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1 Background:

Local quantum field theory is the theory of choice for modeling reactions
involving energy and distance scales where relativity and quantum theory
both have to be considered. Quantum Chromodynamics (QCD) is generally
accepted to be the quantum field theory that governs the strong interac-
tions. Given this, it is natural to ask why one might consider an alternative
theoretical approach.

The short answer is that we do not really know how to solve QCD, or any
non-trivial local four-dimensional field theory. From a practical point of view
it is not known how to compute ab-initio error bounds to any field-theoretic
calculations. No one has been tempted to dismiss QCD just because a “QCD
prediction” does not agree with experiment. From a mathematical point of
view, even the existence of QCD is a Millennium problem[1]. This is why
non-relativistic potential models are still used for realistic computations.

One of the difficulties with all local field theories is due to the require-
ment that the theory be local. This condition means that “experiments”
done in arbitrarily small space-like separated spacetime regions should be
independent. This sounds like a sensible requirement, however formulating
this condition requires a theory with an infinite number of degrees of free-
dom that is defined on all energy scales. This leads to many of the infinities
that make the theory so difficult to define. This can be fixed by introducing
cutoffs, but this leads to violations of locality on some scale, and it is known
[2] that violations on one scale lead to violations on all scales. Establishing
that the cutoffs can be removed in a controlled manner leaving a non-trivial
theory with the expected properties is the difficult problem.

The point is that the field theory does a lot more than is needed to
realistically describe a class of reactions at some finite energy scale. The key
properties of a field theory that should survive at finite energy scales are the
quantum mechanical interpretation, Poincaré invariance, cluster properties,
and a spectral condition. In addition, the dynamics should dominated by a
finite number of degrees of freedom.

While it is a central goal of nuclear physics to resolve all of these issues
with QCD, one still wants to develop a quantitative understanding of classes
of phenomena that dominate the physics at a given energy scale. Effective
field theory does this for low-energy reactions, but it is not generally appli-
cable in the few GeV region. At higher energies quasipotential approaches,
such as the Gross equation[3], provide a phenomenology that is motivated
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by quantum field theory. Poincaré invariant quantum theory is a framework
for constructing quantum mechanical models of systems of a finite number
of degrees for freedom consistent with Poincaré invariance, cluster properties
(for fixed numbers of particles), and a spectral condition [4],

It is suitable for describing reactions in the few GeV region, which are
still dominated by a relatively small number of degrees of freedom. There is
an inverse scattering theorem [5], so there are interactions that can describe
any reaction. Cluster properties provide relations between reactions involv-
ing different numbers of degrees of freedom. Poincaré invariant quantum
mechanics is a minimal extension of the standard potential theory that is
successfully being used to obtain a quantitative understanding of low-energy
physics to energies in the few GeV range. While there is no direct connec-
tion to QCD, one expects that QCD could be used to provide insight into
both the choice of relevant degrees of freedom and an understanding of the
operator structures that appear in the interactions and current operators.

2 Quantum theory

Quantum mechanics is a linear theory. The mathematical setting for a quan-
tum theory is a complete complex linear vector space, or Hilbert space. I
represent vectors in the Hilbert space by “kets”

|ψ〉. (1)

The Hilbert space inner product in Dirac’s Bra-Ket notation has the familiar
form:

〈ψ|φ〉. (2)

All of the predictions of a quantum theory are expressed in terms of this
inner product. In what follows I assume that the Hilbert space vectors are
normalized to unity:

〈ψ|ψ〉 = 1. (3)

The quantities that are measured in a quantum theory are probabilities,
expectation values, and ensemble averages. Probabilities are given directly
in terms of the Hilbert space inner product by

Pφ,ψ = |〈φ|ψ〉|2. (4)
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This represents the probability of measuring a system to be in the state rep-
resented by the vector |φ〉 if it was initially prepared in the state represented
by the vector |ψ〉.

A related quantum observable is the expectation value of a Hermitian
operator A in the state |ψ〉. Hermitian operators have a complete set of
eigenvectors, |n〉, with real eigenvalues an. The expectation value of A in the
state |ψ〉,

〈ψ|A|ψ〉 =
∑

n

|〈ψ|n〉|2an =
∑

n

Pn,ψan, (5)

is the weighted average of the eigenvalues of A by the probabilities of mea-
suring the system to be in the n-th eigenstate of A if it is initially prepared
in the state |ψ〉.

To measure probabilities or expectation values it is necessary to perform
a statistically significant number of measurements on identically prepared
initial states. In most experiments it is impossible to ensure the initial states
are identically prepared. For example, a polarized beam of particles is never
100% polarized. Instead, it consists of a statistical distribution of polariza-
tions. This situation is treated by using an ensemble average. In this case
I assume that the initial state is in a statistical ensemble of quantum states
|ψm〉 distributed with classical probability Pm. The expectation value of the
Hermitian operator A in this ensemble is defined by

〈A〉 =
∑

m

Pm〈ψm|A|ψm〉

This expectation value can be expressed by the trace of the product of A
multiplied by a density matrix ρ:

< A >:= Tr(ρA) ρ =
∑

m

|ψm〉Pm〈ψm|
∑

m

Pm = 1

where here the different |ψm〉 do not have to be orthogonal.
An important observation is that Hilbert space scalar products and eigen-

values of Hermitian operators are unitarily invariant. Since quantum prob-
abilities, expectation values, and ensemble averages are constructed out of
Hilbert space scalar products and eigenvalues of Hermitian operators, all
quantum observables are unitarily invariant.

Abstract observables are useful in quantum field theories, but the observ-
ables that are relevant to scattering experiments are normally associated with
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isolated particles. A complete measurement of the state of an asymptotically
free particle involves a determination of the particle’s linear momentum, up
to some finite experimental resolution in a particular coordinate system, and
the projection of its spin along some axis in the same (or a different) coor-
dinate system. A complete experiment would involve a measurement of the
state (momentum and spin projection) of each of the asymptotic particles
produced in a scattering reaction.

These measurements normally involve using a combination of conserva-
tion laws and observations of the trajectories of charged particles in classical
electromagnetic fields.

The identification of a complete measurement provides a means to pass
from an abstract formulation of the Hilbert space of quantum theory to an
explicit representation of a model Hilbert space. Any complete measurement
of a scattering process will give probabilities of measuring the projection
of the particle’s spin along a given axis and its linear momentum to be in a
finite volume V of momentum space. Thus vectors in a single-particle Hilbert
space are square integrable functions of the linear momentum and magnetic
quantum number 〈p, µ|ψ〉, where

∫

V

|〈p, µ|ψ〉|2d3p (6)

represents the probability that a particle in state |ψ〉 will be measured to
have linear momentum in the momentum volume V and magnetic quantum
number µ. The normalization condition

∑

µ

∫

|〈p, µ|ψ〉|2d3p = 1 (7)

means that the probability of finding the particle any of its allowed states is
1.

Thus, the Hilbert for a single particle can be chosen as the space of
square integrable functions in the particle’s momentum and spin projection.
N-particle Hilbert spaces can be taken as N-fold tensor products of single
particle spaces. Spaces describing states with variable particle number can
be taken as orthogonal direct sums of N-particle spaces.

For example, a suitable Hilbert space to describe nucleon-nucleon scat-
tering at an energy sufficient to produce no more than one pion can be taken
to be

H = (Hn ⊗Hn) ⊕ (Hn ⊗Hn ⊗Hπ) (8)
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Wave functions have the form

〈·|ψ〉 =

(

〈p1, µ1,p2, µ2|ψnn〉
〈p1, µ1,p2, µ2,pπ|ψnnπ〉

)

(9)

with normalization

1 = 〈ψ|ψ〉 = 〈ψnn|ψnn〉 + 〈ψnnπ|ψnnπ〉. (10)

The quantity
〈ψnn|ψnn〉 (11)

is the probability that the state |ψ〉 will be measured to have two nucleons
and no pions and

〈ψnnπ|ψnnπ〉 (12)

is the probability that the state |ψ〉 will be measured to have two-nucleons
an one pion.

Thus, for any bounded energy range the observable experimental reac-
tion products determine a representation of the Hilbert space with sufficient
structure to describe all accessible experimental observables. In some appli-
cations, for example with models involving confined degrees of freedom, it is
possible and useful to use different degrees of freedom. In any representation
the experimental degrees of freedom (physical particles) must eventually ap-
pear in the formulation of the scattering asymptotic conditions that are used
to define scattering probabilities.

3 Special Relativity

A fundamental assumption of special relativity is the existence of inertial
coordinates systems. Inertial coordinate systems have the property that
equivalent experiments done in different inertial coordinate systems lead to
identical results.

Experimentally, the Michelson-Morley experiment established that differ-
ent inertial coordinate systems are related by transformations that preserve
the proper distance (time)

|x − y|2 − c2(tx − ty)
2 = |x′ − y′|2 − c2(t′x − t′y)

2. (13)
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between the space-time coordinates of “events”, which are labeled by their
space and time coordinates (t,x) and (t′,x′) in different inertial coordinate
systems.

The Poincaré group is the group of transformations that preserves the
quadratic form (13). I use 4-vectors, xµ, to label events

x→ xµ = (x0, x1, x2, x2) = (ct, x1, x2, x2) (14)

and use the Minkowski metric

ηµν = ηµµ =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (15)

The most general point transformation, x′ = f(x), satisfying (14) is called a
Poincaré transformation which has the general form

xµ → x′µ =
3
∑

ν=0

Λµ
νx

ν + aµ (16)

where aµ is constant and Λµ
ν is a constant matrix, called a Lorentz transfor-

mation, satisfying

ηµν =
∑

αβ

Λµ
αΛ

ν
βη

αβ. (17)

In what follows I use Einstein’s summation convention, which assumes that
repeated lower case Greek letters are summed from 0 to 3.

The full Poincaré group is generated by space translations, time transla-
tions, rotations, and rotationless Lorentz boosts which depend continuously
on a parameter, as well as the discrete transformations of space reflection,
time reversal, and four dimensional reflections.

It is experimentally observed that the discrete Poincaré transformations
are not symmetries of the weak interaction. In what follows the symmetry
group of special relativity will be taken as the subgroup of the Poincaré
group where the Lorentz transformations can be continuously deformed to
the identity. I use the term Poincaré transformation to refer to this subgroup
of the full Poincaré group.

Classically relativistic invariance is interpreted to mean that dynamical
equations remain unchanged under changes of inertial coordinate system.
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This is because the solution of the dynamical equations is observable. This
leads to the notion that the equations of a relativistically invariant theory
should be “covariant”. This is no longer necessary in a quantum theory.

In a quantum theory the results of experimental measurements are quan-
tum probabilities, expectation values, and ensemble averages. These quan-
tities are not solutions of dynamical equations. Special relativity requires
that these quantum observables remain invariant under change of inertial
coordinate system.

The invariance of quantum observables with respect to changes in inertial
coordinate system means that the group of Poincaré transformations contin-
uously connected to the identity is a symmetry of the quantum theory. In
1939 Wigner [6] showed that this requirement is equivalent to the existence
of a unitary representation of the Poincaré group on the quantum mechani-
cal Hilbert space. Below are some observations related to Wigner’s theorem.
Poincaré invariant quantum mechanics is simply a quantum theory with a
unitary representation of the Poincaré group.

1. Wigner’s results apply to any quantum theory including quantum field
theory. Wigner’s theorem motivated all serious attempts to axiomatize
quantum field theory [2][7][8].

2. As stated above, discrete Poincaré transformations are not considered
part of the Poincaré group when discussing special relativity.

3. Antiunitary transformations do not appear because any continuous
Poincaré transformation can be written at the square of another Poincaré
transformation.

4. Wigner’s unitary representations of the Poincaré group are ray repre-
sentations - Later Bargmann [9] showed that they could be replaced
by single-valued representations of the covering group, which replaces
Lorentz transformations by the group SL(2,C).

5. Wigner’s theorem says nothing about microscopic causality; however
the Poincaré invariance is not compatible with the existence of a sen-
sible position operator for particles [10] , which would be needed test
locality in a theory of particles. Implementation of a test of micro-
scopic causality requires additional degrees of freedom normally associ-
ated with fields. The difficulty in defining a suitable position operator
for a particle has nothing to do with antiparticles.
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6. The basic building blocks of unitary representations of the Poincaré
group are the irreducible representations, which were also classified by
Wigner in [6]. Vectors in the positive mass positive energy irreducible
representations have exactly the same quantum numbers as a particle
of mass m and spin s. This will be discussed in section 7.

4 Parameterization of the Poincaré group

A general Poincaré group element (Λ, a) is labeled by a Lorentz transfor-
mation Λ and a space-time translation four vector a. The group product
is

(Λ2, a2)(Λ1, a1) = (Λ2Λ1,Λ2a1 + a2) (18)

where Λ2Λ1 means Λµ
2αΛ

α
1 ν and Λ2a1 means Λµ

2αa
α
1 . The identity is

I = (I, 0) (19)

and inverse is
(Λ, a)−1 = (Λ−1,−Λ−1a). (20)

The Poincaré group is a 10 parameter group. There are 10 independent
one-parameter subgroups associated with rotations about the x̂, ŷ and ẑ

axes, rotationless Lorentz transformations in the x̂, ŷ and ẑ direction, trans-
lations in the x̂, ŷ and ẑ directions and time translations. These elementary
transformation can be used to generate any Poincaré transformation.

The rotations can be parameterized by an axis and angle of rotation, θ:

Λ → R(θ) = eiL·θ (21)

where

L = i









0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0









, i









0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0









, i









0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0









(22)

while the rotationless Lorentz boost that transforms a particle of mass m at
rest to linear momentum p is

Λ → B(p/m) =

(

h/m p/m
p/m I + p⊗p

m(m+h)

)

(23)
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where h = ω(p) =
√

p2 +m2. This Lorentz transformation can be expressed
in terms of the rapidity ρ:

ρ̂ = p̂
|p|
m

= sinh(|ρ|) |ω(p)|
m

= cosh(|ρ|) (24)

which plays a similar role as the angles in the rotation group. When expressed
in terms of angles or rapidity, B(p/m) → B(ρ), rotations about a specific
axis or rotationless Lorentz transformations in given direction become one
parameter groups

R(θ1n̂)R(θ2n̂) = R((θ1 + θ2)n̂) B(ρ1n̂)B(ρ2n̂) = B((ρ1 + ρ2)n̂) (25)

Lorentz transformations can also be represented by 2 × 2 complex matrices
with determinant = 1[2][11]. This representation is useful for computations
and well as for establishing general properties of the Lorentz group. To
motivate this representation note that any four vector can be expressed as a
2 × 2 Hermitian matrix as follows:

X = xµσµ =

(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)

xµ =
1

2
Tr(Xσµ) (26)

where σ0 = I and σi are the three Pauli matrices. The connection with the
Lorentz group follows because

det(X) = −ηµνxµxν = −x2. (27)

Real Lorentz transformations correspond to linear transformations that pre-
serve this determinant and the Hermiticity of X. Up to irrelevant constant
multiplicative factors, the most general transformation with these properties
is

X ′ = AXA† det(A) = 1. (28)

It follows from (26) that

Λµ
ν =

1

2
Tr(σµAσµA

†). (29)

The most general A with this property has the form

A = ±e 1

2
(ρ+iθ)·σ (30)
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where when θ is zero the transformation is a rotationless boost with rapidity
vector ρ and when ρ is zero this transformation is a rotation with angle of
rotation θ. Both A and −A correspond the same Lorentz transformations.
In general there is a 2 to 1 correspondence with all Lorentz transformations
continuously connected to the identity. In this representation boosts are
positive (negative) Hermitian matrices with determinant 1 and rotations are
unitary matrices with determinant 1.

5 Unitary representations

Unitary representations of the Poincaré group are unitary operators U(Λ, a)
satisfying the group representation property

U(Λ2, a2)U(Λ1, a1) = U(Λ2Λ1,Λ2a1 + a2) (31)

U(I, 0) = I (32)

U [(Λ, a)−1] = U(Λ−1,−Λ−1a) = U †(Λ, a). (33)

The Poincaré group has 10 independent one parameter subgroups (25)
labeled by angle of rotation (3), rapidity of a Lorentz boost (3) , spatial
displacement (3), and temporal displacement (1). The generators of these
transformations are the Hermitian operators

J · x̂ = −i d
dθ
U(R(θx̂, 0)|θ=0

(34)

K · x̂ = −i d
dρ
U(B(ρx̂, 0)|ρ=0

(35)

P · x̂ = −i d
da
U(I, ax̂)|a=0

(36)

H = i
d

dt
U(I, (t, 0)|t=0

(37)

The generators {H,P,J,K} have the familiar interpretations; J is the angu-
lar momentum operator, K is the generator of rotationless Lorentz transfor-
mations, P is the linear momentum operator, and H is the Hamiltonian.

The group property (18) implies that the generators can be grouped into
operators that transform as tensors with respect to Lorentz transformations

P µ = (H,P) (38)
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Jµν =









0 −Kx −Ky −Kz

Kx 0 Jz −Jy
Ky −Jz 0 Jx
Kz Jy −Jx 0









(39)

which have the transformation properties

U †(Λ, a)P µU(Λ, a) = Λµ
νP

ν (40)

U †(Λ, a)JµνU(Λ, a) = Λµ
αΛ

ν
β(J

αβ − aαP β + aβP α). (41)

The group representation property can be used to show that these operators
also satisfy the commutations relations

[P i, P j] = 0 [P i, H ] = 0 (42)

[J i, J j] = iǫijkJ
k [J i, P j] = iǫijkP

k (43)

[J i, Kj] = iǫijkK
k [J i, H ] = 0 (44)

[Ki, Kj] = −iǫijkJk [Ki, H ] = iP i [Ki, P j] = iδijH. (45)

The spin is related to the Pauli-Lubanski vector [12]

W µ =
1

2
ǫµναβP

νJαβ (46)

which satisfies

[P µ,W ν] = 0 [W µ,W µ] = iǫµναβW
αP β (47)

The Poincaré group has two polynomial invariants

M2 = H2 − P · P and W 2 (48)

When M2 6= 0 the invariant W 2 can be replaced by the spin:

j2 := W 2/M2. (49)
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M2 > 0 P 0 > 0 p0 = (M, 0, 0, 0) SU(2)
M2 > 0 P 0 < 0 p0 = (−M, 0, 0, 0) SU(2)
M2 = 0 P 0 > 0 p0 = (1, 0, 0, 1) E(2)
M2 = 0 P 0 < 0 p0 = (−1, 0, 0, 1) E(2)
M2 = 0 P 0 = 0 p0 = (0, 0, 0, 0) SL(2,C)
M2 < 0 p0 = (0, 0, 0, µ) SU(1, 1)

Table 1:

6 Irreducible representations

Irreducible representations of the Poincaré group are important in Poincaré
invariant quantum theory because they are the elementary building blocks
of any unitary representation of the Poincaré group.

Irreducible representation of the Poincaré group can be classified by the
eigenvalues of the invariant operators M2 and W 2 as well as the sign of P 0.
Wigner [6] identified six classes of irreducible representations associated with
the joint spectrum of M2 and P 0. For each class there is a representative
vector that is invariant under a subgroup of the Lorentz group, called the
little group for that representation. These are listed in Table 1.

Here E(2) is the covering group for the two-dimensional Euclidean group.
Irreducible representations of the Poincaré group are constructed by starting
with irreducible representations of the little group that leaves the canonical
vector p0 invariant, followed by a parameterized set of Lorentz transformation
that change the value of p0

The most interesting representations for physics are the representations
with M2 > 0 P 0 > 0 (massive particles) and the representations M2 =
0 P 0 > 0 (massless particles). In these lectures I only consider the case
of massive particles.

Relativistic invariance of an isolated particle implies the existence of a
one-body unitary representation of the Poincaré group. For particles the
eigenvalues of the operators

M j2 = W 2/M2 (50)

are the particle’s mass m and spin j2 = j(j + 1).
A basis for a one-particle representation can be constructed as the set of

simultaneous eigenstates of a maximal set of commuting Hermitian functions
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of the single-particle Poincaré generators H , P J, and K.
One set of operators satisfying these conditions is:

M2,W 2,P, ẑ · Ŵ (51)

It is useful to replace W µ by the spin variables

j2 = W 2/M2 (52)

and

(0, jc) :=
1

m
B(−p/m)µνW

ν (53)

where B(−p/m)µν = B−1(p/m)µν is a 4 × 4 matrix of operators obtained by
replacing the parameter p by the momentum operator in (23):

(0, jc) :=
1

m
B(−p/m)µνW

ν = (54)

(0,
W

m
+ p

p ·W +W 0(m+ h)

m2(m+ h)
). (55)

It follows from (47) that

[jkc , j
l
c] = iǫklnjnc jc · jc = j2 [j,p] = 0 (56)

A suitable set of commuting observables for a single particle is the mass,
spin, linear momentum and ẑ component of the canonical spin.

The SU(2) commutation relations imply the spin can only have integral or
half-integral eigenvalues j. The spectrum of the linear momentum operator
is R

2 because it linear momentum can be boosted to any frame.
Thus, the Hilbert space for a particle of mass m spin j is the space of

square integrable functions of the linear momentum and spin,

〈p, µ|ψ〉 1 =

∫

dp

j
∑

µ=−j

|〈p, µ|ψ〉|2 = 1 (57)

The action of U(Λ, a) on these states is expressed in terms of

〈p, µ|U(Λ, a)|ψ〉 =

∫ j
∑

µ′=−j

〈p, µ|U(Λ, a)|p′, µ′〉dp′〈p′, µ′|ψ〉 =

14



∫ j
∑

µ′=−j

Djm
µ,p;µ′,p′(Λ, a)dp

′〈p′, µ′|ψ〉 (58)

where
Dmj
µ,p;µ′,p′(Λ, a) := 〈p, µ|U(Λ, a)|p′, µ′〉 (59)

It is a consequence of the definitions that the matrices Dmj
µ,p;µ′′,p′′(Λ, a) are

unitary representation of the Poincaré group.

∫ j
∑

µ′′=−j

dp′′Dmj
µ,p;µ′′,p′′(Λ2, a2)dp

′′Dmj
µ′′,p′′;µ′,p′(Λ1, a1) =

Dmj
µ,p;µ′,p′(Λ2Λ1,Λ2a1 + a2) (60)

These representations are irreducible. The matrices were derived for a single
particle of massm and spin j, but all positive mass positive energy irreducible
representations of the Poincaré group have this form in the basis (57).

In the next section I show how to construct the matrices

Dmj
µ,p;µ′,p′(Λ, a) (61)

for any m > 0 and j.

7 Factorization theorem

The action of U(Λ, a) on the one-particle Hilbert space is determined by
the matrix Dmj

µ,p;µ′,p′(Λ, a). To compute Dmj
µ,p;µ′,p′(Λ, a) I use the following

factorization theorem:
Factorization Theorem: Let (Λ, a) be any Poincaré transformation and
p be any time-like four momenta, p := (ωm(p),p). Then (Λ, a) can be
expressed as the product of (1) a rotationless Lorentz transformation to a
frame where p is zero, (2) a rotation, (3) a translation of the system at
rest and (4) a rotationless Lorentz transformation to the frame with the
transformed momentum, Λp:

(Λ, a) =

(B(Λp/m), 0)(I, B−1(Λp/m)a)×
(B−1(Λp/m)ΛB(p/m), 0)(B−1(p/m), 0) (62)
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The proof of this theorem follows by evaluating the above expression using
the group multiplication property.

The factorization theorem implies

U(Λ, a)|p′, µ〉 =

U [B(Λp′/m), 0]U [I, B−1(Λp′/m)a)]×
U [B−1(Λp′/m)ΛB(p′/m)], 0]U [B−1(p′/m), 0]|p′, µ〉 (63)

where I use a “prime” to indicate an eigenvalue.
The factorization theorem reduces the computation of Dmj

µ,p;µ′,p′(Λ, a) to
the following four steps:

1. Inverse boost to a rest state:

U [B−1(p/m), 0]|p, µ〉 = |0, µ〉
√

m

ω(p)
(64)

2. Rotation of a rest state:

U [B−1(Λp′/m)ΛB(p′/m)], 0]|0, µ〉 =

j
∑

ν=−j

|0, ν〉Dj
νµ[B

−1(Λp/m)ΛB(p/m)] (65)

where
Rw(Λ,p/m) := B−1(Λp/m)ΛB(p/m) (66)

is a Wigner rotation and

Dj
νµ[R] = 〈j, ν|U(R, I)|j, µ〉 (67)

is the standard spin j irreducible representation of the rotation group.

3. Translation of a rest state:

U [I, B−1(Λp/m)a)|0, ν〉 = eia·Λp|0, ν〉 (68)
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4. Rotationless boost of a rest state:

U [B(p′/m), 0]|0, µ〉 = |p′, µ〉|ω(p′)

m
)|1/2 (69)

Combining these four elementary unitary transformations gives

U(Λ, a)|(m, j)p, µ〉 (70)

j
∑

ν=−j

|Λp, ν〉eiΛp·aDj
νµ[B

−1(Λp/m)ΛB(p/m)]|ω(Λp)

ω(p)
|1/2 (71)

Comparing (58) and ( 71) gives

Dmj
µ′,p′;µ,p(Λ, a) =

δ(p′ −Λp)eip
′·aDj

νµ[B
−1(Λp/m)ΛB(p/m)]|ω(Λp)

ω(p)
|1/2 (72)

This is the mass m spin j irreducible representation of the Poincaré group in
the |p, µ〉 basis. All positive-mass positive-energy irreducible representations
have this explicit form in the momentum canonical spin basis.

A second important observation is that this four step process can be used
to construct irreducible representation from any rest state that transforms
irreducibly with respect to rotations. This will be used to construct Clebsch-
Gordan coefficients in the next section and dynamics in the following section.

In the remainder of this section I discuss the proof of the elementary
relations (64), (65), (68) and (69).

The transformation properties of the linear momentum in equations (64)
and (69) is a consequence of the transformation properties of the four mo-
mentum operator.

Invariance of the spin in (64) and (69) follows from the definition of the
spin in terms of the generators and the transformation properties of the
generators:

U(Λ, 0)jU †(Λ, 0) =

U(Λ, 0)
1

m
B−1(p/m)WU †(Λ, 0) =

1

m
B−1(Λ−1p/m)Λ−1W =
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1

m
B−1(Λ−1p/m)Λ−1B(p/m)B−1(p/m)W =

B−1(Λ−1p/m)Λ−1B(p/m)j (73)

The operator multiplying j becomes a Wigner rotation when it is applied to
a momentum eigenstate. For Λ = B−1(p/m) this Wigner rotation becomes
the identity, which implies that µ is unchanged in (64) and (69).

The square root factors that appear in (64) and (69) are needed to ensure
that U [B−1(p′/m), 0] and U [B(p′/m), 0] are unitary for states with a delta
function normalization:

〈Λp|Λp′〉 = 〈p|p′〉δ(Λp− Λp′) = δ(p− p′)| ∂p
∂Λp

| = 〈p|p′〉| ∂p
∂Λp

| (74)

which leads to the identification

|Λp′〉 = |p′〉| ∂p
∂Λp

|1/2 (75)

The Jacobian

| ∂p
∂Λp

| =
ω(p)

ω(Λp)
(76)

can be read off of
∫

δ(p2 +m2)d4p =

∫

dp

ω(p)
=

∫

dΛp

ω(Λp)
(77)

Equation (65) follows because the transformation is a rotation in an ir-
reducible basis for the rotation group, while (68) follows because the basis
state is an eigenstate of the four momentum.

8 Clebsch-Gordan Coefficients

The one-particle representations of the Poincaré group constructed in the pre-
vious section are positive-mass positive-energy irreducible representations of
the Poincaré group. In general any positive-mass positive-energy irreducible
representation has the form (72).

In this section I show how to decompose a product of two irreducible
representations of the Poincaré group into mutually orthogonal irreducible
subspaces. The final result looks very much like the non-relativistic de-
composition into center of mass and relative momentum variables. These
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non-interacting irreducible representations are used in the next section to
construct dynamical irreducible representations.

The tool for performing this construction is the Clebsch-Gordan coeffi-
cients for the Poincaré group. I construct these coefficients in this section.

Consider of tensor product of two irreducible basis vectors:

|p1, µ1〉 ⊗ |p2, µ2〉 (78)

Define the kinematic variables

P µ = p1 + p2 (79)

M2
0 = −ηµνP µP ν (80)

where all of the single particle momenta are on their mass shells - i.e. p0
i =

√

m2
i + p2

i

I define
kµi = B−1(P/M0)

µ
νp
ν
i (81)

and
k := k1 = −k2 (82)

Apply

U0[B
−1(P/M0)] := U1[B

−1(P/M0)] ⊗ U2[B
−1(P/M0)] (83)

to the basis vector (78) to get

U0[B
−1(P/M0)]|p1, µ1〉 ⊗ |p2, µ2〉 =

|k, µ′
1〉
√

ωm1
(k)

ωm1
(p1)

Dj1
µ′

1
µ1

[B−1(k/m1)B
−1(P/M0)B

−1(p1/m1)]⊗

| − k, µ′
2〉
√

ωm2
(k)

ωm2
(p2)

Dj2
µ′

2
µ2

[B−1(−k/m2)B
−1(P/M0)B

−1(p2/m2)] (84)

This defines a rest state of the two-particle system. If

|k, µ′
1〉 ⊗ | − k, µ′

2〉 (85)

can be decomposed into irreducible representations with respect to rotations
then the factorization theorem can be used to construct two-particle irre-
ducible representations.
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In order to understand transformation properties k, j1, and j2 under ro-
tations R note

k′ := B−1(RP/M0)Rp1 = B−1(RP/M0)RB(P/M0)k (86)

The transformation
B−1(RP/M0)RB(P/M0) (87)

is a Wigner rotation of the rotation R. The rotationless boosts have the
property that

B−1(RP/M0)RB(P/M0) = R (88)

I will prove this at the end of this section using the 2 matrix representations.
Using (88) in (8) gives

k′ = Rk (89)

The spins have a similar transformation property:

j′1 =

1

m1
B−1(Rp1/m1)RW = B−1(Rp1/m1)RB(p1/m1)

1

m1
B−1(p1/m1)W =

B−1(Rp1/m1)RB(p1/m1)j1 (90)

This is a different Wigner rotation of R, but it also involves rotationless
boosts, so I have

B−1(Rp1/m1)RB(p1/m1) = R (91)

Similar results hold for j2.
Since the quantities k, j1 and j2 all rotate together, they can be coupled

using ordinary spherical harmonics and SU(2) Clebsch-Gordan coefficients:

|0, k, l, s, j, µ〉 :=
∫

|k, µ1〉 ⊗ | − k, µ2〉 × dΩ(k̂)Y l
µl

(k̂)

〈j1, µ1, j2, µ2|s, µs〉〈lµl, j2, s, µs|j, µ〉 (92)

This state is a zero momentum eigenstate of state the two particle systems
that transforms under a 2j + 1-dimensional representation of the rotation
group. It satisfies

U(R, 0)|0, k, l, s, j, µ〉 := |0, k, l, s, j, µ′〉Dj
µ′µ(R) (93)
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I use the factorization theorem to construct irreducible representations.
It follows from (69) that the irreducible state with linear momentum P is

|P, k, l, s, j, µ〉

U0[B
−1(P/M0)]|0, k, l, s, j, µ〉

√

M0
√

P2 +M2
0

(94)

where as in (69) the multiplicative factor is chosen to make U0[B
−1(P/M0)]

unitary if |P, k, l, s, j, µ〉 has a δ(P −P′) normalization.
Equation (92) can be inverted to give

|k, µ1〉 ⊗ | − k, µ2〉 =

∑

|0, k, l, s, j, µ〉Y l∗
µl

(k̂)〈lµlj2sµs|jµ〉〈j1µ1j2µ2|sµs〉 (95)

Using (95) in (84) gives

U0[B
−1(P/M0)]|p1, µ1〉 ⊗ |p2, µ2〉 =

∑

|0, k, l, s, j, µ〉Y l∗
µl

(k̂)〈l, µl, s, µs|j, µ〉〈j1, µ′
1, j2, µ

′
2|s, µs〉×

√

ωm1
(k)

ωm1
(p1)

√

ωm2
(k)

ωm2
(p2)

×

Dj1
µ′

1
µ1

[B−1(k/m1)B
−1(P/M0)B(p1/m1)]×

Dj2
µ′

2
µ2

[B−1(−k/m2)B
−1(P/M0)B(p2/m2)] (96)

Combining (94) and (96) gives the desired decomposition of tensor prod-
ucts of irreducible representations into

|p1, µ1〉 ⊗ |p2, µ2〉 =

∑

|P, k, l, s, j, µ〉
√

M0
√

P2 +M2
0

√

ωm1
(k)

ωm1
(p1)

√

ωm2
(k)

ωm2
(p2)

×

Y l∗
µl

(k̂)〈l, µl, j2, s, µs|j, µ〉〈j1, µ′
1, j2, µ

′
2|s, µs〉×

Dj1
µ′

1
µ1

[B−1(k/m1)B
−1(P/M0)B(p1/m1)]×
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Dj2
µ′

2
µ2

[B−1(−k/m2)B
−1(P/M0)B(p2/m2)] (97)

The Clebsch-Gordan coefficients can be read off by taking matrix elements
with single particle states

〈P, k, l, s, j, µ|p1, µ1,p2, µ2〉 =
∫

dΩ(k̂)δ(p1 − p1(P,k))δ(p2 − p2(P,k))×
√

M0
√

P2 +M2
0

√

ωm1
(k)

ωm1
(p1)

√

ωm2
(k)

ωm2
(p2)

×

Y l∗
µl

(k̂)〈l, µl, j2, s, µs|j, µ〉〈j1, µ′
1, j2, µ

′
2|s, µs〉×

Dj1
µ′

1
µ1

[B−1(k/m1)B
−1(P/M0)B(p1/m1)]×

Dj2
µ′

2
µ2

[B−1(−k/m2)B
−1(P/M0)B(p2/m2)] = (98)

δ(P − p1 − p2))δ(k − k1(p1,p2))×
√

√

P2 +M2
0

M0

√

ωm1
(p1)

ωm1
(k)

√

ωm2
(p2)

ωm2
(k)

×

Y l∗
µl

(k̂)〈l, µl, j2, s, µs|j, µ〉〈j1, µ′
1, j2, µ

′
2|s, µs〉×

Dj1
µ′

1
µ1

[B−1(k/m1)B
−1(P/M0)B(p1/m1)]×

Dj2
µ′

2
µ2

[B−1(−k/m2)B
−1(P/M0)B(p2/m2)] (99)

where in the second term I used the relation

∂(Pk)

∂(p1p2)
=

√

P2 +M2
0

M0

ωm1
(p1)

ωm1
(k)

ωm2
(p2)

ωm2
(k)

(100)

to change the variables that appear in the delta functions.
The new feature of the Poincaré Clebsch-Gordan coefficients that do not

appear in the corresponding SU(2) Clebsch-Gordan coefficients is the ap-
pearance of the quantum numbers l and s. Intuitively these correspond to
the spin and orbital angular momentum. In the Clebsch-Gordan coefficient
(98) or (99) they represent degeneracy parameters, indicating that in decom-
posing the tensor product of two irreducible representations into irreducible
representations, the same values of M0 and j appear more than once. In
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these expression we have replaced M0 by the continuous variable k := |k|;
where k and M0 are related by

M0 =
√

m2
1 + k2 +

√

m2
2 + k2 (101)

In general the structure of the Clebsch-Gordan coefficients depends on
the choice of basis for the irreducible representations. In the above I chosen
the irreducible basis to be simultaneous eigenstates of linear momentum and
ẑ of the canonical spin. Different choices of basis are possible and used in
applications.

The key property of the rotationless boost is the observation that the
Wigner rotation of a rotation is the rotation. This justified the used of the
partial wave analysis of the rest vector.

This property of the rotationless boost is elementary to prove using the

SL(2,C) representations. First note that (28) applied for A = e
i
2
θ·σ associ-

ated with a rotation R gives

e
i
2
θ·σxµσµe

− i
2
θ·σ = (Rx)µσµ = xµ(R−1σ)µ (102)

Using (102) in the SL(2,C) representation of the Wigner rotation of the
rotation R gives

e−
1

2
Rρ·σe

i
2
θ·σe

1

2
ρ·σ = e

i
2
θ·σe−

i
2
θ·σe−

1

2
Rρ·σe

i
2
θ·σe

1

2
ρ·σ =

e
i
2
θ·σe−

1

2
Rρ·Rσe

1

2
ρ·σ = e

i
2
θ·σ (103)

which is the SL(2,C) representation of the original rotation.

9 Dynamical representations

The representation U(Λ, a) is abstract. Specific realizations of Poincaré in-
variant quantum mechanics involve both a choice of Hilbert space representa-
tions on which U(Λ, a) acts and a particular implementation of the dynamics.
The problem of adding interactions to the Hamiltonian while retaining the
Poincaré commutation relations is a non-linear problem. The problem is
most easily understood by considering the commutator

[Ki, P j] = iδijH (104)
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implies that one cannot add interactions to the Hamiltonian without also
adding them to the left side of the commutator. Once interactions appear
in the operators on the left side of the commutator one must still satisfy the
commutation relations.

While this problem is non-linear, the resulting generators must satisfy
the Poincaré Lie algebra, and the resulting unitary representation of the
Poincaré group must have a decomposition into irreducible representations.
A sensible strategy is to add interactions to a direct integral of irreducible
representations that does not change the group structure.

I discuss the two-particle case [13], but the result can be extended to any
number of particles [14][15][16]. The starting point is a description of two
free particles. The Hilbert space is the tensor product of two one-particle
irreducible representation spaces

|(m1, j1)p1, µ1〉 ⊗ |(m2, j2)p2, µ2〉 (105)

Using the Clebsh-Gordan coefficients derived in section 8 this can be
replaced by the irreducible basis

|(k, j)P, µ, l, s〉 (106)

where
U0(Λ, a)|(k, j)P, µ, l, s〉 = |(k, j)ΛP, µ′, l, s〉×
√

ωM0
(ΛP )

ωM0
(P)

Dj
µ′µ[B

−1(ΛP/M0)ΛB(P/M0)]e
iΛP ·a (107)

Here U0(Λ, a) indicates the non-interacting unitary representation of the
Poincaré group.

Note that the only variables that are transformed in this basis are P and
µ. The noninteracting mass operator in this representation is

M0 =
√

m2
1 + k2 +

√

m2
2 + k2 (108)

The basis vectors are simultaneous eigenstates of M0, j
2, j · ẑ, and P.

All of these operators, in addition to the conjugate operators, commute with
M0.

Comparing to a non-relativistic model, M0 is the relativistic analog of
the center of mass Hamiltonian. Its eigenvalues represent the energy of the
non-interacting two particle-system in the two-particle rest frame.
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Following the non-relativistic procedure I add an interaction to M0:

M = M0 + V (109)

to construct an interacting mass operator. It is desirable to do this is a man-
ner that does not disrupt the Poincaré commutation relations. The simplest
way to do this is to require that the interaction commutes with j2, j· ẑ, and P

and the operators conjugate to j · ẑ, and P. It follows that if this interaction
is evaluated in the non-interacting irreducible basis then it must have the
form

〈(k′, j′)P′, µ′, l′, s′|V |(k, j)P, µ, l, s〉 =

δ(P′ − P)δj′jδµ′µ〈k′, l,′ s′‖vj‖k, l, s〉 (110)

The requirement that V commutes with the operators conjugate to j · ẑ, and
P means that the reduced kernel 〈k′, l,′ s′‖vj‖k, l, s〉 does not depend on P

or µ. It is encouraging to note that this interacting has the same number of
degrees of freedom as a rotationally invariant non-relativistic interaction in
a partial-wave basis.

Because M and M0 satisfy the same commutation relations with with j2,
j · ẑ, and P and the operators conjugate to j · ẑ, and P, it follows that it is
possible to find simultaneous eigenstates ofM j2, j·ẑ, and P, and furthermore
that these eigenstates transform just like the corresponding non-interacting
irreducible states, with the eigenvalue of M0 replaced by the eigenvalue of
M . The desired eigenstates can be constructed by diagonalizing M in the
free-particle irreducible basis.

〈(k′, j′)P′, µ′, l′, s′|(λ, j)P′, µ′〉 = (111)

δj′jδ(P
′ − P)δµ′µ〈j′, k′, l′, s′|j, λ〉 (112)

(
√

m2
1 + k2 +

√

m2
2 + k2)〈j, k, l, s|j, λ〉+ (113)

|j1+j2|
∑

s=|j1−j2|

|j+s|
∑

l=|j−s|

∫ ∞

0

〈k, l, s‖vj‖k′, l′, s′〉k′2dk′〈j, k′, l′, s′|j, λ〉 (114)

= λ〈j, k′, l′, s′|j, λ〉 (115)

For a reasonable interaction these states will be complete. The commutation
relations imply

U(Λ, a)|(λ, j)P, µ〉 =
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|(λ, j)ΛP, µ′〉
√

ωλ(ΛP )

ωλ(P)
Dj
µ′µ[B

−1(ΛP/λ)ΛB(P/λ)]eiΛP ·a (116)

This leads defines the dynamical representation of the Poincaré group.
The eigenfunctions and the Clebsch-Gordan coefficients can be used to

express these relations in plane wave bases.
This basic construction was first done by Bakamjian and Thomas, [13].

They used the same basis for the irreducible representation the I used above,
resulting in an “instant-form dynamics”[17], where the mass eigenvalue λ
does not appear in the coefficients (116) when the Poincaré transformation
is a rotation or spatial translation.

10 Fields

While Poincaré invariant dynamics is not a local field theory, it is possible
to construct fields that transform covariantly with respect to the dynamical
representation of the Poincaré group. An important example of a field in
applications of this formalism is a current operator, however it is easy to
construct fields of any spin.

The method of construction is based on the Wigner-Eckart theorem for
the Poincaré group. In general a covariant field is a set of operators that
depend on a space-time coordinate x:

Ψn(x) (117)

and transform covariantly:

U(Λ, a)Ψn(x)U
†(Λ, a) = Ψn′(Λx+ a)S(Λ)n′n (118)

where S(Λ)n′n is a finite-dimensional representation of the Lorentz group.
These representations are well known; the irreducible building blocks are
symmetrized tensor products of SL(2,C) matrices [2].

There is a large class of operators that satisfy (118). A field operator is
defined if all of its matrix elements in a given basis are known. I evaluate
the matrix elements of field operators in the basis of irreducible eigenstates
of U(Λ, a). To specify the operator Ψn(x) it is necessary to determine the
matrix elements:

〈(m′, j′)p′, µ′|Ψn(x)|(m, j)p, µ〉 (119)
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Inserting U †(Λ, a)U(Λ, a) = I on both sides of the field operators in (119),
using the covariance relation, implies the identity

〈(m′, j′)p′, µ′|Ψn(x)|(m, j)p, µ〉 =

〈(m′, j′)Λp′, ν ′|Ψn′(Λx+ a)|(m, j)Λp, ν〉×

eiΛp·aDj
νµ[B

−1(Λp/m)ΛB(p/m)]

√

ω(Λp)

ω(p)
×

e−iΛp
′·aDj∗

ν′µ′ [B
−1(Λp′/m′)ΛB(p′/m′)]

√

ω(Λp′)

ω(p′)
S(Λ)nm. (120)

This equation can be used to relate an arbitrary matrix element to a reduced
set of invariant independent matrix elements.

For example, if I set Λ = I and a = −x in (120) I get

〈(m′, j′)p′, µ′|Ψn(x)|〈(m, j)p, µ〉 =

〈(m′, j′)p′, µ′|Ψn(0)|(m, j)p, µ〉ei(p′−p)·x (121)

which shows that matrix elements of the field operator for any x can be
expressed, using translational covariance, in terms of matrix elements with
x = 0.

Since the initial four momentum is time-like it is possible to use a ro-
tationless Lorentz transformation Λ = B−1(p/m), a = 0 to transform the
initial momentum to its rest value:

〈(m′, j′)p′, µ′|Ψn(0)|(m, j)p, µ〉 =

〈(m′, j′)Λp′, ν ′|Ψn′(0)|(m, j)0, µ〉
√

m

ω(p)

√

ω(Λp′)

ω(p′)
×

Dj∗
ν′µ′ [B

−1(Λp′/m′)ΛB(p′/m′)]S(Λ)n′n. (122)

Equation (122) , along with (121) implies that all matrix elements can be
expressed in terms of the matrix elements

〈(m′, j′)p′, µ′|Ψn(0)|(m, j)0, µ〉. (123)

Finally I can use a rotation R about an axis parallel to ẑ×p′ to orient p′ in
the ẑ direction.

〈(m′, j′)p′, µ′|Ψn(0)|(m, j)0, µ〉 =
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〈(m′, j′)ẑ|p′|, ν ′|Ψn′(0)|(m, j)0, ν〉×
Dj
νµ[R]Dj∗

ν′µ′ [R]S(R)n′n. (124)

Combining (121) with (122) and (124) implies that every matrix element of
Ψn(x) can be expressed in terms of the matrix element

〈(m′, j′)ẑ|p′|, ν ′|Ψn′(0)|(m, j)0, ν〉. (125)

Finally I can still use rotations about the z axis to constrain the discrete
indices

〈(m′, j′)ẑ|p′|, ν ′|Ψn′(0)|(m, j)0, ν〉 =

〈(m′, j′)ẑ|p′|, ν ′|Ψn′(0)|(m, j)0, ν〉ei(µ′−µ)φSn′n[R(φ)]. (126)

Differentiating with respect to φ and setting φ = 0 gives

(µ′ − µ)〈(m′, j′)ẑ|p′|, ν ′|Ψn(0)|(m, j)0, ν〉 =

i〈(m′, j′)ẑ|p′|, ν ′|Ψn′(0)|(m, j)0, ν〉 ∂
∂φ
Sn′n[R(φ)]|φ=0

(127)

The last constraint has to be evaluated on a case by case basis. For a
4-vector field

Ψn′(0) → Jα(0)Sn′n[R(φ)] →









1 0 0 0
0 cos(φ) sin(φ) 0
0 − sin(φ) cos(φ) 0
0 0 0 1









(128)

and

∂

∂φ
Sn′n[R(φ)]|φ=0

→









0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0









(129)

which gives the following constraints:

〈(m′, j′)ẑ|p′|, ν ′|J0(0)|(m, j)0, ν〉 =

δνν′〈(m′, j′)ẑ|p′|, ν|J0(0)|(m, j)0, ν〉 (130)

〈(m′, j′)ẑ|p′|, ν ′|J3(0)|(m, j)0, ν〉 =
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δνν′〈(m′, j′)ẑ|p′|, ν|J3(0)|(m, j)0, ν〉 (131)

(µ′ − µ)〈(m′, j′)ẑ|p′|, ν ′|Jx(0)|(m, j)0, ν〉 =

i〈(m′, j′)ẑ|p′|, ν ′|Jy(0)|(m, j)0, ν〉 (132)

(µ′ − µ)〈(m′, j′)ẑ|p′|, ν ′|Jy(0)|(m, j)0, ν〉 =

−i〈(m′, j′)ẑ|p′|, ν ′|Jx(0)|(m, j)0, ν〉 (133)

The last two of these equation can combined to give

[(µ′ − µ)2 − 1]〈(m′, j′)ẑ|p′|, ν ′|Jx(0)|(m, j)0, ν〉 = 0 (134)

[(µ′ − µ)2 − 1]〈(m′, j′)ẑ|p′|, ν ′|Jy(0)|(m, j)0, ν〉 = 0 (135)

〈(m′, j′)ẑ|p′|, ν ′|Jy(0)|(m, j)0, ν〉 =

i

(µ− µ′)
〈(m′, j′)ẑ|p′|, ν ′|Jx(0)|(m, j)0, ν〉 (136)

This implies that the most general for vector field, Jµ(x), can be uniquely
specified by defining the independent matrix elements and using covariance
to generate the remaining matrix elements:

〈(m′, j′)ẑ|p′|, ν|J0(0)|(m, j)0, ν〉 (137)

〈(m′, j′)ẑ|p′|, ν|J3(0)|(m, j)0, ν〉 (138)

〈(m′, j′)ẑ|p′|, ν ± 1|Jx(0)|(m, j)0, ν〉 (139)

These independent matrix elements are Poincaré invariant functions - since
one arrives that the same independent matrix elements from any starting
frame.

These invariant matrix elements are the analog of the reduced matrix
elements that appear in the standard SU(2) Wigner Eckart theorem.

The form of the Wigner-Eckart theorem does not look exactly like the
standard form because the operators are expressed as Lorentz covariant den-
sities; however they could equivalently be expressed as Poincaré covariant
operators [18]. This is not normally done because as the Fourier transform
of x passes through the six classes of irreducible representation in Table
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1, the transformation properties of the operator change. With Lorentz co-
variant densities transformation properties of the continuous parameter x is
decoupled from the discrete field index.

If Jµ(x) is an electromagnetic current operator then current conservation
and parity will further reduce the number of independent invariant matrix
elements. The resulting number corresponds exactly to the number of invari-
ant form factors.

The two main messages are from this section are (1) even though the
representation U(Λ, a) is not manifestly covariant, the theory has many
fields that transform covariantly and (2) covariant field operators can be
constructed using the Wigner-Eckart theorem for the Poincaré group.

11 Examples

11.1 Confined Quarks

Assume equal mass quarks and antiquarks.

1. Hilbert Space (identify the degrees of freedom - treat free quarks as
massive spin 1/2 particles)

H = Hq ⊗Hq̄ (140)

2. Mass operator (include dynamics - confining interaction)

M2 = 4(k2 +m2) − λ∇2
k (141)

3. Mass eigenfunctions (in the non-interacting irreducible basis)

〈(k′, j′)P′, µ′; l′, s′|(M, j)P, µ〉 = δ(P′ − P)δj′jδµ′µφ
j
M(k′, l′, s′) (142)

4. Mass eigenvalue problem (solve in the non-interacting irreducible ba-
sis).

4(k2 +m2)φj(k, l, s) − λ∇kφ
j(k, l, s) = M2φj(k, l, s) (143)
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5. Relativistic Dynamics (simultaneous eigenstates of mass, spin, linear
momentum and z-component of canonical spin are complete and trans-
form irreducibly)

〈(k, j)P, µ; l, s|U(Λ, a)|(M, j)P, µ〉 =

〈(k, j)P, µ; l, s|U(Λ, a)|(M, j)ΛP, ν〉×
√

ωM(ΛPM)

ωM(P)
Dj
νµ[B

−1(ΛP/M)ΛB(P/M)]eiΛPM ·a (144)

where
PM = (

√
P2 +M2,P) (145)

5. Representation in terms of quark degrees of freedom (use Poincaré
Clebsh-Gordan coefficients - needed to calculate electromagnetic ob-
servables)

〈pq, µq,pq̄, µq̄|(M, j)P, ν〉 =
√

√

P2 +M2
0

M0

√

ωmq
(pq)

ωmq
(k)

√

ωmq̄
(pq̄)

ωmq̄
(k)

×

Y l
µl

(k̂)〈l, µl, sµs|jµ〉〈jq, µ′
qjq̄µ

′
q̄|sµs〉×

D
jq∗
µ′qµq

[B−1(k/mq)B
−1(P/M0)B(pq/mq)]×

D
jq̄∗

µ′q̄µq̄
[B−1(−k/mq̄)B

−1(P/M0)B(pq̄/mq̄)]φ
j(k, l, s) (146)

These steps show that this model is mathematically equivalent to a quan-
tum mechanical harmonic oscillator. Because the oscillator is associated with
the square of the mass, taking square roots, it is easy to show that the mass
eigenvalues grow linearly with the mean separation of the partons. More
complicated spin-flavor dependent interactions can be included in step 3.
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11.2 Pion production near threshold

This is an example of a model that does not conserve particle number.

1. Hilbert Space (identify degrees of freedom - in this example I treat the
pions as physical rather than bare pions.)

H = (HN ⊗HN ) ⊕ (HN ⊗HN ⊗Hπ) (147)

2. Mass operator (include dynamics)

M = M0 + V =
(

M0NN 0
0 M0NNπ

)

+

(

VNN VNN ;NNπ

VNNπ;NN VNN + VNπ + VN ′π

)

(148)

3. Mass eigenfunction (in the non-interacting irreducible basis)

(

〈(k′, j′)P′, µ′; l′, s′|(M, j)P, µ〉
〈(k′, q′, j′)P′, µ′;L′, S ′, j′2, l

′, s′|(M, j)P, µ〉

)

= (149)

δ(P′ − P)δj′jδµ′µ

(

φjM1(k
′, l′, s′)

φjM2(k
′, q′, L′, S ′, j′2, l

′, s′)

)

(150)

4. Mass eigenvalue problem (in the non-interacting irreducible basis).

(M − 2
√

k2 +m2
N )φjM1(k

′, l′, s′) =

∫

∑

V j
NN(k, l, s; k′, l′, s′)φjM1(k

′, l′, s′)k′2dk′+

∫

∑

V j
NN ;NNπ(k, l, s; k

′, q′, L′, S ′, j′2, l
′, s′)×

φjM2(k
′, q′, L′S ′j′2, l

′, s′)k′2dk′q′2dq′ (151)

(M −
√

4k2 + 4m2
N + q2 +

√

q2 +m2
π)φ

j
M2(k

′, q′, L′S ′j′2; l
′, s′) =
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∫

∑

V j
NNπ;NN(k, q, L, S, j2, l, s; k

′, l′, s′)φjM1(k
′, l′, s′)k′2dk′+

∫

∑

V j
NNπ;NNπ(k, q, L, S, j2, l, s; k

′, q′, L′, S ′, j′2, l
′, s′)×

φjM2(k
′, q′, L′, S ′, j′2, l

′, s′)k′2dk′q′2dq′ (152)

where V j
NNπ;NNπ is a sum of two body interactions in (148). Differ-

ent orders of coupling of the irreducible representation are natural for
each pairwise interaction in the three-particle sector. The transforma-
tions that change the order of the coupling can be computed using
four Clebsch-Gordan coefficients - they are the analog of “Racah coef-
ficients” for the Poincaré group.

The solution to this problem has the complexity of a three-body prob-
lem. The scattering problem with all of the correct asymptotic condi-
tions must be solved using Faddeev methods.

For the pion to be physical the off diagonal parts of the interaction
should be short ranged “2-3” operators rather than elementary vertices.

5. Relativistic Dynamics (simultaneous eigenstates of mass, spin, linear
momentum and z-component of canonical spin are complete and trans-
form irreducibly):

(

〈(k′, j′)P′, µ′; l′, s′|U(Λ, a)|(M, j)P, µ〉
〈(k′, q′, j′)P′, µ′;L′, S ′, j′2, l

′, s′|U(Λ, a)|(M, j)P, µ〉

)

=

(

〈(k′, j′)P′, µ′; l′, s′|(M, j)ΛP, µ′〉
〈(k′, q′, j′)P′, µ′;L′, S ′, j′2, l

′, s′|(M, j)ΛP, µ′〉

)

×
√

ωM(ΛPM)

ωM(P)
Dj
µ′µ[B

−1(ΛP/M)ΛB(P/M)]eiΛPM ·a (153)

where
PM = (

√
P2 +M2,P) (154)

5. Representation in terms of single particle degrees of freedom. The irre-
ducible free-particle basis is constructed by first coupling the nucleon
irreducible representations to two-nucleon irreducible representations
and then coupling the resulting two-nucleon irreducible representations
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to the pion irreducible representation. This involves using two sets of
Poincaré Clebsch-Gordan coefficients. These can be inverted using the
Poincare Clebsch-Gordan coefficients to express the irreducible three
particle basis in terms of the tensor product of the single particle ir-
reducible bases. The computation is straightforward, but the result is
messy and not very illuminating.

This is a simple extension of the NN model to allow for the production
of a single pion. In this model the deuteron will have a two-nucleon and
two-nucleon one pion component.

11.3 Quark string model

The flexibility of Poincaré invariant quantum mechanics can be illustrated
by considering a quark model motivated by strong-coupling lattice QCD.
The basic building blocks of strong coupling Lattice QCD are quarks and
links[19]. The physical degrees of freedom involve combinations of quarks,
antiquarks and links that are connected to form a color singlet at each lattice
site. In the absence of the interactions the energy of each configuration is
the sum of the quark and antiquark masses and a quantity proportional to
the total length of the links, and color singlets are confined. These degrees of
freedom then interact in a manner that couples color singlets to color singlets.

To make a Poincaré invariant model based on these degrees of freedom
I consider a model with quarks and antiquark degrees of freedom, where
interactions are added in a two step process. First quarks and antiquarks
connected by links are modeled by quarks and antiquarks interacting via a
confining interaction. Because this represents a locally gauge invariant ob-
ject the color degrees of freedom are assumed to be summed out. The mass
operator can be diagonalized and the resulting eigenstates transform like
particles. The interactions that couple singlets or multi-singlets are mod-
eled by short-range interactions. For example, a string breaking interaction
is one that couples one confined singlet quark antiquark pair to a pair of
confined singlet quark-antiquark pairs. The structure of the interactions can
be motivated by lattice degrees of freedom [19] or axiomatic models [20] of
these degrees of freedom. The interactions between different singlets can
be expressed in terms of internal quark degrees of freedom or the Poincaré
irreducible labels of the confined states.
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I consider an example of a model that has a meson spectrum, meson decay,
and meson-meson scattering. I begin by constructing the singlet subspaces.
For this model I include three such subspaces. The quarks and antiquarks in
each subspace are assumed to couple to color singlets so the quarks in these
subspaces do not have color quantum numbers. These are tensor products of
two or four irreducible representations of the Poincaré group for each flavor
combination:

Hqq̄ (155)

Hqq̄∗ (156)

Hqqq̄q̄ (157)

Each of these subspaces can be decomposed into free particle irreducible
subspaces using the Poincaré Clebsh-Gordan coefficients. An invariant mass
operator is defined by adding a confining interaction to each non-interacting
mass operator:

Mqq̄ = M0qq̄ + Vqq̄ (158)

Mqq̄∗ = M0qq̄ + Vqq̄∗ (159)

Mqqq̄q̄ = Mqqq̄q̄ + Vqqq̄q̄ (160)

It is useful to think of the lattice counterpart of these three operators in a
Born Oppenheimer type of approximation. For Vqq̄ can be thought of as the
lowest energy state of a quark anti-quark pair coupled to a single as a function
of the distance between the quark and antiquark; Vqq̄∗ can be thought of as
the energy of the first excited state of a quark anti-quark pair coupled to a
singlet as a function of the distance between the quark and antiquark; Vqqq̄q̄
can be considered as the lowest energy state of a two quark two anti-quark
singlet that cannot be decomposed into a pair of non-interacting singlets as
a function of the quark and antiquark coordinates. In Poincaré invariant
quantum mechanics these interactions can be modeled. The interaction in
each of these singlet mass operators is assumed to have only discrete spectra.

A model Hilbert space is defined by:

H =

Hqq̄ ⊕Hqq̄∗ ⊕Hqqq̄q̄ ⊕ (Hqq̄ ⊗Hqq̄) ⊕ (Hqq̄ ⊗Hqq̄∗) ⊕ (Hqq̄∗ ⊗Hqq̄∗) (161)
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On this space I define the a mass operator that only includes interactions
between quarks and antiquarks in the same color singlet:

Mc =

















Mqq̄ 0 0 0 0 0
0 Mqq̄∗ 0 0 0 0
0 0 Mqqq̄q̄ 0 0 0
0 0 0 M(qq̄)(qq̄) 0 0
0 0 0 0 M(qq̄)(qq̄)∗ 0
0 0 0 0 0 M(qq̄∗)(qq̄)∗

















(162)

where
M(qq̄)(qq̄)∗ =

√

M2
(qq̄) + k2 +

√

M2
(qq̄∗) + k2 (163)

M(qq̄)(qq̄) =
√

M2
(qq̄)1

+ k2 +
√

M2
(qq̄∗)2

+ k2 (164)

M(qq̄)(qq̄)∗ =
√

M2
(qq̄)1

+ k2 +
√

M2
(qq̄∗)2

+ k2 (165)

The relative momenta k in the two-singlet subspaces is obtained by using (81)
with M0 replaced by one of the above masses, which can also be expressed
in terms of the individual singlet mass eigenvalues and momenta.

Additional interactions allow the quarks in different singlets to interact.
These interaction have the matrix form



















0 Va Vb Vc Vd Ve
V †
a 0 Vf Vg Vh Vi
V †
b V †

f 0 Vj Vk Vl
V †
c V †

g V †
j Vs1 Vm Vn

V †
d V †

h V †
k V †

m Vs2 V+o

V †
e V †

i V †
l V †

n V †
o Vs3



















(166)

This construction requires that each of interactions commutes with and is in-
dependent of the total P, j2, j · ẑ. In this case the spins are not the kinematic
spins - they are the spins obtained by treating the confined bound states as
particles. These interactions are assumed to be short range interactions when
they couple different confined irreducible singlets, however the existence of
infinite towers of confined singlet states in each sector puts additional con-
straints on a model if one wants of have non-trivial meson-meson scattering
theory.
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Thus, the dynamics of this model is constructed in two steps. First the
confining mass operator Mc = M0 +Vc is diagonalized in the non-interacting
irreducible basis, to construct a complete set of confined irreducible mass
eigenstates. Then the M = Mc+V is diagonalized in the confined irreducible
basis to get a dynamical mass operator, which along with linear momentum
and the spin of the confined system can be used to construct a dynamical
irreducible representation.

This model is a fully relativistic quantum mechanical model. While this
model it is not complete, it illustrates some of the problems that need to be
addressed in complex systems. For suitable interactions this mass operator
will support bound states, unstable resonances, and scattering states. The
bound states correspond to physical mesons in this model. These in general
will have a different mass than the corresponding bare mesons that only
include the confining interaction. The continuous spectrum is associated
with scattering of the bare mesons. Finally bare mesons with mass in the
scattering continuum should to be unstable. There is the potential for an
interesting interplay between the resonances and the scattering states. The
scattering problem involves the sums over an infinite number of short range
interactions - it is not automatic that the sum of an infinite number of short
ranged interactions results in a short ranged interaction. This is also related
to the decay widths of the high lying bare mesons. There will clearly be
an interplay between the lifetimes of high lying states and the existence of
a scattering theory that needs to be investigated in such a model. Some of
these questions are addressed in [21]

12 Position in Poincaré Invariant Quantum

Mechanics

One principle that is given up in Poincaré invariant quantum mechanics is
microscopic locality. The other thing that is given up is the use of local field
operators, which are replaced by particle degrees of freedom. Locality cannot
be tested in these theories because there are no suitable position operators
for particles in Poincaré invariant quantum theory. Thus, while the theory
gives up microscopic locality, it also eliminates the degrees of freedom that
are needed to test microscopic locality.

In order to understand the difficulties associated with finding a suitable
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position operator in Poincaré invariant quantum mechanics I begin by con-
sidering the wave function of a spinless particle at the origin at time t = 0.
I denote the wave function of this particle by 〈p|x = 0; t = 0〉. If I make the
naively sensible assumption that such a state is invariant under homogeneous
Lorentz transformations, then

〈p|x = 0; t = 0〉 = 〈p|U(Λ, 0)|x = 0; t = 0〉 =

√

ωm(Λ−1p)

ωm(p)
〈Λ−1p|x = 0; t = 0〉. (167)

Comparing the left and right sides of (167) it follows that wave function
〈p|x = 0; t = 0〉 must have the form

〈p|x = 0; t = 0〉 =
1

√

ωm(p)
f(p2) =

1
√

ωm(p)
f(m2) =

C
√

ωm(p)
, (168)

where C is constant. I can now translate this eigenstate to construct an
eigenstate corresponding to a particle localized at x:

〈p|x; t = 0〉 = 〈p|U(I,x)|x = 0; t = 0〉 = eip·x
C

√

ωm(p)
. (169)

If I take the overlap between the state at (x = 0; t = 0) with a state at
(x 6= 0; t = 0), the result is ([22]:

〈0|x〉 = |C|2
∫

d3p

ωm(p)
eip·x

−(2π)3|C|2 i
2
D∗

+(0,x) =

(2π)3|C|2 i
2

[

lim
t→0

1

4π
ǫ(t)δ(x2) − mi

4π2|x|K1(m|x|)
]

, (170)

where D+(x) is the positive frequency part of the Pauli-Jordan commutator
function. For x 6= 0, this expression is non-zero, but falls off like K1(m|x|),
vanishing as |mx|−1/2e−|mx| as |x| → ∞. Thus, these two states have an over-
lap which falls off exponentially when the coordinates are separated by more
than a Compton wavelength. The assumption that a particle localized at the
origin can be described in an invariant way implies that it is not orthogonal
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to a state at a different point at the same time. The Compton wavelength
of the particle again sets the scale for the violation of orthogonality.

It is possible to obtain additional insight by noting that the position
operator discussed above canonically conjugate to the linear momentum in
an irreducible representation. If the representation has a spin, this operator
is also required to commute with canonical spin ( the resulting operator is the
so called Newton-Wigner position operator). This means that it is essentially
−i multiplied by the partial derivative of the linear momentum holding the
canonical spin constant. Because the spins undergo momentum dependent
Wigner rotations, this is a non-trivial requirement that depends on which
boost is used to define the spin.

Changing spin observable involves momentum-dependent rotations, which
do not commute with the momentum derivatives. To understand this, con-
sider two spin-1/2 wave functions in a canonical spin and helicity spin basis,
respectively:

c〈mj;pµ|φ〉 = fµ(p); (171)

h〈mj;pµ|ψ〉 = fµ(p). (172)

The wave function fµ(p) is chosen to be the same in each case, however the
states are different. In both expressions, p is the three-momentum. The
Fourier transforms of each of these wave functions are clearly the same. On
the other hand, if we take the wave function c〈ms;pµ|φ〉, and perform the
unitary transformation that puts it into the same representation as the wave
function h〈ms;pµ|ψ〉, then the new wave function is

fµ(p) → f ′
µ(p) =

∑

µ̄

D
1

2

µµ̄[Rhc(p/m)]fµ̄(p). (173)

where
Rhc(p/m) = B−1

h (p/m)Bc(p/m) (174)

is the momentum dependent rotation constructed using a canonical boost
to from the rest frame to a frame with linear momentum p followed by a
helicity boost back to the rest frame. The resulting transformation is a
momentum dependent rotation, called a generalized Melosh rotation [23][24].
Obviously the partial derivative with respect to the linear momentum holding
the canonical spin constant differs from the partial derivative with respect
to the linear momentum holding the helicity spin constant.
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The conclusion is that although configuration space wave functions can be
used as well as momentum space wave functions, one should never attempt
to interpret the coordinates as observable quantities, especially on distance
scales on the order of a Compton wavelength of a particle. We note that the
concept of position gets even more complicated in models with interaction
dependent spins.

13 Two-component spinor conventions:

The group SL(2,C), which is a double cover of the Lorentz group, is useful
for both computational and proving simple results [2][11][24].

Let σµ denote the 2 × 2 Pauli spin matrices and the identity. Let

X := xµσµ xµ =
1

2
Tr(σµX) (175)

Note that
det(X) = (x0)2 − (x )2 = −x2 X = X† (176)

Any linear transformation that preserves the determinant and Hermiticity
of X defines a real Lorentz transformation. If A is an arbitrary complex
matrix with det(A) = 1 and

X → X ′ = AXA† (177)

then
det(X ′) = det(X) and (X ′)† = X ′ (178)

The corresponding Lorentz transformation is

Λ(A)µν =
1

2
Tr(σµAσνA

†) (179)

It is obvious from (179) that

Λ(A)µν = Λ(−A)µν (180)

It is not difficult to show that there is a 2 to 1 correspondence between the
SL(2,C) matrices A and Lorentz transformations connected to the identity.

A general element in SL(2,C) has the form

A = ±e 1

2
(ρ+iθ)·σ . (181)
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A = e
1

2
ρ·σ (182)

corresponds to a rotationless boost with rapidity ρ and

A = ei
1

2
θ·σ (183)

corresponds to a rotation through an angle θ.
Canonical Boosts:

SL(2, C) representatives of canonical boosts are given by:

sinh(ω) =
|p|
m

= |v| (184)

cosh(ω) =
p0

m
= v0 (185)

sinh(
ω

2
) =

√

p0 −m

2m
=

√

v0 − 1

2
(186)

cosh(
ω

2
) =

√

p0 +m

2m
=

√

v0 + 1

2
(187)

Λc(v) := cosh(ω/2)σ0 + sinh(ω/2)v̂ · σ =
√

v0 + 1

2
σ0 +

√

v0 − 1

2
v̂ · σ = (188)

1
√

2(v0 + 1)

(

(v0 + 1)σ0 + v · σ
)

= (189)

1
√

2m(p0 +m)

(

(p0 +m)σ0 + p · σ
)

(190)

Λ†
c(v) = Λc(v) (191)

Λ−1
c (v) = Λ̃c(v) = cosh(ω/2)σ0 − sinh(ω2)v̂ · σ = (192)

√

v0 + 1

2
σ0 −

√

v0 − 1

2
v̂ · σ = (193)

1
√

2(v0 + 1)

(

(v0 + 1)σ0 − v · σ
)

= (194)

1
√

2m(p0 +m)

(

(p0 +m)σ0 − p · σ
)

(195)

Note that in all of the above expressions for the boosts v0 or p0 represent
on-shell quantities.
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14 Scattering theory in Poincaré invariant quan-

tum mechanics

S and T operators

The formulation of scattering problems in Poincaré invariant quantum
mechanics is based on standard time-dependent multichannel scattering.
Scattering channels α are associated with asymptotically separated clusters,
where the particles in each cluster are either in a bound state or the clus-
ter consists of a single particle. Each distinct partition of the particles into
clusters may correspond to more than one scattering channel or it may sup-
port no scattering channels. The scattering matrix is the inner product of
incoming and outgoing wave scattering states

Sαβ = 〈Ψ+
α (0)|Ψ−

β (0)〉 (196)

where α and β are channel labels and the initial and final scattering states
are solutions of the time-dependent Schrödinger equation

i
d

dt
|Ψ〉 = H|Ψ〉 (197)

satisfying the incoming and outgoing wave asymptotic conditions

lim
t→±∞

‖e−iHt|Ψ±
α (0)〉 − Παe

−iHαt|Φ±
α (0)〉‖ = 0. (198)

In this paper the ± on the scattering states and wave operators indicate
the direction of the time limit (− =past/+ =future), which is opposite to
the sign of the iǫ that appears in the resolvents used in time independent
scattering. The operator Πα is a channel projection operator,

Πα = ⊗i∈α

∑

∫

νi

|(mi, ji)pi, νi〉dpi〈(mi, ji)pi, νi| (199)

which projects on the subspace associated with mutually non-interacting
bound subsystems. The factors |(mi, ji)pi, νi〉 are basis functions for the ir-
reducible representation of the Poincaré group associated with the i-th cluster
of the channel α with discrete mass eigenvalue, mi.

The quantity |Sαβ|2 represents the probability of a system prepared in
a state that in the distant past looks like a system of asymptotically sepa-
rated particles in channel β to be measured to be in a state that looks in
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the asymptotic future like a system of asymptotically separated particles in
channel α.

It follows from (198) that the interacting and limiting non-interacting
asymptotic states are related by the multichannel wave operators

|Ψ±
α (0)〉 = Ωα±(H,Hα)|Φ±

α (0)〉 (200)

where the multichannel wave operators are defined by the strong limits

Ωα± = lim
t→±∞

eiHtΠαe
−iHαt. (201)

In these equations Hα is the Hamiltonian with the interactions between par-
ticles in different asymptotic clusters set to zero. The multichannel scattering
operator can then be expressed in terms of the wave operators as

Sαβ = Ω†
α+(H,Hα)Ωβ−(H,Hβ). (202)

The wave operators can be expressed directly in terms of the mass opera-
tors. The Kato-Birman invariance principle [25][5] implies that H and Hα

in the channel wave operators can be replaced by f(H) and f(Hα) where
f is any piecewise differentiable function of bounded variation with positive
derivative; specifically

M =
√
H2 − P2 (203)

is a function with these properties. It follows that

Ωα± = lim
t→±∞

eiMtΠαe
−iMαt = lim

t→±∞
eiHtΠαe

−iHαt (204)

which leads to the equivalent expression for the multichannel scattering op-
erator [16]:

Sαβ = lim
τ,τ ′→∞

eiMατΠαe
−iM(τ+τ ′)Πβe

iMβτ
′

. (205)

To relate this to the time-independent formulation of scattering these limits
are computed in eigenstates |α〉 and |β〉 of Mα and Mβ respectively. I prove
that

〈α|S|β〉 = 〈α|β〉 − 2πiδ(Wα − Wβ)〈α|T αβ(Wα + i0+)|β〉 (206)

where
T αβ(z) = V β + V α(z −M)−1V β, (207)
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and
V α = M −Mα (208)

and
V α = M −M0 (209)

for the breakup channel.
Here Wα and Wβ are the eigenvalues of Mα and Mβ in the channel eigen-

states |α〉 and |β〉. The first term in Eq. (206) is identically zero if the states
|α〉 and |β〉 correspond to different scattering channels.

To prove (206) I evaluate the S-matrix elements in the channel mass
eigenstates:

〈β|Sba|α〉 = lim
τ→∞

〈β|eiMβτe−2iMτeiMατ |α〉

= 〈β|α〉 + lim
τ→∞

∫ τ

0

dτ ′
d

dτ ′
〈β|ei(Wβ+Wα−2M)τ ′ |α〉

= 〈β|α〉 + lim
ǫ→0+

i

∫ ∞

0

dτ ′ 〈β|

×
[

(Wβ −M)ei(Wβ+Wα−2M+iǫ)τ ′ + ei(Wβ+Wα−2M+iǫ)τ ′(Wα −M)
]

|α〉

= 〈β|α〉 + lim
ǫ→0+

1

2
〈β|

×
[

(M − Wβ)
1

W̄ −M + iǫ
+

1

W̄ −M + iǫ
(M − Wα)

]

|α〉, (210)

where Mα|α〉 = Wα|α〉 and Mβ|β〉 = Wβ|α〉 and W̄ := 1
2
(Wα + Mβ) is the

average invariant mass eigenvalues of the initial and final asymptotic states.
The iǫ are introduced because formally the sharp eigenstates should be first
integrated against wave packets in the cluster momenta before the time limit
is computed. Adding the iǫ has no effect if these integrals are done first,
however when iǫ is included it is possible to change the order of the time
limit and the integration over the wave packets. I will reinsert the wave
packets when I compute the cross section. In deriving (211) the two strong
limits in (206) are replaced a single weak limit. Equation (206) is interpreted
as the kernel of an integral operator. S-matrix elements are obtained by
integrating the sharp eigenstates in Eq. (211) over normalizable functions of
the energy and other continuous variables.

To simply this expression I define the residual interactions V α and V β

by:
V α := M −Mα; V β = M −Mβ , (211)
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where
V α|α〉 = (M − Wα)|α〉; V β|β〉 = (M − Wβ)|β〉. (212)

The resolvent operators of the mass operator and the channel mass operator,

G(z) :=
1

z −M
Gα(z) :=

1

z −Mα
, (213)

are related by the second resolvent relations [26]:

G(z) −Gα(z) = Gα(z)V
αG(z) = G(z)V αGα(z). (214)

which when used in Eq. (206) gives

〈β|S|α〉 = 〈β|α〉

+ lim
ǫ→0+

1

2
〈β|
[

V β
(

1 +G(W̄ + iǫ)V α
)

Gα(W̄ + iǫ)

+ Gβ(W̄ + iǫ)
(

1 + V βG(W̄ + iǫ)
)

V α
]

|α〉

= 〈β|α〉
[

1 − lim
ǫ→0+

Wβ − Wα

Wβ − Wα + 2iǫ

]

+ lim
ǫ→0+

[

1

Wβ − Wα + 2iǫ
+

1

Wα − Wβ + 2iǫ

]

× 〈β|
(

V α + V βG(W̄ + iǫ)V α
)

|α〉

= 〈β|α〉 lim
ǫ→0+

[

2iǫ

Wβ − Wα + 2iǫ

]

+ lim
ǫ→0+

[ −4iǫ

(Wβ − Wα)2 + 4ǫ2

]

〈β|
(

V α + V βG(W̄ + iǫ)V α
)

|α〉.(215)

It is now possible to evaluate the limit as ǫ→ 0. It is important to remember
that this is the kernel of an integral operator.

The first term in square brackets is unity when the initial and final
mass eigenvalues are identical, and zero otherwise; however, the limit in
the bracket is a Kronecker delta and not a Dirac delta function. For α 6= β,
〈β(W′)|α(W)〉 are Lebesgue measurable in W

′ for fixed W, so there is no
contribution from the first term in Eq. (215). For the case that Wα = Wβ,
we have 〈β(W′)|α(W)〉 ∝ δ(W′ − W). The matrix element vanishes by or-
thogonality unless Wβ = Wα, but then the coefficient is unity. Thus, the
first term in (215) is 〈β|α〉 if the initial and final channels are the same, but
zero otherwise. The matrix elements also vanish by orthogonality for two
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different channels governed by the same asymptotic mass operator with the
same invariant mass. The first term in (215) therefore includes a channel
delta function.

For the second term, the quantity in square brackets becomes −2πiδ(Wβ−
Wα), which leads to the relation

〈β|S|α〉 = 〈α|β〉 − 2πiδ(Wβ − Wα)〈β|T βα(Wα + i0+)|α〉, (216)

where
T βα(z) = V α + V βG(z)V β. (217)

and 〈α|β〉 is zero if the initial and final channels are different and is the
overlap of the initial and final states if the initial and final channels are the
same. Equation (216) is exactly eq. (206).

The channel projection operators Πα are absorbed in the channel states,
|α〉. The translational invariance of the interaction (211) requires that

〈P, · · · |T αβ(z)| · · · ,P ′〉 = δ(P − P ′)〈· · · ‖T αβ(z)‖ · · · 〉. (218)

With our choice of irreducible basis the residual interactions and the
resolvent commute with the total linear momentum operator, and if the sharp
channel states |α〉 and |β〉 are simultaneous eigenstates of the appropriate
partition mass operator and the linear momentum, then a three-momentum
conserving delta function can be factored out of the T -matrix element:

〈β|T βα(Wα + i0+)|α〉 = δ3(Pβ −Pα)〈β‖T βα(Wα + i0+)‖α〉. (219)

When combined with the three-momentum conserving delta function the
invariant mass delta function can be replaced an energy conserving delta
function

δ(Wβ − Wα) =

∣

∣

∣

∣

dW

dE

∣

∣

∣

∣

δ(Eβ − Eα)

∣

∣

∣

∣

dW

dE

∣

∣

∣

∣

=
W

E
. (220)

The S-matrix elements can be expressed in terms of the reduced channel
transition operators as follows:

〈β|S|α〉 = 〈α|β〉δβα − i(2π)δ4(Pβ − Pα)
Wα

Eα
〈β‖T βα(Wα + i0+)‖α〉 (221)

In this expression the S operator is invariant while the single particle asymp-
totic states have a non-covariant normalization.
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Scattering cross sections

The representation of the scattering matrix (221) is used to calculate the
cross section. I derive the cross section following standard methods used by
Brenig and Haag [27]. An initial state consisting of a target t in a state |ϕt〉
and beam b in a state |ϕb〉 leads to the asymptotic differential probability
amplitude for a n-particle final state in channel α:

〈p1, · · · ,pn|ϕ〉 :=

∫

〈p1, · · · ,pn|Sαβ|pb,pt〉dpbdpt〈pb|ϕb〉〈pt|ϕt〉. (222)

where the spin degrees of freedom are suppressed. The differential probability
for observing each final particle to be within dpi of pi is

dP = |〈p1, · · · ,pn|ϕ〉|2dp1 · · · dpn. (223)

Inserting the expression (221) for S in terms of the wave packets in (222),
assuming either different initial channels or non-forward scattering, so there
is no contribution from the identity part of the S matrix, gives

dP = dp1 · · · dpn
∫

(2π)2〈p1, · · · ,pn‖T αβ‖p′
b,p

′
t〉〈p1, · · · ,pn‖T αβ‖p′′

b ,p
′′
t 〉∗

× δ

(

∑

i

pi − p′
b − p′

t

)

δ

(

∑

j

pj − p′′
b − p′′

t

)

× δ(Wα − W
′
bt) δ(Wα − W

′′
bt)dp

′
bdp

′
tdp

′′
bdp

′′
t

× 〈p′
b|ϕb〉〈p′′

b |ϕb〉∗〈p′
t|ϕt〉〈p′′

t |ϕt〉∗. (224)

The delta function for the conservation of linear momentum means that

δ(Wα − W
′
bt) = δ(Eα − Ebt′)

∣

∣

∣

∣

dE

dM

∣

∣

∣

∣

= δ(Eα − E
′
bt)

∣

∣

∣

∣

Wα

Eα

∣

∣

∣

∣

(225)

where Eα =
√

W2
α + P2. With this replacement the delta functions in (225)

can be replaced by products of four momentum conserving delta functions:

δ4(
∑

i

pi − p′b − p′t) δ
4(
∑

j

pj − p′′b − p′′t ) =

δ4(
∑

i

pi − p′b − p′t) δ
4(p′b + p′t − p′′b − p′′t ). (226)
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If the initial wave packets are sharply peaked about the target and beam mo-
menta and the transition operator varies slowly on the support of these wave
packets, then the transition operators can be factored out of the integral,
replacing the momenta with the mean target and beam momenta, p̄b, p̄t.
This approximation must be valid for the cross section to be independent of
the shape of the wave packets. The result, after expressing the second four
momentum conserving delta function in (226) by a Fourier integral represen-
tation

1

2π4

∫

eix·(p
′

b
+p′t−p

′′

b
−p′′t )d4x (227)

is

dP = (2π)4dp1 · · · dpn
∫

∣

∣〈p1, · · · ,pn‖T αβ‖p̄b, p̄t〉
∣

∣

2 |Wα

Eα
|2

× |〈x, t|ϕb〉|2|〈x, t|ϕt〉|2dx dt

× δ

(

∑

i

pi − p̄b − p̄t

)

δ

(

∑

i

Eki
− Ēb − Ēt

)

. (228)

This is the differential probability for a single scattering event. The space-
time integral picks up a contribution whenever the beam and target are in
the same place at the same time.

In a real experiment there is a statistical ensemble of Nt target particles
with number density

ρt(x, t) = Nt

∑

l

plt|〈x, t|ϕlt〉|2 (229)

where Nt is the total number of target particles and plt are probabilities in
the target density matrix. A normal beam current density with a flux of Nb

beam particles per unit time per unit cross sectional area can be expressed
as

jb(x, t) = vbtρb(x, t) = vbtNb

∑

m

p′mb|〈x, t|ϕmt〉|2 (230)

where p′mb are probabilities in the beam density matrix and vbt is the relative
speed of the beam with respect to the target.

Using this in the expression for the scattering probability, assuming that
there is no more than one scattering event per incident particle, gives the
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number of particles scattered per unit time per unit volume as

dN

d4x
= NbNt

dP

dxdt
=

(2π)4

vbt

∣

∣〈p1, · · · ,pn‖T αβ‖p̄1b, p̄1t〉
∣

∣

2 W
2
α

E2
α

× δ4(p1 + · · · + pn − p̄b − p̄t) dp1 · · · dpn ρt(x, t)jb(x, t). (231)

This quantity is proportional to the beam current times the target density.
The proportionality factor is the differential cross section, dσ. Comparing

dN

d4x
= dσρt(x, t)jb(x, t) (232)

with (231) gives the following expression for the differential cross section:

dσ =
(2π)4

vbt

∣

∣〈p1, · · · ,pn‖T αβ‖p̄b, p̄t〉
∣

∣

2 ×

W
2
α

E2
α

δ4

(

n
∑

i=1

pi − p̄b − p̄t

)

dp1 · · ·dpn. (233)

For identical particles this must be multiplied by a statistical factor 1
s
, where

s is the number of permutations of the identical particles in the final state
(i.e. s = n1!n2! · · · if there n1 identical particle of type 1, n2 identical particle
of type 2, etc. in the final state.)

For polarized beams or targets it is useful to introduce matrices Sia and
Sfa in the initial and final spin variables with the normalization

Tr(SiaSib) = δab Tr(SfaSfb) = δab (234)

Spin operators are linear combinations of these operators with constant co-
efficients sia and sfa

Sf =
∑

a

sfaSfa Si =
∑

a

siaSia (235)

the resulting observable is

〈O〉 =
Tr(T †SfTSi)

Tr(T †T )
(236)

where the traces are over the spins. All of the spin independent factors cancel
in the ratio. In general the choice of spin-basis matrices S depend on the
particle content of the initial and or final states.
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Except for the factor W
2
α/E

2
α Eq. (233) is identical to the corresponding

non-relativistic expression. The additional factor of W
2
α/E

2
α arises because

we have chosen to calculate the transition operator using the mass opera-
tor instead of the Hamiltonian. The only difference in these formulas from
standard formulas is that the transition operator is constructed from the
difference of the mass operators with and without interactions and the ap-
pearance of the additional factor of W

2
α/E

2
α which corrects for the modified

transition operator. This factor becomes 1 when P = 0.
The expression of Eq. (223) can be expressed in a manifestly invariant

form. The relation to the standard expression of the invariant cross section
using conventions of the particle data book [28] is derived below.

15 Invariance of S and relation to T

The expression (233) for the differential cross section can be rewritten in a
manifestly invariant form. We write it as a product of an invariant phase
space factor, an invariant factor that includes the relative speed, and an
invariant scattering amplitude.

To establish the invariance of the invariant scattering amplitude note that
the scattering operator S is Poincaré invariant:

Uf (Λ, a)S = Uf (Λ, a)Ω
†
+(H,H0)Ω−(H,H0)

= = Ω†
+(H,H0)U(Λ, a)Ω−(H,H0)

= Ω†
+(H,H0)Ω−(H,H0)Uf (Λ, a) = SUf (Λ, a). (237)

where Uf is the product of the cluster irreducible representations of the
Poincaré group that act on the channel states.

The proof of the Poincaré invariance of the S operator above is a conse-
quence of the intertwining relations for the wave operators

U(Λ, a)Ω±(H,H0) = Ω±(H,H0)U0(Λ, a) (238)

To show the intertwining property of the wave operators first note that the
invariance principle gives the identity

Ω±(H,H0) = Ω±(M,M0). (239)

The mass operator intertwines by the standard intertwining properties of
wave operators. For our choice of irreducible basis the intertwining of the
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full Poincaré group follows because all of the generators can be expressed
as functions of the mass operator and a common set of kinematic operators,
{P, jz, jx, j2,−i∇P}, that commute with the wave operators.

The covariance of the S matrix elements follows from the Poincaré invari-
ance of the S operator if the matrix elements of S are computed in a basis
with a covariant normalization.

To extract the standard expression for the invariant amplitude the single
particle states are replaced by states with the covariant normalization used
in the particle data book [28]:

|p, µ〉 −→ |p, µ〉cov = |p, µ〉
√

2Ekm
(2π)3/2. (240)

The resulting expression

−i(2π)δ4(Pβ − Pα)
Wα

Eα
cov〈β‖T βα(Wα + i0+)‖α〉cov (241)

is invariant (up to spin transformation properties). Since the four dimen-
sional delta function is invariant, the factor multiplying the delta function is
also invariant (up to spin transformation properties). This means that

cov〈α‖Mαβ‖β〉cov :=
1

(2π)3

Wα

Eα
cov〈β‖T βα(Wα + i0+)‖α〉cov (242)

is a Lorentz covariant amplitude. The factor of 1/(2π)3 is chosen to agree
with the normalization convention used in the particle data book [28].

The differential cross section becomes

dσ =
(2π)4

4Emt
(pt)Emb

(pb)vbt

∣

∣

cov〈p1, · · · , pn, ‖Mαβ‖p̄b, p̄t〉cov
∣

∣

2

× δ4

(

∑

i

pi − p̄b − p̄t

)

dp1

2Em1
(2π)3

· · · dpn
2Emn

(2π)3
. (243)

The identity

vbt =

√

pt · pb)2 −m2
bm

2
t

Emb
Emt

(244)

can be used to get an invariant expression for the relative speed between the
projectile and target and

dΦn(pb + pt;p1, · · · ,pn) = δ4

(

∑

i

pi − p̄b − p̄t

)
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× dp1

2Em1
(2π)3

· · · dpn
2Emn

(2π)3
(245)

is the standard Lorentz invariant phase space factor. Inserting these covariant
expressions in the definition of the differential cross section gives the standard
formula for the invariant cross section

dσ =
(2π)4

4
√

(pt · pb)2 −m2
bm

2
t

∣

∣

cov〈p1, · · · , pn, ‖Mαβ‖p̄b, p̄t〉cov
∣

∣

2

×dΦn(pb + pt;p1, · · · ,pn). (246)

Because of the unitarity of the Wigner rotations and the covariance of
∣

∣

cov〈p1, · · · , pn, ‖Mαβ‖p̄b, p̄t〉cov
∣

∣

2
(247)

this becomes an invariant if the initial spins are averaged and the final spins
are summed. In our model with spinless nucleon the total cross section is
invariant.

This manifestly invariant formula for the cross section is identical to (233);
in this form the invariant cross section can be evaluated in any frame. The
index t refers to the target, which is in our case the deuteron.

This work was performed under the auspices of the U. S. Department of
Energy, Office of Nuclear Physics, under contract No. DE-FG02-86ER40286.
The author would like to express his gratitude to Franz Gross and the TJNAF
theory group for the invitation to present these lectures.
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[5] H. Baumgärtel and M. Wollenberg, Mathematical Scattering Theory,
Birkhauser, 1983.

52



[6] E. P. Wigner, Ann. Math. 40,149(1939).

[7] R. Haag, “Local Quantum Physics”, Springer, 1982.

[8] K. Osterwalter and R. S. Schrader, Comm. Math. Phys. 42,281(1975)

[9] V. Bargmann, Ann. Math. 59,1 (1954).

[10] T.D.Newton and E.P.Wigner, Rev. Mod. Phys. 21,400(1949).

[11] A. S. Wightman in Relations de Dispersion et Particules Élémentaries,
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