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Abstract. We study the binding energy of the three-nucleon systemativistic models that use two fierent
relativistic treatments of the potential that are phasevatpnt to realistic NN interactions. One is based on a
unitary scale transformation that relates the non-reftovcenter-of-mass Hamiltonian to the relativistic mass
(rest energy) operator and the other uses a non-linearieguhat relates the interaction in the relativistic mass
operator to the non-relativistic interaction. In both akerentz-boosted interactions are used in the relativisti
Faddeev equation to solve for the three-nucleon bindingggnelsing the same realistic NN potentials as input,
the solution of the relativistic three-nucleon Faddeevatiqn for3H shows slightly less binding energy than the
corresponding nonrelativistic result. Théeet of the Wigner spin rotation on the binding is very small.

1 Introduction nucleon quantum mechanics [13]. The mass operator (rest
energy operator) consists of the relativistic kinetic gyer

For up to 300 MeV proton energy, proton-deuteron (pd) together with two- and three-body interactions, including

scattering measurements have been analyzed with rigortheir boost corrections [14]. Our approaclifeiis from a

ous three-nucleon (3N) Faddeev calculations [1] based onmanifestly covariant scheme linked to a field theoretical

the CD-Bonn potential [2] and the Tucson-Melbourne 3N approach [15].

force (3NF) [3]. Comparing theoretical calculations to the The first attempt in solving the relativistic Faddeev

recent precise measurements of pd scattering data [4—8}q ation for the three-nucleon bound state based on the

indicates that theoretical predictions based on two-rurcle second approach has been carried out in [16], resulting in

fobrces f(l)%niﬂa{f ?ﬁt fiicient to defscrrllb?ﬂ;he d_alta above  gecrease of the binding energy compared to the nonrela-
about eV. The minimum of the ftierential Cross g ictic result. On the other hand, similar calculationsds

section has been discussed as the first signal of the 3N : : ;

X on the field theory approach [15] increase it. These contra-
effects, which are aIree}dy seen below 100 MeV [9-11]. dictory results require more investigation.
However, presently available 3NF’s only partially improve 5 h it d d on the t ’ i
the description of cross section data and spin observables, = S€CaUS€ the result may depend on the transtormation

Since most of the cited calculations are based on the non0f the nonrelativistic potential to a relativistic poteaifi

relativistic formulation of the Faddeev equations [12Jeon & Momentum scale transformation [17] (MST) was intro-

needs to question if in the intermediate energy regime aduced without any additional parameters. Of course, this

Poincaré invariant formulation is required. scale transformation method is not equivalent to the con-
There are dferent formulations of the relativistic few-  Struction of arelativistic potential from a field theory. o

body problem. Our calculations are based on an exact re-€Ver. the scale transformation is a very useful and simple
alization of the symmetry of the Poincaré group in three- parameterization of a re'Iat|V|st|c NN pptennal, which pre
serves the NN phase shifts exactly. Using a s-wave approx-

@ e-mail:kamada@mns .kyutech.ac. jp imation we solved the relativistic Faddeev equation with
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Lorentz boost of the scale transformed potential [17,18] 2.1 The Momentum Scale Transformation
and it agreed with the previous result [16].

Recently, going back to the idea of the Coester-Pieper-In order to build the potentialone may identify the energy
Serduke scheme (CPS), [19] we succeeded to obtain a relE of Eq. (1) just as a c.m. enerdgs which is measured in
ativistic potential numerically, and used the same methodan experiment. One may interpret [17]:
to directly construct the Lorentz boosted potential.

In the following we want to demonstrate some recent EZEq=E,=E,. (4)
results: in Section 2 we introduce the relativistic nucleon
nucleon potentials constructed by the MST and CPS meth-For this choicek, # ky.
ods, in Section 3 the construction of the boosted potentials  Eq. (1) is rewritten as
is discussed, in Section 4 we give numerical results for the
triton binding energy based on the Poincaré invariant Fad- t(Pnr, Prrs E)
deev equation and in Section 5 we summarize. ,

= v(Prr, Ppr) +

= v(Prr> Prr)
+ f U(pnr, pr"u’r)t(p;{r’ pﬂr; E)

As mentioned in the introduction, our relativistic treatrhe 2\ M+ k2 -2 I + pr2 +ie
is based on the Bakamjian-Thomas framework, where the o(Prr s PLUPL, Pl E)
= o(Pre. Piy) + f e

rest Hamiltonian for the three-body system consists of rel-
2\ M2+ K2 -2\ /m? + pr? +ie
®)

v(Prrs P (Phs P E) |,
2 . d nr
k2 /m— pp2/m+ie

2 The Relativistic Potential

dppy

ativistic kinetic energies and two- and three-body interac

tions, including their boost corrections, which are dietht xJ(p)dp”’
by the Poincaré algebra. The boost techniques will be dis- re
cussed in the next section 3. For two-body systems real-yhereJ is the Jacobian. Under the interpretation of Eq. (4)
istic interactions are designed to fit scattering data. Rela the nonrelativistic momentutg, is a function ofk;,

tivistic two-body calculations must fit the same data, which

means that at the two-body level the relativistic and non-

relativistic models must be phase equivalent as a function kar = ke (k) = V2m4/ /M2 + K2 —m. (6)

of either the center-of-momentum momentum or the en-

ergy. Differences in relativistic and non-relativistic calcu- QOne defines

lations then appear first in the three-body calculations.

bl

The usual nonrelativistic Lippmann-Schwinger equa- o (pr, pl) = 1 o(Por ) 1
tion (LS) with a potentiab is given in momentum space e h(pnr% Y h(pr)” .
as
t(pr. pr; E) = ———t(Por. Prs ) = (7)
) , o(p, p")t(p”.p;E) . ,, h(pnr) h(pf)
(.0 E) = op.p) + [LREMCLREE) gy "
E-p’s/m+ie with
wheret andm are the t-matrix and the nucleon mass, re-
spectively. P2, k2, 1
On the other hand, there are relations between the c.m.  h(pnr) = \[(1+ ﬁ) 1+ = Sy (8)
kinetic energyE and the relative momentukifor the rel- vI(pr)

ativistic and nonrelativistic formalism, namely The amplitudes, andu, are related by solving the rela-

tivistic LS equation:
E = 2+4/m2 + k2 -2m g

T o tr(pr. P73 E) = vr(pr. py)
e m ’ + Ur(pr, pl”’)tr(pll‘l’ pll" E) dp// (9)
Co
Here the subscriptsandnr denote relativistic and nonrel- 2\ M+ k2 -2 /M2 + pr2+ie

ativistic relations.
~ Our relativistic potentiab, appears in the relativistic  Therefore, one could identify them as relativistic ampli-
Lippmann Schwinger equation as tudes. We call Egs. (6-8) momentum scale transformation
t(p,p’;E) = Ur(p’,’ p’) o (MST) [17].
+f or(p, ")t (p”, p'; E) "

dp” . (3
2V + K2 =24/ + p2 + e 2.2 Coester-Pieper-Serduke Scheme
wheret; is a relativistic t-matrix. Note that in Egs. (1) and ) ) o
(3) there are no Subscrip“s((r nr) for E andk (Or p) before Thereis anotherway for the |dent|flcat|0n. Instead of Eﬂ (4
entering the next subsection. The enerdids Eq.(1) and ~ ©ne employs the following relation among momenta:
in Eq. (3) are not necessarily equal. The moméraadp o
in Eq.(1) and in Eq. (3) are not necessarily equal either. k=Kex=knr =k, (20)




whereke, is the experimental momentum. In this case it is
natural to add an interaction k8/m, so that the square of
the two-body invariant mass operator becomes

2
M2 = 4n? + 4m(% +9). (11)
Because this is a function of the non-relativistic Hamilto-
nian, it has the same eigenfunctions as the non-relativisti
Hamiltonian as a function of the relative momentukn,

Since the phase-shifts can be extracted from the scatter-
ing wave functions, this mass operator has the same phases

shifts at the non-relativistic Hamiltonian as function eFr
ative momentum.

The non-relativistic Lippmann-Schwinger equation still
holds, Eq. (1), but in the relativistic case the interacttbe
energy, and the transition operator that appear in this-equa
tion have a dferent interpretations than compared to the
non-relativistic case.

The relation

M2 = (Mg + i) = M3 + 4mp (12)
leads to the identity
{Mo, D} + 02 = 4muy, (13)

which can be expressed in terms of the relative momentum

operatok as

4 = 2N + K25, +2 VR + K25, +(0r)? = 4o . (14)

Equation (14) can be expressed as the momentum spac

integral equation

4mu(p, p’) = (2 \/m2 +p?+ 2\/m2 + p2)or(p. p)

+ f vr(p, p")ur(p”, p")dp”. (15)
This is a nonlinear integral equation fgrgivenv and can
be solved by iteration [20]. The solution gfis then used

in Eq. (3). We call this methods Coester-Pieper-Serduke
scheme (CPS).

2.3 Relation to Realistic Potentials

There are some realistic potentials, e.g. the Argonne
V18 potential [22], which are suitable for the MST scheme
because of the ansatz of Eq. (4). The CD Bonn potential
[2] and the Nijmegen potential [23] are suitable to CPS
because of the ansatz of Eq. (10) (See Fig.1).

The two approaches are not equivalent, but theedi
ences at low energies are primarily due fhshell efects.

Relativistic quantum
mechanical world

Nonrelativistic
quantum
mechanical world

(MST)

Argonne potential

rel ~ nonrel

Nonrelativistic
quantum
mechanical world

(CPS)

Bonn potential,
Nijmegen potential /~”

__________________

Fig. 1. Venn diagram of worlds.

3 The Boosted Potential

As shown in Section 2, schemes generating relativistic po-
%ntial from nonrelativistic interactions are ratherféial.
ompared to these schemes, the boost correction within
the Bakamjian-Thomas framework is natural and unique.
Cluster properties require that the energy is additive.
Because of the non-linear relations between the mass and
energy in special relativity, the additivity of energiegfie
rest frame implies a non-linear relation between the two-
body interactions in the two and three-body mass operators
[13]. We call the two-body interaction in the three-body
mass operator thigoosted potential vg:

g = \/(ZVmZ+R2+ﬁ,)2+q2

— AR + K2) + ¢ (16)

The relativistic potentials discussed here were not bisilt d where the spectator momentuin the 3-body center of

rectly from a relativistic Lagrangian. The nucleon-nucleo
potentials were generated by requiring that they predét th
experimental phase shifts. Since realistic non-relatesis
potentials are constructed to fit experimental phase shifts
relativistic interactions can be constructed by requitirad
they lead to the same phase shifts as the non-relativistic po
tentials as a function of center of momentum energy (MST)
or center of momentum momentum (CPS). The MST po-

tentials also lead to the same deuteron binding as the non-

relativistic calculation while the (CPS) potentials produ

mass is simultaneously the negative total momentum of the
pair. In the 3-body system the momentgris operator but
it behaves as c-number in the subsystem.

Using Eq. (14) this can be rewritten as potential in the
CPS scheme,

i = AP + K2 + mB) +

—\JA(M + K2) + .

17)

the same deuteron wave numbers as the non-relativistidVow. Ed. (17) can be rewritten as

calculation. The quality of, obtained by each scheme was
discussed in [21].

4mb = 22 + K2 + g2/4 Oq + 20 M2 + k2 + /4
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+ (17q)2 . (18) Table 1. The relativistic (rel.) and nonrelativistic (nonrel) ot
binding energies in MeV obtained by MST scheme froiffiedent
This has a similar structure as Eq. (14). We have a repre-nonrelativistic potentials. The quantity {f]) indicates the dier-

sentation in momentum space as ence between the rel. and nonrel. calculations
4mu(p, p’) = potential rel. (MST) nonrel. .
2R+ 02+ Pra+ 2P+ P2 + @/ Ay(p. D RSC [24] -6.59 -7.02 043
( pe+ o/ P=+ 0/ Aug(P.P') AV18 [22] -7.23 766 043
+ f vg(P, P”)vg(p”, p’)dp”. (19) CD-Bonn [2] -7.98 -8.33 0.35
Nijmegen 11[23] -7.22 -7.65 043
Nijmegen | [23] -7.71 -8.00 0.29

This is a nonlinear integral equation fay in terms ofw.
Again, Eq.(19) is solved by the same iterative technique
used in [20].

We would like to emphasize again that Eqg. (18) is a Table 2. The relativistic (rel.) and nonrelativistic (nonrel) tnt
natural extension from Eq. (14). However, Eq. (18) is not binding energies in MeV obtained by CPS scheme frofiectnt
only available for the CPS scheme. In [18] the MST po- nonrelativistic potentials. The quantity tl) indicates the difer-
tential was boosted by affrent way related to a Mgller ~ence between the rel. and nonrel. calculations
operator. The boost correction to the MST potential can

Nijmegen93 [23]  -7.46 776 0.30

. o) potential rel. (CPS) nonrel. i
also be calculated by this way, namely, usingn Eq. (7)
of MST one gets a newthrough Eq. (14). RSC [24] -6.97 -7.02 0.05
AV18 [22] -7.59 -7.66  0.07
CD-Bonn [2] -8.22 -8.33  0.11
: A Nijmegen Il [23] -7.58 -7.65 0.07
4 Triton Binding Energy Nijmegen |[23]  -7.90  -8.00 0.10

Nijmegen93 [23]  -7.68 776 0.08

The relativistic bound-state Faddeev equation was solved
using the boosted t-matrix of Eq. (3). In Tables 1 and 2
the results for the triton binding energy using several po- Table 3. The theoretical predictions of the trition binding ener-
tentials calculated based on the MST and CPS methods ar@ies resulting from the solutions of the nonrelativisticsffirow)
displayed. The precision of the partial wave decomposi- and relativistic (second row) Faddeev equations as fumatithe
tion belongs to 5¢ch (S-wave Approximation). In the case of number of partial waves (ch) taken into account. The not&df (
MST (Table 1) the results [18] show that the triton binding Means S-wave approximation as Tables 1 and 2. The numbers
energies obtained from the relativistic calculation areuab ~ inside of braket are the maximum of the total spin in the ssbsy
400 keV smaller compared to the ones calculated nonrelatem- The last line indicates the absolutéfefience between the
tivistically. As mentioned in subsection 2.3, the Reid Soft nonrelativistic and relativistic re_sult. In the calcu_tn_ts _only the
Core potential and Argonne V18 potential can be reason-"P force of the CD-Bonn potential was used. Unit is in MeV.
ably applied in the.MST spheme, but the other potential are 5ch(S) 18ch(2) 26¢h(3) 34ch (4)
forced to be substituted into MST method.
In the case of the CPS scheme, Table 2, tiffiedinces nonrel. -8.331  -8.220  -8.241  -8.247
between the relativistic and nonrelativistic calculatiame rel. -8.219  -8.123  -8143  -8.147
about 100 keV. The CDBonn and the Nijmgen potentials  diff- 0112 0.107 0.098 0.100
are naturally applied to the CPS scheme. This value is sig-
nificantly smaller than a MSC result [18]. The reason for 14pje 4. The theoretical predictions for the relativistic and non-
this overestimation of a relativisticfiect on the binding  rejativistic triton binding energies in MeV. All numbersea84
energy can be attributed to afigirent construction of the  channels results. The second column is the same as the lkast co
relativistic df-shell t-matrixt,. * umn in Table 3. The results in the third column take charge de-
In Table 3 we demonstrate the convergence for partial pendence[28] into account. In addition the result of thertfou
wave decomposition using CDBonn potential and the CPS column contains Wigner spin rotatioffects.
scheme. In order to obtain accuracy beyond 3 digits, the

total spinj in the subsystem of nucleon pair, needs to be nponly nprnn - Wignerrot.  dif.
j=4 (34ch). ] , , , nonrel.  -8.247  -8.005 - -

We also included the Wigner spin rotation as outlined ¢, 8.147 -7.916 7.914 -0.002
in [26]. Thereby the Balian-Brezin method[27]in handling i, 0.100 0.089 - -

the permutations is quite useful. In Table 4 the triton bind-
ing energy is shown allowing charge independence break-
ing (CIB) [28] and Wigner spin rotations. Wigner spin ro-
tation dfects reduce the binding energy by only about 2 keV.

L In the former Proceedings [25] we would have thought that
MST has a sort of defect because we need a new potenitial
Eq. (14).



5 Summary 14

A phase-shift equivalent 2N potentigl in the relativis- 15

tic 2N Schrodinger equation is related to the potential

in the nonrelativistic Schrodinger equation by the momen- 16
tum scale transformation scheme and the Coester-Pieper-
Serduke scheme. The boosted potenjéd related ta, by
Eq.(16). With these potentials we generate the relatvisti
fully-off-shell t-matrixty, which enters into the relativis-
tic Faddeev equation. We solve the relativistic bound state

Faddeev equation and compare the binding energy for thel9.

triton with the one obtained from a nonrelativistic caleula
tion with the same input interaction.
In the case of the CPS scheme we find that tHEsdi

ence between the two calculations is only about 90 keV 21.

including CIB, where the relativistic calculation gives a
slightly reduced binding. Taking Wigner spin rotationint

that Wigner rotations of the spin have essentially fiect

on the predicted value of the binding energy. Applications
to the 3-body continuum are in progress. Recently [26] the
formulation lined out above has been used to study the low

energy Ay puzzle in neutron-deuteron scattering. In the in- 26.

termediate energy regime the formulation has been applied

to exclusive proton-deuteron scattering cross sections at27-
508 MeV [29,30] based on a formulation of the Faddeev 28.

equations which does not employ a partial wave decompo-

sition [31]. The approach can also be extended and applied?9-

to electromagnetic processes[32, 33].

30.
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