and ny, is the number
of beam particles per unit volume. The beam is normally incident on a target with n, target
particles per unit volume. Assuming that each beam particle scatters at most once the
number of particles scattered per unit volume per unit time is proportional to both the

target density and the normal component of the beam current

d N,
dvdt

= nyjpdo = Ny, Uprdo (291)

where the constant of proportionality do defines the different cross section, which by dimen-
sional analysis has units of area.

On the other hand the total number of scattering events is equal to the probability of a
scattering event per unit time per unit volume, times the total number of beam and total

numbers of target particles integrated over all space and time

dP d N,
N,. = Ny, / dVt = / vt (292)
It follows that
dNg,. dP
= NN ny = Ny|(x, o] fo)|? ny = Ne|(x, ] fo)? (293)

avdat ~ tavdt
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Using (288) in (293)

stc o _ _ 2
dv%ﬁ'—(2ﬂd4dp1w--dpnL/w<p14un-~,pn,unH®LT’5©ﬁHpm;%,pm;u>\ X
:]Vb’<x7taMb|fb>’2/gvt’<xat>Nt’ft>|2/5 <Z Pi — Pbv — pt> 0 <Z E, —E, — Et) . (294)
e ~ i i
comparing (294) to (291) results in the following expression for the differential cross section
(27T)4 t o — _ 2
do = " dp1, - dpy, |<p1,u1--- s Py b || PLT ‘I)ﬁﬂpb,/tb,Pt,MtH X
¢

(5e-es) feeoe)

(295a)

(295b)

Where everything we have done is fully relativistic.

The important observation is that this expression is not sensitive to the choice of initial
wave packets provided they are sufficiently narrow. For the final states the cross section
is proportional to the number of particles detected within dp; of p1, -+ dp, of p, with
spin polarizations i, - - - i, assuming the beam and target particles had polarization p;, and
1. This is again insensitive to the structure of the final wave packets and corresponds to a
quantity that can be measured in the laboratory.

Integrating the cross section over the area of the surface of a large sphere give the total
cross section which is dimensionless. It is a Lorentz invariant quantity. This means that we
should be able to express the cross section in terms of Lorentz covariant quantities.

To extract the standard expression for the invariant amplitude the single particle states
are replaced by states with the covariant normalization used in the particle data book [? |:

The first step is to replace the phase space factors by the corresponding invariant phase

space factors
) (Zpi_pb_pt) J (ZEM —E, — Et) dpy, - - dp, —

o'+ = D p) [ ] (273% (296)
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These are invariant since each factor of 22 is manifestly invariant
2F; )
3

dpi _ 2 2 0\ 74,
o~ [ o - w0, (297)

while the factors of (2)~3 a particle data book convention.
In order to cancel these factors the inverses are put in the expression for the transition

matrix elements

<p1)/~L1 oy Pn, :u’n”q)LTaﬁq)ﬁ”I_)bu :ulhf)tu Mt) — <p1a M1 ap’nnunHMaBHI_)ba /'Lb)f)ta /’Lt> =

n

(27T)3 H V (27T)32E2<p1a H1-  Pn, /J“an)LTa/B(I); ||I_)b7 b, ];_)tv Mt) \/(277-)32Eb \/(27-‘-)32Et

i=1

(298a)

(298b)

The additional factor of (27)% is becasue the particle data book convention defines the
reduced transition matrix elements using (280) rather than (281).

The energy factors make the plane wave states into states that transform covariantly
(see 114-115). In this case the various factors of (27)%?2 are part of the particle data book

conventions - they account for the corresponding factors in the invariant phase space. What

remains is
ﬂ (299)
4EbEtUbt
It is easy to check that Ej,FE,vy is an invariant quantity
EyEyoye =\ (pe - po)? — mim? (300)
The resulting formula for the differential cross section becomes
N
(2m)* _ _ 254 dp;
do = [(P1, 1+ s Prs i | M2 B, 1, Br i) 54 (06 + e = D 01) || 5
4\/(Pt “pp)? — mym; Z g (2m)32F;
(301)

which is exactly the expression in the particle data book, where here the reduced 7% has
the normalization (281). In terms of the standard definition of 7% and states with delta

function normalization the cross section is

27) 4wy, (Py )w: (P 0Bl = _
= TR L5y )= o,
t*Pb) T il
(302)
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This expression is an idealization with respect to the polarizations. No experiment has
perfectly polarized targets, beams or can perfectly identify polarizations in detectors. The
uncertainties can be treated using density matrices.

We assume that the polarizations in the target and beam have a classical probability

distribution given by the density matrices
Py = k) Popy, (| X I (303)

pr = |pte) Py (pue| X 1 (304)

where P, and P,,, represent the classical probability for a particle in the beam (target)
to have spin polarization u, (p;). Averaging over initial over initial initial spin and target

states gives

(277) B _
do = 24 3 <p1 M1 7pn7,unHM BHpbaMb?pt7ﬂt>pblbb#bpt,ututx
Lip it \/pt pb _mbm
N o
<pb,ﬂb,pt,ﬂt“M ,3T”p1,,u1 ' 7pn7,un>5 (pb_'_pt Zpl H27T—322Ew (305)

=1

In these expression we chose spin bases where the density matrices are diagonal; in general
the density matrices are Hermitian matrices with unit trace. In a general spin basis the

above expression is equivalent to

-y )4 Bl -
\/ — <p1,,l£1 apna,unHM /8||pb7lub7pta,ut>pb,ub,ugpt/,nt,uéx
U UNTNTA mbm
N dp,;
TR T TA DY sl e E i
<pb7/*bb7pt7:ut||M ||p17:u1 7pm,un pb +pt Di H 27‘(‘ 32E (306)

Computationally the final state information can be encoded a final state density matrix. This
is normally treated by constructing a basis of independent ((2j; + 1)(2j2 +1) - -+ (24, + 1))?

Hermitian matrices S; with the property

The relevant polarization observable is

Tr(S*MpepyMT)
Tr(M prpp M)

i

(308)
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which be used to treat any kind of final state polarization. In this representation a general

polarization observable can be computed as

Tr(OM pyp, M) N\ i
0) = = Tr(0S%) P". 309
) Tr(MpippMT) (0F) (309)

XV. TWO POTENTIAL SCATTERING

When the Hamiltonian is a linear combination of an interaction that must be treated
non-perturbatively one that can be treated perturbatively it is useful to use the so called
two-potential formalism of Gell-Mann and Goldberger. To illustrate how this works assume

a Hamiltonian of the form

H=Hy+V,+V, (310)

where V; is strong and V,, is weak. First consider the case of two-body scattering where
both interactions are short range interactions. In this Hy is the asymptotic Hamiltonian and

the scattering operator can be expressed as

S — lim ezHote—QthezHot —
t—o0
hm e’LHote—Z(H()-i-V;)tel(Ho-i—‘/'s)te—ZlHtel(Ho-i-VS)te—l(H()-i-Vvs)te’lHot. (311)
t—ro0

This can be replaced by the product of three limits

hm ezHote—Z(Ho—l-Vg)t hm eZ(HU—i-Vg)t€—2ZHt€Z(H0+VS)t llm e—Z(HU—i-Vg)tezHot (312)
t—o0 t—o0 t—o0

This is valid if all three limits exist. This gives
S = Qb (Hy + Vi, Hy) Jim eI HoHVa)t o =2l i HO VIO (H ) 4+, Hy). (313)

Since V,, is weak it can be treated by perturbation theory. To do this define interaction

picture evolution operator

U(t, t/) _ ei(H()-‘rVS)te—’iH(t—t/)e—i(Ho-i-‘/;)t/ . (314)

U(t,t') the solution of the integral equation

t

Ut,t')=1— z/ ViU )dt"  Vig(t) = elHotValty, e=iHot Vo)t (315)
tl
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Using the Dyson trick to remove the iterated integrals the iterative solution of this equation
can be expressed as a series of time ordered products of Viy (¢) integrated over a single time

interval:

(i)
!

[T 00 Vi) (316)

Utt) =1+

where T is the time ordering operator. To use this in (315) let ¢ — oo, t' — —oo which
gives the following expression for the scattering operator
t (=)™ [~
S = QL (Ho+ Vo, H)lT + ) o dty - dt, T (Vv (t1) - - - Viw (8))1Q2-(Ho + Vi, Ho)

(317)

The leading three terms in this perturbative series for the scattering operator are
S = QY (Ho + Vi, Ho)Q2—(Hy + Vi, H)

i / A6, (Hy + Vi, Ho)Vao(12)Q(Ho + Vi, H)

_% /_OO dtq /_OO dtzQE—(HO + Vi, HO)[VW(ﬁ)VW(tQ)@(h — tz) + Vw(t2>VW(t1)0(t2 — tl)) +.. ]
Q—(HO"‘VsaHO)- (318)

If we express this and expansions in eigenstates of Hy + V, and use the representation for
the Heaviside function this becomes

o(t) = —— /_ T dse™ (319)

2mi J_ o 5 — €T

S:

> QL (Hy + Vi, Hy)|n)(n|Q_(Ho + Vi, Ho)
—z’Z/ dt,QF (Hy + Vi, Ho)|n)eEn=Emdts (0| V, |m) (m|Q_ (Ho + Vi, Ho)

1 o0 [e.9] . .
—52 / dt, / At Q2 (Ho+ Vs, Ho)|n) [(n|Vi k) (k| Vi |m) et En =Bt i Bk =Endto g4 _¢,) 4

mnk ¥

(n| V| k) (k|Viy|m)e!En =Btz giBk=Emltig(, ¢} 4 ...
(m|Q_(Ho + Vy, Ho) +--- = (320)
S =Qf (Hy+ V,, Hy)Q_(Hy + Vi, Hy)
—i216(Ey — E)QY (Ho + Vi, Ho) Vo Q (Ho + Vi, Hy)]
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1 o o0 o0
_52/ dtl/ dtg/ dsQ (Ho + Vi, Ho)n) [ (n] Vi k) (k| Vi | m) x

mnk ¥~

pis(ti—t2)
(2mi)(s — ic)
is(ta—t1)

+<n|Vw|k><k|Vw|m>ez‘(En—Ek)t2ei(Ek—Em)h mem_(Ho + V. HO) 4+ o= (321)

S = Qb (Hy + Vi, Hy)Q_(Ho + Vi, Hy)

ei(En*Ek)tl i(Ep—Em)ta

e

—i2m6(Ey — E)QL(Hy + Vi, Ho)ViyQ_ (Ho + Vi, Hp)]

S = QL (Hy + Vi, Hy)Q_(Hy + Vi, Hy)
—i2m8(E — E;)QY (Hy + Vi, Ho)VigQ_(Hy + Vi, Hy))
—2mid(Ey — E)QU (Hy + Vi, Ho)Viy ! Vi Q_(Hy+ Vi, Ho) 4+ -+ (323)

Ei — Ho - ‘/?g + 1€
This is exactly the second Born approximation in the strongly interacting eigenstates.
For the multi-channel case it is enough to replace the two-body wave operators by the

channel wave operators

Sag =y (Ho + Vi, @, Ha) Qs (Ho + Vi, $g, Hp)

—i2n0(Ep — E)QL L (Hy + Vi, ®o, Ho)VigQs_(Ho + Vi, ®s, Hg)
1
E;— Hy—V, +ie

— 271’26(Ef — EJQL_._(HO + ‘/S, (I)a, HQ)VW VWQ—ﬂ(HO + ‘/s, (I)/j, H/B) —+ -

(324a)
(324b)

(324c¢)

XVI. FIELDS AND POTENTIALS

This section examines the case of electron scattering. The main purpose for considering
this example is that structurally it is similar to neutrino scattering. The main difference is
in the structure of the current operators and the exchange bosons. In this case there are 2

currents, an electron current, a strong current, and an exchanged photon.
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Using the two potential formulation - where the strong interaction is the strong nuclear
force and the weak interaction is the electromagnetic interaction. In the interaction picture

it has the form
Vip (t) = ' Het et ite / dx(JE(x,0) + JH(x,0) Ay (x, 0))e et ottt (325)

where H, is the Hamiltonian for the strongly interacting system, H, is the Hamiltonian
free electrons, and free photons without the electric current term. When these operators
are applied to the currents the current operators become Heisenberg picture operators with
respect to the strong interaction and QED. They are interaction picture operators when all

interactions are turned on. In what follows the weak interaction in the interaction picture is
Virl) =[x, ) + 20, 0) 4, 1) (326)
Using (318) the scattering operator to second order in Vi (t) becomes

S =Ql (H,, Hy)Q_(H,, Hy) — ie / d*zQL (Hy, Ho)(J*(x) 4+ J*(x)) A, () (H,, Ho)

62

5 d*ayd o (Hy, Ho)T[((J4 (1) T2 (@) (2 (w2)+ T2 (22))] T (A1) Ay (22)) Q- (Hy, Ho) -
(327)

where the fact that the vector potential commutes with the currents was used in this ap-

proximation. This gives a photon propagator coupled to the time ordered product of the

currents. In this approximation the electron and strong currents commute, so the time

ordering does not affect the product of those currents.

If the initial state is a Deuteron and an electron, the initial wave operator is replaced by
the product of the Deuteron bound state wave function and the initial electron state. If the
final state is a Deuteron and an electron, the final wave operator is replaced by the product
of the Deuteron bound state wave function and the final electron state. If the final strong
state is np or npw then the final strong state is the strong outgoing scattering state vector.

In this example the 0-th order term ignores the perturbative part of the interaction. It
involves just the strong interaction dynamics with the electron as a spectator.

The first order term is relevant for photo absorption, photoproduction or photo disin-
tegration. For these three cases the photon couples to the strong current, and J#(z) term

does not contribute.
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The second order term is relevant for electron scattering; elastic or electrodisintegration
in the one-photon exchange approximation. The discussion below is limited to that case. In
this approximation the electromagnetic interactions of the strong system with itself and the
electron with itself are ignored.

For electron scattering reactions the two terms in the interaction involving the product
of the electron and strong current operators J#(z) and JY(y) are relevant. Again in this
approximation the electron current, strong current, and vector potential all commute so the
time ordering is only relevant for the photon propagator. The second order term for the

case of elastic scattering is
2

e
5 d'a1d 2o Py, 11, D; Py o] (2 (1) Ty (wa)+ T2 (1) T} (22)) T (A (1) Au(22))|PDs 1105 D; Pes fie)
(328)
Since the photon propagator is symmetric under z; <> x5 Using
. d4k —ik(x— 1
OT (A2, Acw)I0) = OIT(A,). A2)I0) = in | GBI Gl =
(329)
in the above gives
St =
.262 d4k —ik(z1—2 Ny v
27 d49€1d4xzw<PID;Mb,D|J5($1)’D> |Pp, ip)e . 2)#_%@/@;#;”@ (2)|Pes te) =
- 2
oyt | A s k(D i DLTE(O) [P . D)oot st
s
77;w / / v
J; (0 e Me) —
124 i \Per Hel JE (O) e, pe)

My ,
(p/ _pu)2+l'€<p,€7lu/e|‘]e (0)|peaﬂe>

(330)

ie?(2m)*6* (P + P, — pe — p0) (Pp; 1p, D]J*(0)|Pp, i, D)

This is the dynamical contribution to the scattering matrix
We can read off the transition matrix elements (270), with the momentum conserving

delta functions factored out like (281). It is the coefficient of —2mid*(p’, + p. — pe — pp)

<plD> NID> D7 p/ea ,u/e’T‘pDa KD, D> Pe, ,Ue> =

U ,
i Pl Olpesae) - (331)

The expression for the differential cross section in terms of (331) is

_62<27T>3<p/Dﬂ :u/D7 Dl‘]g(O)'q)D’pDa “D, D>

21) 4w, (pD)Wm6 pe)
= (\/()p ; )2 m2(mz [(Pps 1 D, Py 11| TP Dy 11Dy D, Pes )| X
D Pe - D%
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dpD dpe
Wm / Wm 254 +6_P/_/e 332
D(pD) e(p ) (pD p D — P )me (pD)/ wme(p/€> ( )
This is product of the following three covariant parts

2 4

(2m) . (333)
V(P - pe)? — mpm?
Winp, (PD)wm, (Pe) [(Ps s Dy Pl el TP, 111, D, Pe, fe) Wy (P, (PL) (334)
dp dp!

6 (pp + pe — Pp — pl)— 2~ — P (335)

Winp, (P) W, (P
so it can be easily computed in any frame of reference. Next consider the computation of

the elements of the transition matrix element.
Note from (186) the electron current matrix elements can be expressed in term of Dirac

spinors

1 m2
/ / Jl/ 0 ‘) o) = e *e /7 / v . ‘) 336
(Pes el J2 (0) [Pes pte) (2W)3\/wme(pe)wme(pg)u (P, L)Y e (e, 113) (336)

here we use the normalization (141) on the Dirac spinors, u(p)u(p) = oy.

The other element is the Deuteron current matrix elements.

(D, tp, DIJE(0)[Pp, i, D) (337)

The formal structure of the matrix element is
/ (p, DIp", X'; )dp"'dk'(p”, K'|p}, p3)dp], dp) x

[6(py — P1)(P5] /5 (0)|P2) + 0(P; — P2)(P1 |1 (0)[p1)|dp1dpa(p1, P2|p”, k)dp”dk(p” k| D, p)
(338)
This expression has 7 delta functions and 8 integration variables. We want to use the

following sequence of delta functions
/5(13/ —p")dp"'dk'o(k" — K'(p}’, py))d(p"” — P} — P2)dp1dp,((phy — P2) + 6(P) — P1)) ¥

dp1dp2d(p1 — p1(p”, k))d(p2 — p2(p”. k))d(p” — p)dp”dk, (339)

What remains, after integrating over all of these delta functions, in addition to the kinematic
constraints, is the integral over the initial proton rest momentum, ky. The choices of delta

functions fix the Jacobians that appear in the current Recall that

<p17 pQ‘PJ k> =
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5(P — py — p2)d(k — k(pip2)) \/ iy (K1) (k2) wﬂé\}(OP) )

Wmy (pl)wmQ (p2)

Wmy (kl)wﬂm (kQ) WMy (P)

we are now in a position to write down the formula for the proton current in the Deuteron.

5(p1 — p1(P,K))3(ps — ps(P, k>>\/ imy (1) (P2) ¢ My (340)

There will be a similar expression for the neutron current, it will have different spectator

constraint

(o', 1, DIJS(0)|p, n, D) =
[y S Y (B BRI ' )G
Dy, (B () /ma) B M (p/Mo) Bo(P' /)| D2 [ B (K /o) B!
\/wm(ka)wm(k;) \/WMO(P') me(pl)wm(m) \/ My
Winy (P1)Wm, (P2) Mj Winy (K1 )wim, (k2) \| was, (P)
(P> 11 |7 (0)Ps 1) Oy

DY B (p1/ma)Bo(p/Mo)Be(ky/ma)| D12 (B (p2/m2) Be(p/Mo) Bo(ka/ms)] %

M 1 Mo 2
11

272

m127 /1’17 MZ)

11
2'2
(p'/Mg) Be(p2/m:)]

C(s, 5, = maz, i, p2)C (4,1, slpt, m, maz) Vi (K(p1, p2) ¢y vy (K)+

particle 1 spectator terms + 2 body terms (341)

In this expression all variables are expressed in terms of k; (the integration variable), the
initial Deuteron momentum p, and the momentum q transferred to the Deuteron from the

electron.

pP=p+q (342)
p1 = pi(p, ki) (343)
P2=P—P1 (344)
Py = P2 (345)

/ ! /
Pi=pP —-pP;=P+q4—-p2=P1+4q (346)

when the proton is spectator then

P, =P2 — P = P1 (347)
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What remains is the single nucleon current matrix element

(P, 177(0)|p, ) =

1 m2
(27)3 \| Wi (P')wm(P)

a') (#F@r + i @ ) 9
where I} and F), are the Dirac nucleon form factors

For electro-disintegration the final deuteron wave function is replaced by an outgoing
scattering wave function.

It that is solved in partial waves like the deuteron bound state wave function the solution
will have the form

(K7, 5.0 sk, 5,1, s")o(p — ') =
(KU, 8Tk, s)

Wiy (K1) + Wy (K2) — Wy (K5) — wim, (K7) + 4907
which replaces the deuteron wave function. This can be converted to single particle variables

using (295).

o(p —p')djj (349)

XVII. BREAKUP

For electrodisintegration the final deuteron state is replaced by an outgoing wave scatter-
ing state. This appears in the current matrix element. It is normally treated using partial
waves. Both the arguments and variables need to be converted to single particle degrees of
freedom.

What is needed is the following
<(p/17 :u/lv T{pl27 N/27 Té)Jr’(plu M1, 71, P2, K2, TZ) =

5(];),1 - pl)éu'l,uléT{T15(p/2 - p2)5}/2u257'{7'1+

<p/17 lu/lv 7_{7 p/27 :u,2a TéHTlea H1, 71, P2, K2, 7—2>5(p/1 + p/2 —P1— P2)
Winy (P1) + Wiy (Ph) — Winy (P1) — Winy (P2) — 1€
The first term (?7?) gives the born term. The second term has all of the final state interaction

(350)

contributions. This replaces

(9aP, 11, [(P1, p11, 71, P2, f12, T2) (351)
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in the expression (??) for the current matrix elements. In this case the dynamical part has

to be expressed in terms of partial waves. This term has the structure

/ (D s 71 D s T4 (K 5) P iy U ' 7 1) APK dhedP

(KU, 8 7 7T ||k, 1, 8,7, 72)
Wmy (kll) + W, (k/2> Wmy (k1> Wmay (k2) — L€
<(k7j)7P7/1’717877—7 Tz|p17H17717p27M27T2> (352)

k*dk x

The coefficient (295) has delta function in both P, & and &', which means that they can be

expressed in terms of the external momenta - this means that the second term is

<p/17“/177-{’péﬂM/%TéHT”pl?lLl,Tlap27ﬂ2772> _
Wiy (pll) + Wiy (p,2) - Wm, (pl) — Wmy (pQ) — 1€

\/wm(ka)wmxk;) \/wm(P’)x

Wi, (P]) W, (P) Mg

D2 B (0 /) Be( P [ M) Be(kr /)| D12 By (Pl /) Be((P' /M) B /)]
n 1 1 /

A~

, 11
len’(k/1>0< 575?“?7“2 ,m’s”)C(j,l’,s';u,ml,mS///C’( 2 2 7—177—277_2)><
(KU s 7 | Tk, 1, s, 7, 72) "

Wy (kll) + Wi (k2> Wiy (kl) Wi (k2) — 1€
Ix (1) 11 // 11

Ym (kl)C(T 7_177_2’7_2)0(]7l’8 :u’mlv )O( a7 0 p“171u27 )
279’ 279’

D 1B (ka/ma) B (P/Mo) Be(pr /ma)| D, (B2 (ks /ma) BE (P Mo) Be(pa/m)] %

Wmy (p1>wm2 (p2) MO

\/(JJm1 (kl)wmz (k2) \/WMO (P) (353)

XVIII. COMPARISON WITH THE PARTICLE DATA BOOK CONVENTIONS

Starting with the relation of my transition matrix elements to the scattering matrix
elements

S =1 —i(2m)T0*(p1 + pa — Pl — 1) (354)
and these transition matrix elements to the differential cross section

270 ) Wiy (P1) Wiy (P2)

(
do =
\/(pl - p2)? —mims

Tyl 0 (py + p2 — P — o) d’p1d’py = (355)
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I multiply by 1:

(2m)? 2 ) , c o &y dBh
ELEo | T | "W, (P) Wy (P2)0(p1 + D2 — Py — P =
\/(Pl'pg)Q—m%m% 1 2| f| 1( 1) 2( 2) ( 1 2 2 Q)Wml(pll)wm(pé)

/

22
) i, (01)2my (o) T2 (B 2, (B
4\/(171 - p2)? — mim;

d3p/ d3p/
§(p1 + p2 — ph — ph - 2 =
( 2 2) 20w, (P]) 2w, (P5)

(2m)* T
oo it ) s (01) 20 (P2l g5 (2m) 2, (91 2 ()<
17 P2)" — Mmymy
d3p’ d?’p/
’ e 1 ) = 356
(p1 + P2 — Py pg)(zn)32wml(p’1)(Qﬁ)szwmg(p,z) (356)

Comparing to 48.27 in the 2020 particle data book the gives the following relation to my
Ty;.

The factors of (27)3/2 disappear if we assume the PDB normalization

('lp) = (2m)°6° (' — p) (357)
then we get
Myi = /2o (00) (272 /2, <pa><2w>3/2(2TTf;3 Ve () (27)Y2 /2 (p2) (2)2
(358)

The factor of (27)? in the denominator is because I use

S =1-2mi6*(py — pi) T (359)

while PDB uses
S =1~ (2m)"i6"(py — pi) Tyipas (360)
(27)*Tfipar = Ty (361)

This shows that my conventions are consistent with the PBD conventions.
For the cross section in terms of the currents matrix elements

(27)3e?
(. — pe)? +140

(27)3e?
(P, — pe)? —i0

Til* = (@l TE OIS 0)) (i Je w(O)F) (f1 e (0)]d)  (362)

Using
(', 1|7 (0)|p, ) =
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1 m2
(2m)3 \| Wi (P')wm(P)

a(y, i) (wl(cf) n iwz@(@?)) W) (363)

2m

and
(', 1|J7(0)|p, 1) =

1 m2

(21) wm(p,)wm(p)ﬂ(p’,u’)V“U(p,M) (364)
|Tfi|2 (2m)3 ( 2440 (27)3 | win(P")wm (P
u(p', 1) (' F(Q)? +i( < 2m ) u(p, i)
o\ sty 1) (P F@ 4 T @) ) )
OO 2
1 m2 7(,,)#1 m?2 Al i)y
P\ wn@)wme) T e\ Gn )
(il Jep (O 1) (f e (0)]) (365)

XIX. CROSS SECTION IN TERMS OF STRUCTURE TENSORS
We start with the expression (302) for the differential cross section for the case n = 2,
b=e

27 ) 2w (Pp )i (P N
- \(/(p) pb() : ;,;;,)L [P, e P4 11T |Pe, prey e 16) 120 (pe + e — p — p})dpy Y.
t*Pe) —
(366)

Using the expression (331) for (p), i}, P, 15| T?||Pb, tto, Pt, 1) based in the two potential

formalism gives

do — (27T)4We(pe)wt(pt) %

V(P - pe)? — mZmj

2 3/, o nw/
—e2(2 L T (0)| @y, e, :
|[(—e*(2m) <Pt Hy | J£(0)| @ [Pt e >(p’e—pe)2+26

(PL, 1| (0)[Pes pte))[*0* (pe + pe — Pl — P})dpLdp, = . (367)
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Using the expression of the electron current matrix elemets (336)

(27T)4we(pe)wt(pt) %
V(pr - pe)? — m2mi

[(—e?(2m)* (i, 4z, 1 TE (0) | PPy, pe, 1)

do =

Nuv
(p/e - pe)2 + 1€

1 m2 — ro 2
e . ’ Vee; 64@ _/_ld/d/:
<2w>3\/wme<pe>wme<p;>” (Dol epes i) PO e = e = i)t
(27)*wy (py) et m?
V(i - pe)? — m2m? (¢%)* we(pL)
<p:€7M:€7t|‘]tﬂ(0)|q)t|ptvutvt> <pt7lu’t7t|‘]ty(0)|q)t|p:€’ /‘L:S’ t>><
e (DL, 1) Vutle (Des fe) e (Pey te) Vot (DL, 1) (Pe + pr — P, — P,)dpLdp} = (368)

If we sum over final electron spins and average over initial electron spins using (385)

(27) 4wy (ps) et m3
\/(pt : pe)2 - mgm% (q2)2 we(p/e)

(Pt iy t L (O)|@e|Py, e, 1) (Pt pie, 1T (0)|Re|py, gz, 1) X

1
5775 PeuPev + Pebl, + (M = Pe - D))" (e + P = P, — 1) dpl.dpY)

e

1 (2m)4 et wi(py)

2 \/(pt : pe)2 - mzm? (q2)2 we(p/e)
(P, g, t1TE(0)| DDy, i, ) (e, e, T (0)| e Dy, gy, T) X

(Pl Pev + Pepl, + (M2 = e - D)0 )0 (pe + P — 1, — p1)dpdp; =)
1 (2m)4 et
2/ (pr - pe)? — m2m2 (¢)?

Ve Po)(Py g, 8] (0)| @l Pe e, t) v/ wi(Pe) v/ wr (D) (P, g, 17 (0)| oDy 1, £) /e (P1)
dp, _dpi
we(pe) wi(p}) )
If we sum over the final target spins and average over the initial target spins, and replaceing

(PhpPev + Pepbiy + (M2 = e - D)1 )0 (Pe + P — P — P}) (369)
the delta function by its integral representation

B 1 1 et
20 \/(py - pe)? — m2m? (¢*)?

/dA‘xei(”e”é)'x > Ver(P)(B} 1t 1L (2)| el 1, 1) v on () %

et
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V@i (PP, e, tI7 (0)|De|py, p17, 1) v/ wr (Py) X
dp, _dp;
(B (P
Using the definition of the structure tensor (??) the unpolarized differential cross section is

(PyPer + Pepbly + (M2 = pe - PL) M) (370)

1 et
do = V)
1672/ (p; - pe)? — m2m3 (¢?)
dp/ dp/
WW’ »q :3 el/+pe :31/+ mg_pe'p,e v < : =
(pt )(p ;Lp uD ( )nll )We(p/e) Wt(pé))

1 o?
Ve pe)? —m2mZ (¢%)?

!/

dp, dp; )

ij<pt7 Q) (pleupeu + peup/ey + (mg — DPe pé)ﬁul/)w (p,) Wt(p,) (371)
e\Fe t
where
2 27T 2 iq-x v
W (pi, q) = (nt) /elq VWi, (Pr) Z@%Ptaﬂtaﬂjﬁxﬂ@mpiaMt,t><‘pt,P£aMt,ﬂjf, (O)]|(pt7pt7/'bt>\/z
e
(372)

where p, = p; + ¢

(this follows Itzykson and Zuber - converting to delta function normalization)

XX. INCLUSIVE SCATTERING

In inclusive scattering the starting point is the expression for the cross section. In this
case there is a sum over all final hadronic states; all that is measured are the state of the
initial and final electron and the initial target hadron. The final hadronic momenta and

spins are summed. The differential cross section has the standard form

da:/<2ﬂ)4me(p1)wmz(P2)

V(p1 - p2)? — m3m2

I Ti6* (pp + pe — Pl — D P, d°pld’ph -+ d’ply  (373)

where for inclusive scattering the integral and spin sums are over the final hadronic states.

The dynamical contributions to cross section have the form
T4 *6* (o + pe — Pl — Y P, dpLd’l - - dply =
64(27T)6<CI)Da Pbp; UD, D|J5<O)’p;; :ulla U 7p;\/7 M3V><p/17 Mlla ) piN’ M/N|sz(0)|q)D7 Pb, ,uD> X
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0 pp +pe = Pl = 3, PPy - dply
((p/e - pe)2 + ZE)((p/e - pe)2 - ie)
(Pe, ue\Jeu(Oﬂpév :u/e><p/e7 :u/e|J€V(0)|p6a [he)- (374)

where e = 4ma. It is useful to replace the energy-momentum conserving delta function by

its Fourier representation

1 . ! / .
(o + e =, = 1) = g [ e (575

With this replacement

/(‘I’DaPD,#D7D|J§L<O)|P,1:M,1: 7p;\/7:u3\7><p/17u/1a 7piN7MIN|JsV(O)|q)D7pD7:uD>X

0 (pp + pe — Pl — D, 1) APpLdp) - - - dPply y
(= pe)? +i€)((p, — pe)? — ic)
<pea ,ue|‘]e,u(0)|p/ev :u,e><p/ev /“L,6|J€V(0)|p87 Me> =

<®D7 Pbp, iD, D|J£($)J;(O>|¢D7 Pb, MD> X

dix y
2m)4(P, — pe)? + i€) (P, — pe)? — i€)
e (D el Jo(0) P )Pl (DL 1] T (0) e pic) (376)

We remark that the quantity with x in the final term arises from the integral represen-

tation of the delta function
<(I>D7 Pb, UD, D|J£($)‘p/17 :u/17 o ap3\77 :u/N> =

<q)D7pD7ND7 Dleipxjéu(o)eiipx’pllv :ulla T 7plN7 IU/N> =
67;pDac<(I)D7 Pb, Up, D|Jg(0)|p/17 lullv e >p/Na M;V)e_ipxx/ (377>
<(I)D7 Pbp, Up, D|J5(O)J;(I)|¢D7 Pb, MD) - (378>

Here the electron momenta and initial deuteron momenta are fixed by experiment. In the
lab frame the deuteron is at rest. If there is any momentum transfer the initial electron
looses momentum on collision, which means that the final electron has less energy (in the
lab frame) than the initial electron. In this case the energy of the final hadrons and initial
electron in the lab frame is greater than the sum of the energy of the final electron and

initial target. This means that this delta function vanishes. It follows that

<(I)D7 Pb, kD, D|J5(0)J;(I)|®D7 Pb, IU’D> =0 (379)
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and

<q)D7 Pb, tD, D|J5<$>J;(O)|¢D7 Pb; MD) =
(p.Pp, pip, D|[J (), J{(0)]|®p, PD, 1iD)- (380)
The only time it can contribute is when there is no energy or momentum transfer and the
final state is identical to the intitial state. Note that the four dimensional delta function is
invariant which means that if it vanishes in the lab frame it vanishes everywhere.
Putting everything together the expression for the differential cross section becomes

to = [ L nnlbnlen (0) @ [

vV (pp - pe)? —mim? q

(®p. P, ko, DI (), T/ (O))|®p, Pos p1p) X PP D, pre| Ty (0) [P, 1) PP 1] T (0)[Pes 1) .

(381)
Using the expression
<ple=,ué|t]eu(0)|pe>,ue> =
1 m? _
(27T)3 Wm<p/ )wm (p) u(péa ,u/e)ﬁ)/#u(p?n :ue)
gives
PP e, piel S ()DL, 1) PLAPE el Tew (0) [Py i) AP, =
2
i(pe—pl)-x me - ~
eipe—pL) o o (p,)u(pe, fhe) YVut(Des ) WDy, i) Yot (Pes fhe)- (382)
The expression for the cross section becomes
do = mp (PD) (m862>2 / d*zx
V(pp - pe)? —mpm2 ¢
D;PD; UD, s\ L), Jg DsPD, UD
(® DI[J¢ (), J{(0)]|@ )%
i(pe—pL)-x~ oINS d3p/e
€ U(Pe, He) Yt (Pe, He)U(Pe; He)vuti(Pe, fre) o0 (383)
Summing over the final electron spins, ., gives
D (e el )P ) 0P 1) =
He
_ m+pl -y
u(pe, Me)’YuT%/u(pea ,ue) (384>
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Averaging over the initial electron spins gives

1 Me + p:a " ~ 1
— 5 Z '7;12—%71/“(1)67 /Le)UJ(pea ,ue) - S_W”LETI‘ (/V,M(me + p,e : V)Vu(me + DPe - 7)) -
(385)

lTr(’y,[y,,) + %Tr('m(p’e Y)Y (Pe - 7))

8 8mz
Because the 7’s anticommute with 75 the trace of the product of one or three gamma matrices
vanishes.
1
ﬁ(p/eppey + peup/ey + (mg — DPe p/e)nuu)

e

Inserting this in the expression for the inclusive spin averaged differential cross section and

also average over deuteron spins

1 4
do — ( T

2v/(pp - pe)? = mpm?2~ ¢
o | ,
/d%ez(”e Py me(I)D)g > {@p,pp, . D|[J4(x), I (O)|®p, P, 110)V/wmpp (P D) X
Ho
d3p/

Each term in this expression is Lorentz covariant. The integral is the Fourier transform

P2

(M2 + (PeyDev + Pepley + (ME = e - L)1) (386)

of the current commutator term that depends on the momentum transfer and the initial
deuteron momentum. The factors 1/2 and 1/3 are due to the spin averaging.

Measuring the final electron energy gives the phase space factor

d /
P, =of! g RAEL = Hn, (B AT,

The differential cross section becomes

do 1 47Ta)2><
dELPY,  2\/(pp - po)? — mEm? @

ool Vo 1 v [
/0545562(1)e pe) vV me(PD)g Z(‘PD,pD,MD,DHJﬁ(l"), IS (0)]|®p, Pp, kp) V/Wmp (PD) X
UD

Pem, (P
wme (p/e)
We can identify the terms in this expression with standard definitions of the deuteron

(M2 + (DepPer + Pepbl, + (M2 = pe - D)) (387)

structure function and leptonic structure function:
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The only tricky parts are the normalizations. Using Itzykson-Zuber (13.101) with their
normalization - converting to my normalization gives the following definition of the structure

function

21 3 i v
WMV(pv Q) = é . 2)71_ /e’bq V 2(")TI’LD (pD) Z<®D7 Pb, HUD, D|[J5<I’), Js (0)]|@D7 Pb, #’D> 2me (pD)
“D

(27)22

3 / €\ W, (PD) Y (@, P, i, D|[J2(x), J (0))|p, DD, 11D) v/ €y, (PD)

(for protons 1/3 — 1/2) and

Luu = (mgn;w + (p,ep,peu + peup/eu + (mz — Pe 'p/e)n;w)) (388>

with this definition the expression for the cross section becomes

do 1 <47Ta)2X
dELPY,  2\/(pp - po)? — mEm? @

ol Vo 1 v /
/d%e“(pe Pe) \/me<pD)§ Z<CI)D7PD7ND;DHJ5($)7JS (0)]|®p, Pp; D)/ Wmy, (PD) X
[225)

Pewm, (P,
(2 + Wl + ol + = 1)) P B) (3%9)
do 2 droe,
= - W* (¢, pp) Ly
dE'd*, 2(27r)2\/(pD pe)? — m%mg( e ) (¢,pp)Ly
2p; Q Y
(=)*W*(q,pp) Ly (390)

V(pp - pe)? —mpm? 4
XXI. TWO-BODY CURRENTS

There are several sources of two-body currents. Both current conservation and current
covariance cannot be satisfied in an interacting theory without two-body currents. These

come from current conservation and the commutation relations with the boost generators
NP, J,] =0
(K, ] =i6,;0°  [K',J°) =id;;J"

where P’ = H and K include interactions in the instant form.
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These equations formally allow one to construct the current from the charge density and
the boost generators, but this requires an explicit representation of the boost and the charge
density operator (which means all matrix elements of the charge operator are needed).

In addition to this kind of two-body current there are dynamical processes. For example
a virtural charged exchanged m could couple to a photon producing virtual rho. Another
process would be a excitation of a virtual nucleon-antnucleon pair coupling to an exchanged
pion.

Including these few body currents does not guarantee current conservation or current
covariance.

In the instant form of the dynamics current matrix elements in a given pair of frames
related by A, (¢¢|UI(A)J*(0)]+;) are rotationally covariant. Boost covariance and current
conservation of the matrix elements in a given pair of frames can be used to generate
matrix elements in other frames that are consistent with a subset of conserved covariant
currents (this does not fix current matrix elements where the initial and/or final states have
a different particle content). The conserved covariant current matrix elements generated this
way assume that the matrix elements in the initial pair of frames are correct. If we repeat
this process with a different pair of frames, these is no reason to expect that the current
matrix elements generated in these frames would be the same as the ones generated in the
other pair of frames. In general many different currents are compatible with covariance and
current conservation. If the differences vanish that means that the currents are consistent -
but not necessarily correct.

The most straightforward strategy is to construct a model with rotationally covariant
current matrix elements in a given pair of frames and generate the current matrix elements
in other frames using covariance and current conservation of the matrix elements.

In what follows I discuss the structure of a rotationally covariant two-body pair current.
I use a generic frame - but in order to define a model it is necessary to pick a pair of frames
that will be used to define all of the matrix elements.

Formally the covariance condition is
((my, sp)pg, Vil T () (mi, si)pi, vi) =

/

N ((my, 55)Pres—p, Vil *(0) (i, $i)Pres—is Vi)
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D50 g B [ ) DL

where p = Ap,.;. These equations define general matrix elements in terms of reference
matrix elements. Covariance is compatible with current conservation so if the reference
matrix elements satisfy current conservation the transformed matrix elements will also satisfy
current conservation.

To construct dynamical two-body currents it is sufficient to construct a rotationally co-
variant set of matrix elements of the dynamical current in a reference pair of frames which
can be used to generate consistent matrix elements is any pair of frames related by boosts.

Below I construct a “pair current” which was an important contribution to elastic-electron
deuteron scattering using light front dynamics.

To motivate the structure of two-body current start with the two-potential formalism

where H = H; +V and V is small. The scattering operator has the form

5= oL+ 3 Cl ) - v, -

[ —2mid(E; — BT} (391)

Here we assume that €2, has only nucleon and electron creation and annihilation operators.
It is assumed to be the product of free electron states and eigenstates of a relativistic nu-
clear Hamiltonian with a realistic nucleon-nucleon interaction, having the operator structure
a}vaka nvayala. (no nucleon antiparticle creation or annihilation operators). The perturba-
tion V includes the current operators and the part of the pion-nucleon vertex that involves

at least one antiparticle creation or annihilation operator. We write this as V; + V5 where

V) is the sum of the electron and nucleon current operators

Vi(t) = e/dgxe(: U, (2) T, () : + 1 U (2)y" W, (2) ) A, (z) (392)
and V5 is the part of the pseudoscalar pion-nucleon interaction involving antiparticle creation

and annihilation operators

Vo(t) = —iﬁ /d%[: U(2)7°1 - p(2)W() ], (393)

My

(the part involving only nucleon creation and annihilation operators is assumed to be in-

cluded in the initial and final states). To be consistent with the dynamical model the
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one-pion exchange potential that appears in the current should be replaced by the one-pion
exchange part of the Argonne V18 potential.

Note that these calculations are for the S operator which has an energy conserving delta
function. The transition operator and potential do not conserve energy on their own - that
comes from the time limit that is used to compute the scattering operator. When there is an
energy dependence the single-nucleon momenta will be put on shell. This is a prescription
rather than a theoretical consequence.

The starting point is to use the pseudoscalar pi-nucleon vertex.

The fields that appear in the vertex and the expressions that will be derived have the
following representations in terms of delta function normalized creation and annihilation

operators:

1 1 —ikx ikx *
A(w) = / o) (¢ Nt ) €l (kN8 X)) (309

dp m —ip-x ip-x
¥0) = [ Gy o (axeunue e < e er) (699

60) = [ oty (€ as(p) + 7l ). (396)

The “pair contribution” to the scattering operator due to the two-body current appears

and

at fourth order in this series (391). The relevant contractions have the following structure

l d4x1d4x2d4x3d4x4[e : \I/n(xl)F“\I/n(xl)Au(xl) e : \Tle(xQ)y”\Ife(mg)Ay(xg) ) x

4!
[—iﬂi—” W ()77 (3) W () :H—z',fl—” U (2)7°7(4) () <]+permutations. (397)

Here there is one nucleon current operator, one electron current operator and two pi-nucleon
current vertices. There are terms corresponding to each of the 4! permutations of the
coordinates x; which lead to 4! identical integrals, so it is enough to evaluate one of the
4! terms and eliminate the factor 1/4!. This results in the following pairings where the

unpaired fields will couple to the external electron or nucleon states:

—62(£)2/d4x1d4x2d4x3d4x4 cWe(22)Y We(xg) X

(0T (A (1) Ay (22))[0) OIT (Tap - ¢(3)Tea - B(4))]0) X
[(@re(a)s Cra(a) O (1) D O] T (W (1) Wra(3))[0) iy Yo (03) +
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(We(24) 75 Wna(24) ) Una (23)75 (0] T (W (23) W (21))]0) pain T# W (1) +
(Vo (3)75 W (23) )W (1) DO T (U (1) We(24))0) pair V5 Wra(4) +
(Wna(23)75 Wb (%3)) Ve (4) 75 O T (W (24) U (21))]0) pain T# U (1)) (398)

The subscript “pair” indicates the part of the propagator that involves two v spinors -
discarding the u spinor part. The integrals can all be done using the Fourier representations
of the fields and propagators, resulting in 4-momentum conserving delta functions at each
vertex. The above expressions for the fields are used to calculate the expressions for the
propagators in order to be consistent with the conventions used in these notes.

The fermion propagators for the electron and nucleon have the structure

O T = [ b e [ [

(0] ((a(p, p)ua(p, we™ " al (k, v)ay (k, v)e™ 0(t, —t,)

—b(k, v)vp(k, v)e”*Vb! (p, 1)va(p, p)e™“0(t, — t,)) |0) =
/ dp m
(27)3 w(p)
((ua(py )i (ps )€™ PE0(t, — t,) — va (P, 1)Ts(P, 1) P V=20(t, — t,)) . (399)

The second term in 399 represents the “pair” contribution. The integral representation of

the Heaviside function

bt ) = o [T (400)
x — = — §————
Y omi s— 0t
can be used to express 399 as
/dpds m
—1 1 X
(2m)* w(p)
B eip (x=y)—i(w(p)—s)(z"~y°) - P (y—x)—i(w(p)—s)(y°~2?) i (y—3)
(ua(Ps 1)t (Ps 1) P — Va(P, 1) Vb(P; 1) P e

(401}
Next let p” = w(p) — s. Then (401) becomes

/ dp m

—1 17 X

(2m)* w(p)

e~ (z=y) ~ e~ (y—2)

- Ua(p7 ,LL)Ub(p7 :u)w(p) _ po — 0+

(ua(p, 1)ty (p, ) ( eip'(y—w)> (402)

w(p) — p® —i0F

73



If we let p — p' = —p — p in the second term this becomes

4
L / AP M ipy,
(2m)* w(p)

<(ua(p, P)us(P, 1) Va(=P, 1) 0(=P, “>> . (403)

w(p) —p° —i0t  w(p)+p®—i0F
Using (155) and (156) in (403) gives

4
—z’/ d’p M v (a—y)

e
(2m)* w(p)
1 (m—v-p+w®))aw (m+7 P+w®))a) _
2m w(p) — p® — 0+ w(p) +p° — 0+
4
—i/ dp 1 e (T—y) o
(2m)* 2w(p)
(m—v-p+wP)a  (m=7-p—wP®)’)a (404)
w(p) —p° —i0* w(p) +p° —i0F '
This can also be expressed in terms of the projection operators (155) and (156)
_ m—p-y+7°w
> ua(p. w)u(p, 1) = Ay (p) = 5
” m
_ —m+p-y+7°w
Z Ua(_pa :u)vb<_p7 M) = _A—(_p> = 2
m
I
dp m _,
—i e~ (T—y) o
/ (2m)* w(p)
A (p)ab A—(_p)ab
(——— ) (405)

w(p) — p® — 0t w(p) +p° — 0t
This form of the propagator is useful for two-body current calculations when one want to
separate out the u and v spinor contributions. The first term is absorbed in initial or final
state while the second term involves the antiparticle creation and annihilation operators,

and contributes to the two-body currents. As a check note that it follows from (405) that

(OIT(Wa()s(y))[0)

4
—i/ dp 1 e~ (T=y) o

(27)4 2w (p)
((m ~7 P+ WP, (m—y-p- w(p)vo)ab) _
w(p) —p° —i0* w(p) +p° —i0*

w / d'p e "V wp)(m =7 P+ )w
2m)* wlp)  w(P)?—(p°)? -0t
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_7;/ d'p e~ (T=Y) (m +p - Y)ay

(2m)* w(p)? — (p°)? —i0*

_'/ d'p e (T=Y) (M +p-7)a -
(2m)* w(p)? — (p°)? —i0*

d4p e~ (z—y)
@/<2w)4m_p.7_¢0+ (406)

which is that standard form of the time-ordered product. The quantity needed in the “pair”

current can be written in several equivalent ways:

(1T (Wa (@) Ty (9))] iy = — 1 / (;17?;4 Qth) p-in (o) (7 =t K;Ow_(%z )b _
- Z/ d'p m__ipe—y ~Va(=P)O(=P) _
(27)* w(p) w(p) +p° —i0F
i / AP Moy 15U (P)U(=P)Y5 _
(2m)* w(p) w(p) + p° — 0t
/ T ie_ip(ﬂc—y) V57 (P) U (P)Y" s
(27)" w(p) w(p) 4 p° —i0F
(407a)
(407b)
(407c)
(407d)

To compute the pseudoscalar meson propagator the representation of the heaviside (400)

function is used again. The propagator has the form

OIT (1 - ¢(z)7 - 8(y)) 0) =

dp ds —ip-(z—y)+is(20—y0)
/ 2uw(p)(27m)8 T[/ (2ri)(s —i07)

ds ; io(20 2,0
ip-(z—y)—is(z®—y") 4
+/ (2mi)(s — i0F) " ] (408)

making the variable change p° = w(p) — s
d*p 1 ,
VR R S —ip:(z—y)
Z/ 20(p)2m)t (w(p) —p— it

1 .
ip-(z—y) | 409
+/w(p)—p°—i0+e ) (409)
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Next change the sign of p in the second term to get

_Z/$T . T[ 1 —+ 1 ]e—ip(m—y) =
20(p)(2m)*  w(p) —p° — 0% w(p) +p° —i0*

d*p 1 ,
. ) —ip-(z—y) _
/ et T w(p)? — (V)2 — 0+

d*p 1 ,
i ) —ip-(z—y) 410
Z/ @rd Tt — 0" (410)

This gives the pion propagator

OIT (- $(or -0 0) = =i [ Ghr T

e~ (z=y) (411)

The terms that we need for (397) are (411),

(OIT (T () Ty (1)) [0) pair = —i / d'p m ey A (=P)a

eriwe)  wp) 0
| d'p Moy 25 =P)T(—P)s (412)
(2m)* w(p) w(p) +p® —i0*
and the photon propagator
. d*p e (@)
O A DA = it [ S2 0 (113)

Using these in the expression, the terms that contribute to the two nucleon - one electron

matrix elements of the time ordered product in the fourth order term in (398) ) are

(Ola(p, p)¥(z) —

2 . .
—62(ﬁ)2 / d4k,d4qd4t mem,, —ZT]{“, —UTab * Tc.d
M VWe(Pe)we (DL )wn (P1)wn (P2)wn (P )wn (Ph) x ¢ + 10T mZ3 + k2 —i0*
(27T)16 4 4 Iy 54 /N oA /
(271')12(271')95 (pl —t— k)d (k + p2 — p2>5 (t +q _p1)5 (pe —q— pe)X

(al(PL) e (PL)Y te(Pe)) (@f, (D)) tine (Ph) V5Una(P2)a(p2)) X

p M V5Un (=) Una (=) 5
wn(t)  wy(t) + 19 —de

al (p})n(p}) Ysunp(P1)a(pr)0+

27T L / / /
(2;)1‘222@9'54(291 +q— )04t — k — p})6* (p2 + k — ph)6* (pe — q — p,) X

(al(pe)ue(PL)7" tte(Pe)) (al, (DY) tne (P2)V5Und(P2)a(p2)) X
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m_ st (—t)u(=t)7s
wn(t)  wp(t) + 19 —de

/

al (p})tna(P))7s

Y, (pl )an (p1)+

(27)16
(2m)"2(2m)?
(al (Pe)te (P, )7 te(Pe)) (aL(p'1>ana (P1)5Uns(P1)an(p1)) X
p M iysu(—t)un(—t)y

6 (p1 — k — p))6 (pe + k — )04 (t + q — py)5* (pe — ¢ — Pl) ¥

al, (py) i (P3)T wn(t)  wn(t) + 0 — ic 5’)/5und(p2)a(p2)+
(2m)'° 4 /N 4 /54 4 /
(271')12(271')95 (pl —k— p1)5 (k +1 _p2)5 (p2 —t+ Q)5 (pe —q— pe)X

((li(p;)ﬂe (p/e)’yyue(pe)ae (pe) (ajz(pll)ﬂna(pll)’}%unb(pl)an(pl)) X

miystna(—t)un(—t)7s
wn(t)  wp(t) + 19 —de un(p2)a(p2) (414)

integrating over the momenta, ¢,¢ and £k gives an overall 4-momentum conserving delta

!/

a:rz (pé)ﬂnc(p2)’75

function along with constraints in each of the four terms
I t=pi+p—-py k=ph—p qg=phtph—pi—p
II t=pi+ph—p  k=py—p qg=pi+ph—pi—p
1T t=pi+p—pi  k=pi—py  q=pi+p—p—p
IV t=pi+ph—p  k=pi—py  q=p;+pho—pi—Dy

in all four terms:

21)*i€*6* (pe-+p1+pa—,—ph ! i (al (D)) 0e (L)Y te(Pe)te(pe)| 52—
et ) o oo ) ¢ +i0*
(ﬁy mi X
Mz (27T)6\/wn<p1)wn(pZ)wn(pll)wn<pl2>
+ 7N\ — / Tab " Ted x
(an(p2)unc(p2)75und(p2)a(p2)m72r + (p/2 . p2)2 — 0+
o \e (T m VsUnd(— (P14 P2 — Ph))Una(—(P1 + P2 — P3)) 75
a, (P1)tn(py)l —Y5Uns(P1)a(P1)+
(P)i0n (P wa(p1 + P2 — Ph) (wa(p1 + 2 — Ph) + w(p1) + wi(p2) — wa(ph) —ie) (prjalpy)
t I — / Tab " Ted «
an(p2)unC(pZ)’%und(p?)a(p?)mgr + <p/2 _ p2)2 — 50t
FoNe e m VsUnb(—P1 — Py + P2)Un(—P} — Py + P2)7s I
anp Una\P1)7Y A unplanp1+
P e P by~ o) (@ + B — Pa) + (DY) + (D)) — wlpa) i) " PP
Tab - Ted

T I'\+ !
@0 (P1)tna (P1) 50 (P ) (P1) g S5
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= /
b N (N m Y5Un(—P1 — P2 + P})Unc(—P1 — P2 + P1)5
a,, Un r . Und\P2)a\P +
P e P o+ P = 1) (0 (—P1 — P + D)+ 0(p1) + w(pa) — (pp) — i) > PP
t I\ — / Tab* Ted X
an(pl)una(pl)f%unb(pl)an(pl)m72r + (p1 — p))2 —i0+
/ / — / /
Vi / m VsUnd(—P1 — Py + P1)Unb(—P1 — P2 + P1)7s e
ay, (Py)Unc(Py) — ", (p2)a(p2)
)01 by = ba) () + B — P) + @n(D)) + (D)) — w(p)) — ) -

It is also useful to use
u(—p) =u(p)y’  u(-p)=1"u(p)

Comparing with (330) gives the two-body current matrix elements

(p1, 5| T (@) |p1, p2) =

2
ﬁ My X

) @)oo P on (P (Pl )

(

anc(pé)’y5und(p2) X Tab " Ted -
my + (py — p2)® — 0%

_ m Oun + - /ﬂnap +p _p, 0
2 (p)T" __05) d(P1 P> P3)tna(P1 + P2 2))7 05 (py) X+
Wn(P1 + P2 — Py) wWn(P1 + P2 — Ph) + +w(p1) + w(p2) — w(phy) — ic
_ / Tab* Ted
nc mn . X
Une(P2) V5t (132)m7gT + (p — po)? — i0*

Oun / + /I an / + /I 0
u”(l)/l)’)/5 / , ,}/5,}; b(/ljl p2 p2>/ (pl /I)Q pQ)IY Y5 : P“un(pl) X
wn(P1 + Py — P2) wa(P] + P — P2) + w(p}) + w(ps) — w(p2) — i€
_ ’ Tab* Ted
na T X .
Una(P1)V5Unb(P1) m2 + (p1 — p})? — i0F

0 '\ 7S ! 0
_ m Y5y Un(P1 + P2 — P1)Unc(P1 + P2 — P1)7 V5
I\
Up (P F —Y5Und P X 4+
O o T s D) an(r + D2~ B)  w(pn) + (p2) — (@) —ie " (P2)
_ / Tab " Ted
na el X .
U (P1)V5U b(Pl) m2 + (pl _ p/1)2 — 40+

™

m 757 tna (P} + Py = P1) iy (P + P — PV 1, (pQ))
—ie "

— /
Unc\P2)V5d
(2)1s wn(P] + P — P1) wn(P] + Py — P1) +w(P)) + w(ph) — w(p1) 6

Eliminating 72 gives
(P, Pa1 5 (0) |1, p2) =

2
ﬁ My X

A TR SPACATA A

anc(pé)75und(p2) X Tab " Ted .
mz + (py — p2)* — i0F

(
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m '75'70und((p1 + P2 — PY))Una((P1 + P2 — Plz»’yo
wn(P1 + P2 — Ph) wa(P1 + P2 — Ph) + w(p1) + w(p2) — w(ph) — i€
Tab* Ted

u, (p)T*

unb(pl) X +

— /
nc mn . X
Une(Ph)V5Ua (p2)m72T + (ph — po)? — i0*
o, m YOunp(P] + Ph — P2)n (P + P — P2)7"75 -
un(pl) / / / / / / . u”(p1> X+
wn(P] + Ph — P2) Wn(P] + Py — P2) + w(P)) + w(pPy) — w(p2) — i€
_ ’ Tab* Ted
X
Una(P1)Y5Unb(P1) m2 + (p1 — p})? — i0F
0 '\ /
_ m Y577 Un(P1 + P2 — P1)Unc(P1 + P2 — P1)%0
Un(pé)ru ’ ( / 1) ( 1/) ; Und(p2> X+
wn(P1 + P2 — P}) wa(P1 + P2 — P}) + w(p1) + w(p2) — w(p)) — e
_ Tab* Ted
Una (P2 ) V5, X
<p1)75 b(pl) m% + <p1 _ pll)Q — 0+
0 ! ! ~ / / 0
~ m Y tna(P] + Ph — P1)Uns(P] + Ph — P1)Ys
fne(P)) 1+ 5 — D)t () + D) TV, (ps)

wn(P] + Py — P1) wa(P] + P — P1) + w(p]) + w(ph) — w(p1) — i€ (a17)

In (yunfei) the quantities below are approximated by

my 1
wn(P] + Py — P1) wa(P] + P — P1) +w(p)) + w(ph) —w(p1) — ie

~1 / 2m N
which simplifies this expression to

(P pal I (@) [P, p2) =
( frn 1 m?2 "

Mz QmN (27r)6\/wn(pl)wn(p2)wn(p/1)wn<pl2)
ﬂnc(p/2>ﬁ/5und(p2)7—ab : Tcdﬁna<pl + P2 — p/Q)’Vounb(pl)ﬂn(pll)FH7570und(pl + P2 — pl2>+
my + (py — p2)* — 107
a’nc(pé)’y5udn(p2)’r¢zb : T(:darl/(pll)’\/ou7Lb(p/1 + pl2 - pQ)an(pi + p,2 - pQ)VOVSFMUn(pl) +

m2 + (ph, — p2)? —i0*
Una (D)) V5Unb (P1)Tab - Teallne(P1 + P2 — P1)Y0tna(P2)Un (P5)T757 un (P1 + P2 — PY)
mz + (p1 — py)? — 0%

Una (P Y5 Unb(P1)Tab * Tedline(P5)Y Una(P] + P — P1)Uns(P] + P — P1)Y° 1T e (P2)
m2 + (py — p})? —i0F

(418)
In these expressions the quantities in the red can be absorbed into the initial or final states,
so mathematically this still looks like the calculation of an impulse matrix element. These
matrix elements are rotationally covariant. They do not transform correctly with respect
dynamical boosts and they do not satisfy current conservation. This matrix element, along

with the impulse current, can be defined as the current in a given pair of frames - matrix
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elements in any other pair of frame can be determined by covariance - these matrix elements
will not be the same as the corresponding matrix elements in the other pair of frames. The
sensitivity of calculations to this difference provides a measure of the violations of current
conservation of current covariance at the operator level.

Note that this current is not necessarily covariant or conserved; however if current matrix
elements are is evaluated in a given frame, and defined in all other frames by covariance
and current conservation, the resulting matrix elements are will be matrix elements of a
covariant current. The result assumes that the current agrees with matrix elements of the
above current in the given frame and is related to matrix elements in any other frame by
covariance and current conservation.

The spinor quantities that enter the two-body current are

_ 1 - .
w(p')y"u(p) = 5(Ae(p)Aclp) = Ac(p)Ae(p))
— 7/ / 1 < N\ A /
a7 u(p) = vl (p)u(p) = 5(A(p)Ac(p) = Acp)Ae(p))
The other terms that enter are
., 1, , Ac(p)
u(p)T"v° 7 u(p) = = (A(p), Ac(p/)I*
0 1 / X Ac(p)
a(p" )T u(p) = (Ae(p'), —=Ac(p))I* |
2 Ac(p)
where
n . 1
Adp) = 0cosh(p/2) +.0-psinh(p/2) = ~ s (0 + )00 + P )
N o 1
Ac(p) = o9 cosh(p/2) — o - psinh(p/2) = TICETD ((° +m)oo —p-0)
and
I vy
Wl )i 2]2”" F,
I used the representation
V. 0 &,
o, 0
I 0
7 =iy = -
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= 03:5[%7]]261%
0 —0; 0 O

v v - 07 1
{(ay=2r —io” =Sy

to compute these quantities.
The Breit frame is useful frame; we also use rotational covariance to choose the 3 direction
as the direction of momentum transfer, and finally have to ensure rotational covariance about

the 2z axis. In the Breit frame
o q
D1 +p2 — (2&), 07 07 _5)

pll + p,2 = (2(*}7 0,0, g)

when

P1 = pll then pl2 — P2 = (07 07 07 Q)
p2 = py then pi — pe = (0,0,0, q)

The Breit frame quantities are related to the lab quantities by a Lorentz boost that depends
on the final momentum.

Next we need to identify the part of this expression that corresponds to a one pion
exchange potential

To do this first note that the Born approximation to the scattering operator is

This suggest calculating the S operator to leading order, and removing the energy conserva-
tion constraint to get an expression of the interaction. The resulting expression will have a
non-trival dependence on the initial and final energies. Handling these issues involves choos-
ing a perscription. The first step is to calculate the Born approximation using the interaction
picture. For scattering with a vertex interaction this is second order in the interaction:

s=1+ 50 [ Cipe paadyu0)se ) 01T 67 - ) 0) B0 ()

o ) . W

I extract the parts of the fields involving two annihilation operators followed by two creation

operators

fos
Nk
MR TR PR AT R

1 m?

e PP (pl ) ysu(pr) e P2 P2 Y (ph) ysu(pe) X
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—ik(z—y)

- i d*ke o 1 -’T)
(2m)* ] m2 + k% —i0t
e o (2m)4 m?
—f—@(f )2( ) 5 (P — p1 — k)0 (ply — pa + k) X
)% \/wn (P} )wn (Ph)wn (P1)wn (P2)
_ Tab - Te -
Ua(Pll)%Ub(Pl) b e Uc(Plz)%Ud(pz)

mz + (py — p1)® — 0%
The potential can be extracted as
( ) m?

% mw \/Wn p1 Wn(pQ)wn(pl)wn(pQ)

Tab* Ted
mz + (py — p1)? — 0%
removing the —(27)id(Ey — E;) gives

Uq(PY)V5us(P1) Ue(Py)Y5ua(P2)

<p,17 p/2|v|p17 p2> -

1 ﬁ 2 m2 53 / I .
P e P onPhenpron (s DL P2 TP P2
i1 (P} ) y51 (1) Tab " Ted i1e(D)) 5 ta(Ds)

mz + (P — p1)? —i0F

XXII. ELECTROWEAK CURRENTS

5 (py — p1 — k)6 (phy — p2 + k) x

The structure of the interaction term follows the particle data book p180 equation (10.2).

This (with a — sign), evaluated at time 0, is the weak interaction that appears in the

Hamiltonian. For nuclear physics applications the interaction with up and down quarks

should be replaced by interactions with protons and neutrons with appropriate form factors.

The theory has U(2) and SU(2) gauge fields, B*(x) and W (x). The covariant derivative

is
DH = 9" — gWHT, —ig B*S

with the kinetic term is

1 174 1 auv
Lic = =7 B" By — W Wy

The electroweak fields are

B"™ = 9"B" — 0" B"

W = QWY — "W — geae W W
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where

1
[T T = iep.T® T = 3¢

the coupling constants are related by the Weinberg angle
g = ¢ tan(Oy).
S=Q-1°

where () is the electric charge operator.

The familiar fields are related to the Gauge fields by

WHE (), W W (x)k SU(2) flavor B, (x)

These are related to the electromagnetic vector potential and neutral current by

A, (z) = B,(z) cos(Ow) + Wj(x) sin(fw )

Zy(z) = Wj’(x) cos(fw) — B, (x) sin(fw )+

1 .
Wy (x) = E(Wﬁ () F iW;(x))
Fermion famlies transform as SU(2) doublets
) = [ ) W) = [ 0
Li-(x) d;(x)

where

;=) Vyd;  Vy= CKM matrix
J

The interaction terms with the fermions is

—Hi(x) = Li(z) — e Z qi V()7 Vi) Ay (x)

2 COsg<9M) ; @) (" gy = Vg Vi(x) Zu(x)

g T, 5 + + — _
—— U, () (v"(1 — "W +T7W, )Y,
2\/5% (@) (V1 =" )T W, L
This has the general form

Hi(x) =Y Ndl(2)Vi(x)

i
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The constants are

Gr = 1.16637876 x 107°(Gev) > (434)
Gr =g SAMZ, small momenta (435)
g, = Ty, — 2Q; sin*(0) (436)

9. =Ty (437)

sin?(Oy ) = .22337 (438)

e = gsin(fy) (439)

Structure of the 4 Fermi interaction

_Gr

(BT @) [B ()T, ()] + ) (440)

where
I'= [77577;17757;“0;11/ (441)

Kinematic variables - neutrino nucleon scattering

vip) + N =1 (p)+ X (442)
s=((p+p+n)’—2ME (443)
0
Q@ =—¢" = —(p+1)° =4EE sin’(3) (444)
y:E—E’:qﬁN (445)
W? = -Q"+2Mv + M? (446)
- Q?

= = 447
. 2q-pny  2Mvo (447)

v Q2 q - PN
_r_ _ 448
Y= E T oMEx  pop, (448)

Appendix 1 Derivation of D function - used Schwinger method

Define
ny ‘= j + M

=g tn)  p=gn )

84



In this notation
|n+7 n—> = |j’ /1“>

the raising and lowering operators become
Jilng,no) =/ (ng + Dn_|ny +1,n- — 1)
Jlnino) = /(- + Dlny — 1, +1)

Introduce the operators a,, aJﬂr, a_, al

aplng,n_)=nilng —1,n_) allng,n_) = /ng +1lng +1,n_)
a_|ny,n_)=n_|n ,n_—1) a'ny,n_) = \/n_+1|ny,n_+1)

Using these operators the angular momentum operators can be expressed as

Jy = aia, J_ = aT_a+

1 a
J=(dd)ze i
2 a_
01 0 —1 1 0
1o/ \io/) \o-1
are the Pauli matrices. In what follows we use the short hand notation:

a 1
a=| at = (al,al) J= iaTaa

a_

In this representation the unitary rotation operator has the form
U(R) = ¢
The Wigner D functions are matrix elements of this operator in an angular momentum basis
D[R] = (j, plU(R)|j', V') = (g, - [U(R)|n!,nl)

Using the creation and annihilation operator to express the normalized eigenstates of J? and

J-z o
nyon )= L )
77/+! n,!




this becomes

—+ — 4 !/
D3, [R) = (0,0]-2— 2= gt ga (02)" (ai)n_lo 0)
e 7 nyly/n_! n, I \/n 17

where

Since a4 is an annihilation operator
_ighate
‘0’0> =e 0n-a 2a‘0’0>

the above identity can be expressed in the form

—+ —_ / ’
al a? |ez’9ﬁ.afga (ai)”+ (al )"

Vngly/n! n ! \/n"!

a'1+ a® (€i9ﬁ~aT %aale—wﬁ-(ﬂ %a)nﬁr (eiﬁﬁ-tﬂ %aaT_e—inraT %a)nL
‘O’ O> =

nyly/n_! vnl,! vn!

In order to evaluate this expression use

. _ —ibhatSa —
wa[R] - <070| € |070> -

(0,0]

B = B[4, B + oA, [A, B + 54,14, B]] -

with + =1, — = 2 note

g

0n-at _ibnate
ez@na 2aa;re WhatGa _

a;-r +i92k[a}ﬁ-%ak7a;f] L=
J

to g i 95 _
ai+29;ajn~7+~-—

n-o 0 N . 9 N
)ji = Z a;r.(éij 008(5) +in -0y 81n(§)) Z a;R(Hn)ji
J J
where

R(R);; = 2™

is the SU(2) representation of the rotation. Using these results in the expression for Diy
gives

D;,[R] =
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al” et (30 ab R )™ (L af R )™
NIRRT i

a® (a+R+++aT_R,+) “(alRi_+alR_)"

(0,0

10,0) =

(0,0 = 0,0
|w/n+ l\/n /! n’| 0,0) =
Since [alaT | = 0 the powers can be expanded in a binomial series
ny o
n' : k n/, —k
(aLRiy +al R )™ = Z k!(n,—Jr_k)!(RJrJrab (R_al)™
k=0 +
s n ! n —
(@Rt ol B )™ =3 ey (Rl (Rl

Next use these expansions in the above and noting that the non-zero terms must have the

same number of creation and annihilation operators with normalization

(0l(a:)" (a])"10) = n!,

In the above expression

ny=k+1 n_=2n, —k—1

because of these constrains [ can be eliminated

l = ny — k
This gives
<0 0| an (212”:1 a’iRT+)n+ (Zi 1 (ZTR ) |0 0>
\/n+ Vn V! n’!
(0.0 at’a ( alRy, +a R ('R, +d R 0,0y =

Vngly/n /! n’_|
'n ! (al Ry )@l R_)"F (al Ry ) (al R )"

Z (0 O|\/_\/_l'k' n’_ —1)! \/n++' n'!
T \/n 'n 'n In"| n
ZZM * * RLR+ ‘R R =

k=0 1=0 ! l)

Using l =ny — k

ny AL , , ,

) T RE R VR TERT T
++

=0 (ny — k)

Ikl(n!y — k)!(n" —ny + k) S A
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the last step is to replace no = j + u

j+v . _ : .
JZ V)G — )G +v)(G—v) -
= (JHpu—R)E(G+v—k)l(k—v—p)! e L

which is the expression of the DJ [R] as a function of the SU(2) matrix elements

i~ VGG = mIG+ )G =)
D=3 G+p—k)EG+r—k)(k—v—p

k=0

Rk RjiufkRiJrufkkaufu
[t o it - -

where

R.. R._
R, R__

1. Elastic neutrino-deuteron scattering

<plD> :u/Da D> plya :u/u|T‘pDa KUD, Da Pv, MV) =
Gr

——=(21)3(P'p, iy, D TE(0)| @ p|PDs 15 D) Gap (Pl 12| T2 (0) Doy )

V2

where G is the Fermi constant. The neutrino matrix element is written as
1 1
Py, 1,15 (0)|pus p15) =
(2m)° \/4[p. [P}

LP (DL, 1, Pos 1)

with
L2 (DL, 1l Pus i) = U (DL, 1,)77 (1 — 5) s (Poy f10)

and the Dirac spinors for massless neutrinos defined as

X
Uy (Pus 1) = VP 8

Do

b [ X

Also for weak reactions we include in the nuclear matrix elements

« 1 [0}
<plD7 MID7 D|Jw(0)|pD7 KD, D> = (27’(‘)3 N (plDa /‘LID? PpD, D ) )
only the single-nucleon contributions in the well known form:
P T I (O)p, w7

_ ? v
- 57”7’ un (p/7 M/) (F£<Q2)7# T %Oﬂu quﬁ'(Q2)
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+FA (@) + E%FJJXT(QQO un (p; 1),
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where ¢* = p'" — p* and the weak neutral-current nucleon form factors Ff\i depend on the
nucleon isospin. For these quantities we use the parametrizations from Refs. [? ? |. Actually
the part with Fp, gives no contribution in Eq. (453) in the case of massless neutrinos but
we keep it, since the single nucleon charged current has the same functional form, despite

different isospin dependence.
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