

Relativity in the 3-nucleon system

H.Kamada^{*1}, W. Glöckle², H. Witała³, J. Golak³, R. Skibiński³, and W. N. Polyzou⁴

¹ Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho Tobata, Kitakyushu 804-8550, Japan

² Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany

³ M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland

⁴ Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA

Abstract.

A Poincaré invariant formulation of the 3-body system is used. The 2body force embedded in the 3- particle Hilbert space is generated out of the high-precision NN forces by solving a nonlinear equation. The solution of the relativistic 3N Faddeev equation for ${}^{3}H$ reveals less binding energy than for the nonrelativistic one. The effect of the Wigner spin rotation on the binding energy is very small.

1 Introduction

The nonrelativistic NN force v^{nr} is added to the nonrelativistic kinetic energy $\frac{k^2}{m}$, while the relativistic NN force v is added to the relativistic kinetic energy $2\omega(k) = 2\sqrt{k^2 + m^2}$. They give the same NN S-matrix, S(k), if they are related by:

$$v = \sqrt{4mv^{nr} + 4(k^2 + m^2)} - 2\sqrt{k^2 + m^2} = \sqrt{4mv^{nr} + 4\omega^2} - 2\omega \tag{1}$$

In former work [1, 2] we employed an analytic scale transformation of the momenta

$$2m + (k^{nr})^2 / m \equiv 2\sqrt{q^2 + m^2}$$
(2)

such that the relativistic and nonrelativistic NN phase shifts are exactly equal at the same energy, but not at the same c.m. momenta as they should [3]. We introduce in section 2 a new technique [4] to solve Eq.(1) and show relativistic and nonrelativistic results for the ${}^{3}H$ binding energy based on high precision NN forces in section 3.

^{*}*E-mail address:* kamada@mns.kyutech.ac.jp

Table 1. Convergence of the $v_p^{(n)}$ iteration in Eq. (5) at total momentum $p = 0$. We choose	se the
coupled partial waves $({}^{3}S_{1} - {}^{3}D_{1})$ of the Argonne V18 potential. The momenta k and k' a	re 1.0
fm^{-1} and the potential unit is $[\text{fm}^2]$.	

n	$v_0^{(n)}({}^3S_1 - {}^3S_1)$	$v_0^{(n)}({}^3S_1 - {}^3D_1)$	$v_0^{(n)}({}^3D_1 - {}^3D_1)$
0	0.084232	0.044709	0.016853
1	0.067716	0.044628	0.016785
2	0.059933	0.044597	0.016744
3	0.056135	0.044587	0.016719
10	0.052194	0.044595	0.016684
20	0.052126	0.044597	0.016684
30	0.052126	0.044597	0.016684

2 The nonlinear equation and its solution

The NN interactions enter the 3N mass operator in the form [6]

$$v_{p} = \sqrt{(2\omega(k) + v)^{2} + p^{2}} - \sqrt{(2\omega(k))^{2} + p^{2}}$$

$$= \sqrt{4mv^{nr} + 4\omega^{2} + p^{2}} - \sqrt{(2\omega(k))^{2} + p^{2}}$$

$$= \sqrt{4mv^{nr} + 4\omega_{p}^{2} - 2\omega_{p}}$$
(3)

where p is the invariant relative momenta related to the 3N invariant mass by $M_0 = 2\omega_p = 2\sqrt{k^2 + m^2 + p^2/4}$. The p-dependence arises because in a 3-body system the NN subsystems are not at rest.

The new way [4] is to directly solve the quadratic operator equation (3). After partial wave decomposition in momentum space it reads

$$< k|v_p|k'> = \frac{2m < k|v^{nr}|k'>}{\omega_p(k) + \omega_p(k')} - \frac{1}{2(\omega_p(k) + \omega_p(k'))} \int_0^\infty dk'' k''^2 < k|v_p|k'' > < k''|v_p|k'>$$
(4)

We verified numerically that for all the realistic high precision potentials the following very simple iterative scheme works

$$< k|v_p|k'>^{(0)} = \frac{2m < k|v^{nr}|k'>}{\omega_p(k) + \omega_p(k')},$$

$$< k|v_p|k'>^{(n+1)} = \frac{1}{2(\omega_p(k) + \omega_p(k'))} \{4m < k|v^{nr}|k'> -\int_0^\infty dk''k''^2 < k|v_p|k''>^{(n)} < k''|v_p|k'>^{(n)} \}$$
(5)

with $n = 0, 1, 2, \cdots$. We demonstrate in Table 1. the convergence of this Eq. (5) in the case of p = 0.

3 Relativistic versus nonrelativistic binding energies of ³H

In our calculation of the ³H binding energy the relativistic Faddeev equation (Eq. (3.7) in [2]) is solved in a partial wave basis. The feasibility of our approach is

ana (=) (coure cransformation), respectively.								
Potential	E_b^{nr}	$E_{b}^{(1)}$	$\Delta^{(1)}$	$E_{b}^{(2)}$	$\Delta^{(2)}$			
RSC	-7.02	-6.97	0.05	-6.59	0.43			
CD-Bonn	-8.33	-8.22	0.11	-7.98	0.35			
Nijmegen II	-7.65	-7.58	0.07	-7.22	0.43			
Nijmegen I	-8.00	-7.90	0.10	-7.71	0.29			
Nijmegen 93	-7.76	-7.68	0.08	-7.46	0.30			
AV18	-7.66	-7.59	0.07	-7.23	0.43			
Exp. (-8.48)								

Table 2. The relativistic (E_b) and nonrelativistic (E_b^{nr}) triton binding energies in MeV together with $\Delta \equiv E_b - E_b^{nr}$. The superscripts of (1) and (2) correspond to Eqs. (1) (direct connection) and (2) (scale transformation), respectively.

demonstrated in Table 2 for a five-channel calculation (NN forces only in the states ${}^{1}S_{0}$ and ${}^{3}S_{1}$ - ${}^{3}D_{1}$). There are two kinds of relativistic results, $E_{b}^{(1)}$ and $E_{b}^{(2)}$, in comparison to the nonrelativistic result E_{b}^{nr} . The present results, $E_{b}^{(1)}$, based on (5) show a significantly smaller reduction of the binding energy than $E_{b}^{(2)}$, what we obtained by the momentum scale transformation in [5] and [2]. The Wigner spin rotation is handled using the Balian-Brezin method [7]. Its effect in reducing the binding energy is about 1 Kev and thus marginal.

For the relativistic calculation of 3N scattering and the basic relativistic formulation see [8], H.Witala, and W.N.Polyzou in this conference.

Acknowledgement. The numerical calculations were performed on the IBM Regatta p690+ of the NIC in Jülich, Germany.

References

- 1. Kamada, H., Glöckle, W.: Phys. Rev. Lett. 80, 2547 (1998).
- 2. Kamada, H., et al.: Phys. Rev. C 66, 044010 (2002).
- 3. Allen, T. W., Payne, G. L., Polyzou, W. N.: Phys. Rev. C 62,054002 (2000).
- 4. Kamada, H., Glöckle, W.: Phys. Letter. **B** 655, 119 (2007).
- Kamada, H., et al.: Proceedings of 17th Conference on Few-Body Problem in Physics, W. Glöckle and W. Tornow (Eds.), Elsevier B.V., S263 (2004).
- 6. Coester, F., Helv.Phys. Acta **38**, 7 (1965).
- 7. Balian, R., et al.: Il Nuovo Cim. **B2**, 403 (1969).
- 8. Witała, H., et al.: Phys. Rev. C71, 054001 (2005).

First received October 10, 1998; accepted in final form April 10, 1999.