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Abstract

We advocate the use of Daubechies wavelets as a basis for treating a
variety of problems in quantum field theory. This basis has both natural
large volume and short distance cutoffs, has natural partitions of unity,
and the basis functions are all related to the fixed point of a linear renor-
malization group equation.

1 Introduction

Daubechies wavelets and their associated scaling function are functions [1][2][4]
[3][5][6] used in signal processing and data compression. The functions have
useful properties that have advantages for applications to problems in quantum
field theory. Daubechies wavelets have been used in some field-theoretic appli-
cations [7] [8] [9] [10] and different types of wavelets have been used in more
formal treatments of field theory [12] [13] [11] [14], however many useful prop-
erties of wavelets do not appear to have been exploited. Some of the properties
of Daubechies wavelets that are potentially useful for field theory applications
are:

1. The functions are an orthonormal basis for square integrable functions on
the line. This means that one can formally express fields exactly as infinite
linear combinations of discrete field operators and coefficient functions.
This can be used study the nature of corrections to truncated theories or
to compute the singular coefficients in operator product expansions.

2. The basis functions have compact support. This means that discrete fields
associated with basis functions with space-like separated support com-
mute. The maximum size of the support of the basis functions can be
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controlled. There are also infinite numbers of basis functions with arbi-
trarily small support so it is possible to use these operators study locality
and how locality is violated in truncations. In these representations local
fields can be replaced by a local algebra of well-defined operators.

3. The Daubechies basis functions are related to solutions of a linear renor-
malization group equation. It is a natural basis to formulate renormaliza-
tion group transformations. The basis allows for a separation of scales;
a fine resolution truncated Lagrangian or Hamiltonian can be exactly ex-
pressed in terms of a coarse resolution truncated Lagrangian or Hamilto-
nian of the same form, plus some addition operators that fill in the missing
fine-scale physics. Eliminating the fine scale operators gives a new Hamil-
tonian, involving the same masses and coupling constants, in the coarse
scale degrees of freedom that includes the effects of the eliminated fine
scale degree of freedom. This can be repeated to include the effects of
eliminated degrees of freedom on arbitrarily small scales.

4. The basis is generated from a single function, which is the solution of the
linear renormalization group equation, using discrete unitary translations
and discrete unitary scale transformations. While the basis functions have
a fractal structure, overlap integrals of products of any number of the basis
functions and low-order derivatives can be computed analytically using
only the renormalization group equation and a scale fixing condition. In
addition, integrals of products of basis functions and polynomials can also
be computed exactly using the renormalization group equations.

5. Subsets of the basis functions contain compact, locally finite partitions of
unity. This property can be used to investigate symmetries like Poincaré
invariance. The partitions of unity can be used to make local realizations
of the Lie algebra. The generators can be expressed exactly as sums of lo-
calized operators obtained by integrating the operator densities multiplied
by the functions in the partition of unity.

6. The basis functions have a limited amount of smoothness, and can locally
pointwise represent low-degree polynomials. This means that overlaps of
low-order derivatives of field operators can be computed directly, rather
than by using a finite difference approximation.

7. Because the basis functions have compact support and there are basis
functions with arbitrarily small support, the basis has both natural short-
distance and large-volume cutoffs.

The purpose of this paper is to discuss some problems in field theory where
wavelets might have advantages as well as some of the specialized methods for
dealing with fractal basis functions. In section two we discuss the construction
of the wavelet basis and introduce the renormalization group equation for the
Daubechies scaling function. In section three we introduce our free-field conven-
tions. In section four we introduce the wavelet representation of free fields. This
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representation is also relevant in interacting theories, when the natural volume
and resolution truncations in the wavelet representation are used to make finite
number of degree of freedom truncations of the interacting theory. In section
five we discuss the scaling properties of the wavelet fields. In section six we dis-
cuss Poincaré invariance and partitions of unity. In section seven we discuss the
formulation of renormalization group equations in the wavelet basis. In section
eight we discuss gauge transformations in the wavelet representation. In the
appendix we compute the overlap coefficients that couple different scales in the
free-field Hamiltonian.

2 Basis construction

The Daubechies scaling function is the solution of a linear renormalization group
equation subject to a scale-fixing normalization condition. All basis functions
are generated from the scaling function using discrete translations, dyadic scale
transformations, and sums.

The discrete translation operator, T , and a dyadic scale transformation, D
are unitary operators on L2(R) defined by

(Df)(x) =
√
2f(2x) (Tf)(x) = f(x− 1). (1)

The operator D decreases the support of a function with compact support by a
factor of two in a manner that preserves the L2(R) norm. The scaling function,
s(x), is the solution of the linear renormalization group equation

s(x) =

2K−1∑
l=0

hlDT
ls(x). (2)

Equation (2) states that the scaling function is a linear combination of 2K-
translated copies of itself on a scale smaller by a factor of 2. Since this is a
homogeneous equation for s(x), we are free to assign the normalization. It is
fixed by the scale-fixing condition∫

s(x)dx = 1. (3)

Equations (2-3) define the scaling function. Equation (2) is called the scaling
equation. The hn are real coefficients that are characteristic of the type of
wavelet. The coefficients for some of the Daubechies scaling functions are given
in Table 1.

Given the solution of (2-3), scale-1/2k scaling functions are defined

skn(x) := DkTns(x) (4)

by applying n unit translations followed by k dyadic scale transformations to the
original scaling function. Linear combinations of these functions with square-
summable coefficients span a subspaceHk of L2(R), which we call the resolution-
1/2k subspace. The scaling equation implies the relation

Hk+1 ⊃ Hk (5)
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Figure 1: Daubechies K = 3 scaling function.

and more generally
Hk+m ⊃ Hk (6)

for m > 0. This means the lower resolution spaces are linear subspaces of the
higher resolution spaces.

The mother wavelet w(x) is the following linear combination of the s1n(x)
scaling functions:

w(x) =

2K−1∑
l=0

glDT
ls(x) =

2K−1∑
l=0

gls
1
l (x) (7)

where the coefficients gl are related to the coefficients hl by reversing the order
and alternating the signs

gl = (−)lh2K−1−l. (8)

Plots of the Daubechies K = 3 scaling function and mother wavelet are given
in figures 1 and 2. Scale-1/2k wavelets, wk

n(x), are constructed by applying
translations and dyadic scale transformations to the mother wavelet

wk
n(x) = DkTnw(x). (9)

The scale 1/2k wavelets are designed to span the orthogonal complement, Wk,
of Hk in Hk+1,

Hk+1 = Hk ⊕Wk. (10)
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Figure 2: Daubechies K = 3 mother wavelet

The coefficients hl are chosen so the translates of the scaling function and mother
wavelet are orthonormal and finite linear combinations of translations of the
scaling function can be used to make local pointwise representations of polyno-
mials of degree K − 1.

Continuing the decomposition (10) inductively leads to the following orthog-
onal direct sum decomposition of the Hilbert space of square integrable functions
on the line

L2(R) = Hk ⊕Wk ⊕Wk+1 ⊕ · · · . (11)

This gives a decomposition of the Hilbert space into orthogonal subspaces with
successively finer resolutions. Specifically the basis for Hk can be used to repre-
sent features down to scale 1/2k, Wk represents features down to scale 1/2k+1

that cannot be represented on scale 1/2k, Wk+1 represents features down to
scale 1/2k+2 that cannot be represented on scale 1/2k+1, etc.. Smearing local
fields with these basis functions gives discrete fields that are sensitive to average
information on different scales.

The coefficients hn, which characterize the Daubechies K-wavelets, are so-
lutions of the system of equations

2K−1∑
l=0

hl =
√
2 (12)
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hl K=1 K=2 K=3

h0 1/
√
2 (1 +

√
3)/4

√
2 (1 +

√
10 +

√
5 + 2

√
10)/16

√
2

h1 1/
√
2 (3 +

√
3)/4

√
2 (5 +

√
10 + 3

√
5 + 2

√
10)/16

√
2

h2 0 (3−
√
3)/4

√
2 (10− 2

√
10 + 2

√
5 + 2

√
10)/16

√
2

h3 0 (1−
√
3)/4

√
2 (10− 2

√
10− 2

√
5 + 2

√
10)/16

√
2

h4 0 0 (5 +
√
10− 3

√
5 + 2

√
10)/16

√
2

h5 0 0 (1 +
√
10−

√
5 + 2

√
10)/16

√
2

Table 1:

2K−1∑
l=0

hlhl−2m = δm0 (13)

2K−1∑
l=0

lngl =

2K−1∑
l=0

ln(−1)lh2K−1−l = 0 n < K. (14)

The first equation is a necessary condition for the scaling equation to have a
solution; it can be derived by taking the Fourier transform of both sides of
the scaling equation. The second equation ensures that integer translates of
the scaling function are orthonormal. The third equation ensures that linear
combinations of integer translates of the wavelet functions are orthogonal to
degree K − 1 polynomials.

This last condition, along with (11), implies that polynomials of degreeK−1
can be locally pointwise represented by locally finite linear combinations of
scaling functions.

The solution of these equations for K = 1, 2, 3 are given in Table 1. The
solutions are unique up to reversal of order; k → l = 2K−1−k. The numerical
values of the K = 3 coefficients, rounded to two decimal places, are h0 = −g5 =
.43, h1 = g4 = 1.11, h2 = −g3 = .66, h3 = g2 = −.34, h4 = −g1 = −.39, h5 =
g0 = −.66. An important observation is that only one of the six coefficients,
h1 = g4 has magnitude larger than 1.

In this work we advocate using the Daubechies K = 3 wavelets. This is
because of they have small support and have one continuous derivative. The
derivative allows one to replace the finite difference approximations of deriva-
tives that appear in the Hamiltonian or Lagrangian with actual derivatives.

The scaling function s(x) and mother wavelet w(x) have support on the
interval [0, 2K − 1]. It follows from (11) that for any fixed scale, 1/2k, the
functions

{skn(x)}∞n=−∞ ∪ {wm
n (x)}∞,∞

n=−∞,m=k (15)

are an orthonormal basis for L2(R). The basis functions skn(x) and w
k
n(x) have

compact support on the interval [2−kn, 2−k(n+2K− 1)]. This support justifies
calling Hk the resolution-1/2k subspace.
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The basis functions satisfy the orthonormality conditions∫
dxskn(x)s

k
m(x) = δmn (16)∫

dxskn(x)w
k+l
m (x) = 0 (l ≥ 0) (17)∫

dxwk
n(x)w

l
m(x) = δmnδkl. (18)

Scaling functions with different k are not orthogonal and are not members of
the same basis. Similarly, the wk+l

m (x) with negative l are not orthogonal to
skm(x) and are not members of the basis that includes the skm(x). In general,
the basis (15) consists of scaling functions of a fixed largest scale, 1/2k, and
wavelets that can represent the structure on all scales 1/2k+l with l ≥ 0.

A basis for the resolution 1/2k+m subspace, Hk+m, that includes the basis
functions for the resolution 1/2k subspace, Hk, is

span({sk+m
n }∞n=−∞) = span({skn}∞n=−∞ ∪ {wl

n}
∞,k+m−1
n=−∞,l=k). (19)

This means the wavelets on scales 1/2k, 1/2k+1, · · · , 1/2k+m−1 fill in all of the
missing higher resolution information in Hk+m that is not contained in Hk.

The scaling functions form a partition of unity

1 =

∞∑
n=−∞

s(x− n) =

∞∑
n=−∞

(Tns)(x) =

∞∑
n=−∞

s0n(x). (20)

This partition of unity is locally finite, meaning that at any point only a fi-
nite number of the functions are non-zero, and the functions all have compact
support. There are also partitions of unity for the scale-1/2k scaling functions

∞∑
n=−∞

1√
2k
skn(x) =

∞∑
n=−∞

s(2kx− n) = 1 (21)

except they must be multiplied by the factor 1√
2k
.

The scale-1/2k−1 scaling functions and scale-1/2k−1 wavelets are both linear
combinations of the scale 1/2k scaling functions

sk−1
n (x) =

2K−1∑
l=0

hls
k
2n+l(x) (22)

wk−1
n (x) =

2K−1∑
l=0

gls
k
2n+l(x). (23)

The inverse of these relations express the scale 1/2k scaling function as a linear
combination of the scale 1/2k−1 scaling functions and wavelets

skn(x) =
∑
m

hn−2ms
k−1
m (x) +

∑
m

gn−2mw
k−1
m (x). (24)
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Equations (22-23) define the wavelet transform in signal processing. It is a
pair of filters that decompose a signal into high and low-resolution parts in a
manner that can be inverted to reconstruct the full signal. In signal procession
applications it is applied many times to generate multi-resolution decomposition
of the signal. Equation (24) is relevant in field-theory applications, where we see
that the wavelets represent the lost information when one eliminates small-scale
fluctuations. The same coefficients appear in (22-23) and (24) because these
two sets of orthonormal basis functions on Hk are related by a real orthogonal
transformation.

For some applications it is useful to express equations (22) and (23) in infinite
matrix form

sk−1
n (x) =

2n+2K−1∑
m=2n

Hnms
k
m(x) (25)

wk−1
n (x) =

2n+2K−1∑
m=2n

Gnms
k
m(x) (26)

where
Hnm = hm−2n Gnm = gm−2n. (27)

In this notation (24) becomes

skn(x) =
∑
m

Ht
nms

k−1
m (x) +

∑
m

Gt
nmw

k−1
m (x) (28)

where
Ht

nm = Hmn = hn−2m Gt
nm = Gmn = gn−2m. (29)

While the matrices are in principle infinite, for fixed n there are only 2K non-
vanishing terms in the sum, which is clear in the equivalent expressions (22)
and (23).

Note that if we set x = n in the scaling equation it becomes

s(n) =

2K−1∑
l=0

√
2hls(2n− l) =

√
2

2n∑
m=2n−2K+1

h2n−ms(m) (30)

which has the form of an eigenvalue equation for the matrix Mnm = h2n−m,
where the eigenvectors are (0, s(1), s(2), · · · , s(2K − 2), 0) and the eigenvalue is
1/
√
2. If we differentiate the scaling equation and again evaluate the derivative

of the scaling functions at integer values we get

s′(n) =

2K−1∑
l=0

2
√
2hls

′(2n− l) = 2
√
2

2n∑
m=2n−2K+1

h2n−ms
′(m). (31)

This is an eigenvalue equation for the same matrix, with eigenvector (s′(0), s′(1),
s′(2), · · · , s′(2K − 2), s′(2K − 1)) and eigenvalue 1/23/2. Each derivative brings
down an additional factor of 1/2 in the eigenvalue. Since a finite matrix has
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a finite number of eigenvalues, the scaling function can only be differentiated
a finite number of times, (n times if the matrix above has an eigenvalues of
2−(n+1/2)). Thus we have the interesting property that the number of derivatives
is associated with the eigenvalue spectrum of a finite-dimensional matrix. This
makes it clear that the individual wavelets and scaling functions have only a
finite number of derivatives. It is interesting that certain linear combinations
of scaling functions may have more derivatives than the functions themselves;
this is the case with the partition of unity (20). The sum is constant, which is
infinitely differentiable, but the individual functions in the sum are not!

For fields that are functions of four space-time variables, we use a basis for
the square integrable functions of the three space variables consisting of prod-
ucts of the wavelet basis functions, (15), in each of the three variables. We
identify basis functions that are the product of three resolution 1/2k scaling
functions as the resolution 1/2k basis; the seven other products of combinations
of wavelets and scaling functions span the orthogonal complement of the reso-
lution 1/2k subspace in L2(R3). We introduce a compact notation to make the
three-dimensional case look like the one-dimensional case.

In three dimensions we define:

skn(x) = skn1
(x1)s

k
n2
(x2)s

k
n3
(x3) (32)

and use the notation to wm
n,α(x) to represent the remaining basis functions that

have one of the following seven forms

wm
n,1,k3

(x) := skn1
(x1)s

k
n2
(x2)w

k3
n3
(x3) (33)

wm
n,2,k2

(x) := skn1
(x1)w

k2
n2
(x2)s

k
n3
(x3) (34)

wm
n,3,k1

(x) := wk1
n1
(x1)s

k
n2
(x2)s

k
n3
(x3) (35)

wm
n,4,k2,k3

(x) := skn1
(x1)w

k2
n2
(x2)w

k3
n3
(x3) (36)

wm
n,5,k1,k2

(x) := wk1
n1
(x1)w

k2
n2
(x2)s

k
n3
(x3) (37)

wm
n,6,k1,k3

(x) := wk1
n1
(x1)s

k
n2
(x2)w

k3n3(x3) (38)

wm
n,7,k1,k2,k3

(x) := wk1
n1
(x1)w

k2
n2
(x2)w

k3
n3
(x3). (39)

We call the functions wm
n,α(x) generalized wavelets, where the index, m, rep-

resents the smallest wavelet scale (largest k1, k2, k3) appearing in the product.
The index α indicates the values of k1, k2, k3 as well as which of the seven types
of products appear in the basis function.

Since the scaling function is the solution of a renormalization group equa-
tion and all of the other basis functions are linear combinations of translated
and scale transformed scaling functions, it follows that all of the basis functions
have a fractal structure. This makes it difficult to represent the basis functions
in terms of elementary functions that are smooth on a sufficiently small scale.
Fortunately, while it is possible to compute the scaling function to any desired
accuracy, this is never needed in any application. What is needed are the overlap
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integrals of products of arbitrary numbers of basis functions and their deriva-
tives. It turns out that these integrals satisfy renormalization group equations
and can all be computed exactly using the renormalization group equations and
the normalization condition, without knowing the value of the integrand at any
points. These equations can also be used to compute the integrals of products
of these functions with polynomials of arbitrary degree. Since the basis func-
tions have compact support, and any continuous function can be approximated
by a polynomial on a compact interval, it follows that integrals of products of
these basis functions and continuous functions can be computed to any desired
accuracy. Methods for computing these quantities are discussed in section five
and the appendix.

3 Free field conventions

In this section we summarize our conventions for a free mass-µ scalar field and
list some standard results that will be used in the subsequent sections. Since the
free field operators exist and the wavelet basis expansions are exact, free fields
provide a useful laboratory for understanding truncations as approximations.

Free fields also play a role in modeling interacting theories. In the presence
of both resolution and volume cutoffs, which are natural in the wavelet basis,
all of the operator products in the Hamiltonain become finite sums of well-
defined operators on the free-field Fock space, allowing one to formally work in
the interaction representation. The renormalization group, discussed in section
seven, provides one means to construct a limiting interacting theory with an
infinite number of degrees of freedom.

The Lagrangian density for a free scalar field of mass µ is

L(x) := 1

2
(Φ̇(x)Φ̇(x)−∇∇∇Φ(x) · ∇∇∇Φ(x)− µ2Φ(x)2). (40)

Lagrange’s equations are

∂2

∂t2
Φ(x)− ∂2

∂x2
Φ(x) + µ2Φ(x) = 0. (41)

The generalized momentum is

Π(x) =
∂L(x)
∂Φ̇

= Φ̇(x) (42)

and the Hamiltonian is

H =

∫
(Π(x)Φ̇(x)− L(x))dx

=
1

2

∫
(Π(x)Π(x) +∇∇∇Φ(x) · ∇∇∇Φ(x) + µ2Φ(x)2)dx. (43)
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The field Φ(x, t) is normalized so Φ(x, t) and Π(x, t) satisfy the canonical
equal-time commutation relations

[Φ(x, t),Π(y, t)] = iδ(x− y). (44)

The classical energy-momentum tensor is

Tµν(x) = − ∂L(x)
∂(∂µΦ)

∂νΦ+ ηµνL(x) =

∂µΦ(x)∂νΦ(x)−
1

2
ηµν(∂αΦ(x)∂αΦ(x) + µ2Φ(x)2) (45)

and the angular momentum tensor is

Mµνα = (xµT να − xνTµα). (46)

These tensors satisfy the conservation laws

∂µT
νµ = ∂αM

µνα = 0 (47)

leading to the conserved charges, which after quantization, are the infinitesimal
generators of the Poincaré group

Pµ =

∫
t=0

dxPµ(x)dx Pµ(x) := Tµ0(x) (48)

Jµν :=

∫
t=0

dxJ µν(x)dx J µν(x) :=Mµν0(x). (49)

The generators can be expressed as integrals over operator-valued densities

H = P 0 =∫
t=0

: (Π(x)Φ̇(x)−L(x)) : dx =
1

2

∫
: (Π(x)Π(x)+∇∇∇Φ(x)·∇∇∇Φ(x)+µ2Φ(x)2) : dx

(50)

P = −
∫
t=0

: Π(x)∇∇∇Φ(x) : dx (51)

J ij = −Jji = εijkJk =∫
t=0

dx : (Π(x)xj∂iΦ(x)−Π(x)xi∂jΦ(x)) : (52)

J i0 = −J0i = Ki =∫
t=0

:

(
1

2
Π2(x)xi +

1

2
xi∇∇∇Φ(x) · ∇∇∇Φ(x) +

1

2
xiµ2Φ(x)2 − x0Π(x)∂iΦ(x)

)
: dx

(53)
where the :’s indicate that the operators are normal ordered.
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The field has the Fourier representation (−+++ metric)

Φ(x) =
1

(2π)3/2

∫
dp√
2ωµ(p)

(e−ip·xa†(p) + eip·xa(p)) (54)

Π(x) =
i

(2π)3/2

∫
dp

√
ωµ(p)

2
(e−ip·xa†(p)− eip·xa(p)) (55)

where
ωµ(p) =

√
µ2 + p2 (56)

is the single-particle energy. The equal-time commutation relations imply

[a(p), a†(p′)] = δ(p− p′). (57)

The vacuum state of the field is the solution of

a(p)|0〉 = 0. (58)

The infinitesimal generators have momentum-space representations as integrals
over momentum densities

H =

∫
H(p)dp =

∫
dpa†(p)ωm(p)a(p), (59)

P =

∫
PPP(p)dp =

∫
dpa†(p)pa(p), (60)

J =

∫
JJJ (p)dp =

∫
dpa†(p)(i

∂

∂p
× p)a(p), (61)

K =

∫
KKK(p)dp =

∫
dpa†(p)

1

2
{i ∂
∂p

, ωm(p)}a(p) (62)

where we set x0 = 0 in the last expression.

4 Wavelet discretized fields

The wavelet basis discussed in (32-39) can be used to write exact expansions of
the fields as sums of products of basis functions with time-dependent operator
coefficients

Φ(x, t) =
∑
n

Φk(n, t)skn(x) +
∑

n,α,l≥k

Φl(n, α, t)wl
nα(x) (63)

Π(x, t) =
∑
n

Πk(n, t)skn(x) +
∑

n,α,l≥k

Πl(n, α, t)wl
nα(x) (64)

where the operator coefficients are projections of the field operators on the
orthonormal basis of scaling functions and wavelets

Φk(n, t) =

∫
dxΦ(x, t)skn(x) (65)
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Φl(n, α, t) =

∫
dxΦ(x, t)wl

nα(x) (l ≥ k) (66)

Πk(n, t) =

∫
dxΠ(x, t)skn(x) (67)

Πl(n, α, t) =

∫
dxΠ(x, t)wl

nα(x) (l ≥ k). (68)

In these expression we only integrate over the spatial coordinates so the operator
coefficients are time dependent. It is also possible to integrate over all space-time
coordinates.

These expansions have been separated into operators smeared over scaling
functions and generalized wavelets. This is a separation of scales - the scale-1/2k

scaling functions give the coarse scale structure of the field, while the wavelet
parts include the structure on all smaller scales.

The field operators smeared with the scaling functions represent the average
value of the field over a compact region weighted by the product of scaling
functions. Because the scale 1/2k+1 scaling function can be expressed in terms
of the scale 1/2k scaling functions and scale 1/2k wavelets, (24), the scale 1/2k

wavelet and scaling-function smeared fields, contain the same information as
the scale 1/2k+1 scaling function smeared fields.

When all of the wavelet contributions are included the expansions are exact.
In any finite region there are still an infinite number of wavelet basis functions
associated with arbitrarily small scales.

For fields satisfying canonical equal-time commutation relations, the or-
thonormality of the basis functions implies the equal-time canonical commu-
tation relations for the discrete fields:

[Φk(n, t),Φk(m, t)] = 0 [Πk(n, t),Πk(m, t)] = 0 (69)

[Φk(n, t),Πk(m, t)] = iδn,m (70)

[Φr(n, α, t),Φs(m, β, t)] = 0 [Πr(n, α, t),Πs(m, β, t)] = 0 (71)

[Φr(n, α, t),Πs(m, β, t)] = iδαβδrsδn,m (72)

[Φr(n, α, t),Φs(m, t)] = 0 [Πr(n, α, t),Πs(m, t)] = 0 (73)

[Φr(n, α, t),Πs(m, t)] = 0 [Πr(n, α, t),Φs(m, t)] = 0 (74)

where in all of these expressions k ≤ r, s.
Given these discrete field operators we can construct discrete creation and

annihilation operators

ak(n, t) :=
1√
2
(
√
γΦk(m, t) + i

1
√
γ
Πk(m, t)) (75)

br(n, α, t) :=
1√
2
((
√
γΦk(n, α, t) + i

1
√
γ
Πk(m, α, t)) (76)
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that satisfy
[ak(n, t), ak†(m, t)] = δmn (77)

[bl(n, α, t), bj†(m, βt)] = δmnδjlδαβ (78)

with all other commutators vanishing. In these expressions γ is a constant that
can depend on the discrete indices. While these quantities and their adjoints
satisfy the commutation relations (77,78) for creation and annihilation operators
for any choice of γ, a specific choice is required if the annihilation operator is
to annihilate the free field vacuum. This requires that γ is chosen so

〈0|ak†(n, t)ak(n, t)|0〉 = 0 (79)

〈0|br†(n, α, t)br(n, α, t)|0〉 = 0 (80)

〈0|ak(n, t)ak†(n, t)|0〉 = 1 (81)

〈0|br(n, α, t)br†(n, α, t)|0〉 = 1. (82)

With this choice of γ the annihilation operators annihilate the mass µ free-field
vacuum.

The solution of these equations for the scaling function fields is

γ(k) =
1±

√
1− 4〈0|Φk(m, t)Φk(m, t)|0〉〈0|Πk(m, t)Πk(m, t)|0〉

2〈0|Φk(m, t)Φk(m, t)|0〉

=
1±

√
1− 4〈0|Φk(0, t)Φk(0, t)|0〉〈0|Πk(0, t)Πk(0, t)|0〉

2〈0|Φk(0, t)Φk(0, t)|0〉
(83)

and for the wavelet fields

γ(k, α) =
1±

√
1− 4〈0|Φr(m, α, t)Φr(m, α, t)|0〉〈0|Πr(m, α, t)Πr(m, α, t)|0〉

2〈0|Φr(m, α, t)Φr(m, α, t)|0〉

=
1±

√
1− 4〈0|Φr(0, α, t)Φr(0, α, t)|0〉〈0|Πr(0, α, t)Πr(0, α, t)|0〉

2〈0|Φr(0, α, t)Φr(0, α, t)|0〉
. (84)

These coefficients depend on the scale 1/2k, α and the mass µ; however they
are independent of m and t by the space-time translational invariance of the
vacuum. With this choice of γ the scaling function fields can be expressed in
terms of the creation and annihilation operators as

Φk(m, t) =
1√
2γ

(ak†(m, t) + ak(m, t)) (85)

Πk(m, t) = i

√
γ

2
(ak†(m, t)− ak(m, t)) (86)

with analogous expressions for the wavelet fields,

Φk(m, α, t) =
1√
2γ

(bk†(m, α, t) + bk(m, α, t)) (87)
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Πk(m, t) = i

√
γ

2
(bk†(m, α, t)− bk(m, α, t)). (88)

The coefficients γ depend on the mass term in the field operators. This is
because the following integrals appear in (83-84):

〈0|Φk(m, t)Φk(m, t)|0〉 = 1

(2π)3

∫
skn(x)s

k
n(y)

2ωµ(p)
eip·(x−y)dxdydp (89)

〈0|Πk(n, t)Πk(n, t)|0〉 = 1

(2π)3

∫
skn(x)s

k
n(y)ωµ(p)

2
eip·(x−y)dxdydp (90)

〈0|Φr(m, α, t)Φr(m, α, t)|0〉 = 1

(2π)3

∫
wr

α,n(x)w
r
α,n(y)

2ωµ(p)
eip·(x−y)dxdydp (91)

〈0|Πr(n, α, t)Πr(n, α, t)|0〉 = 1

(2π)3

∫
wr

α,n(x)w
r
α,n(x)ωµ(p)

2
eip·(x−y)dxdydp.

(92)
These are integrals of the basis functions over the two-point mass-µ Wightman
function of this field at fixed time.

Using (85-92) in (63-64) gives exact expressions for the field operators in
terms of the discrete creation and annihilation operators:

Φ(x) =
∑ 1√

2γ(k)
skm(x)(ak(m, t) + ak†(m, t))

+
∑ 1√

2γ(j, α)
wj

m,α(x)(b
j(m, α, t) + bj†(m, α, t)) (93)

Π(x) = i
∑√

γ(k)

2
skm(x)(ak†(m, t)− ak(m, t))

+i
∑√

γ(j, α)

2
wj

m,α(x)(b
j†(m, α, t)− bj(m, α, t)). (94)

In this notation the a and a† operators represent scale 1/2k degrees of freedom,
while the b and b† operators are associated with smaller-scale degrees of freedom.

The Hilbert space for this free field is generated by taking limits of finite lin-
ear combinations of products of the discrete creation operators, ak(m, t)†, bl(m, α, t)†

applied to the vacuum at a fixed time.
It is useful to decompose operators into parts that only involve the a and

a† operators, parts that only involve the b and b† operators, and mixed terms
involving product of at least one operator from each of the above groups.

The terms with only the a and a† operators represent the 2−k-scale physics,
the terms with only the b and b† represent the part of the operator associated
with scales finer that 2−k that do not couple with the scale 2−k operators, and
the mixed terms are responsible for the coupling of the 2−k-scale degrees of
freedom to the smaller scale degrees of freedom.

15



The Hamiltonian (50) has the decomposition

H = H(a) +H(b) +H(ab) (95)

where

H(a) :=
1

2
(
∑
n

: Πk(n, 0)Πk(n, 0) : +
∑
mn

: Φk(m, 0)Dk
mnΦ

k(n, 0) :

+µ2
∑
n

: Φk(n, 0)Φk(n, 0) :) (96)

H(b) :=
1

2
(
∑
nα,l

: Πl(n, α, 0)Πl(n, α, 0) : +

∑
mα,lnβ,j

: Φl(m, α, 0)Dlj
m,α,n,βΦ

j(n, β, 0) :

+µ2
∑
l,n,α

: Φl(n, α, 0)Φj(n, α, 0) :) (97)

H(ab) :=
1

2

∑
mα,ln

: Φl(m, α, 0)Dlk
m,α,nΦ

k(n, 0) : (98)

and the coefficients Dk
mn, D

lj
m,α,n,β and Dlk

m,α,n are given by

Dk
mn =

∫
dx∇∇∇skm(x) · ∇∇∇skn(x) (99)

Dlj
m,α,n,β =

∫
dx∇∇∇wl

m,α(x) · ∇∇∇w
j
n,β(x) (100)

Dlk
m,α,n = 2

∫
dx∇∇∇wl

m,α(x) · ∇∇∇skn(x). (101)

The derivatives of the basis functions in (99-101) exist for Daubechies K ≥ 3
scaling functions. The computation of these integrals, using the renormalization
group equations and normalization condition, is discussed in the next section
and the appendix. These integrals are almost local in the sense that they vanish
when the support of the basis functions do not overlap. From the above equa-
tions we see that the part of the Hamiltonian, H(ab), that couples scale 1/2k

to the smaller scales proceeds through the terms in the free-field Hamiltonian
with the spatial derivatives.

There are similar decompositions for the linear momentum (51), angular
momentum (52), and Lorentz boost generators (53). For the linear momentum
the decomposition is:

P = P(a) +P(b) +P(ab) (102)

where
P(a) = −

∑
mn

: Πk(m, 0)Pk
mnΦ

k(n, 0) : (103)
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P(b) = −
∑

mα,lnβ,j

: Πl(m, α, 0)Plj
m,α,n,βΦ

j(n, β, 0) : (104)

P(ab) = −
∑

mα,ln

: Πl(m, α, 0)Plk
m,α,nΦ

k(n, 0) :, (105)

and

Pk
m,n = −

∫
dxskm(x)∇∇∇xs

k
n(x) (106)

Plj
m,α,n,β = −

∫
dxwl

m,α(x)∇∇∇xw
j
n,β(x)+ (107)

Pl
m,α,n = −

∫
dx(wl

m,α(x)∇∇∇xs
k
n(x) + skn(x)∇∇∇xw

l
m,α(x)). (108)

For the angular momentum

J = J(a) + J(b) + J(ab) (109)

where
J(a) =

∑
mn

: Πk(m, 0)Jk
mnΦ

k(n, 0) : (110)

J(b) =
∑

mα,lnβ,j

: Πl(m, α, 0)Jlj
m,α,n,βΦ

j(n, β, 0) : (111)

J(ab) =
∑

mα,ln

: Πl(m, α, 0)Jlk
m,α,nΦ

k(n, 0) : +Πk(n, 0)Jkl
n,m,αΦ

l(m, α, 0) :

(112)
and

Jk
m,n = −

∫
dx(skm(x)(x×∇∇∇x)s

k
n(x) (113)

Jlj
m,α,n,β = −

∫
dxwl

m,α(x)(x×∇∇∇x)w
j
n,β(x), (114)

Jlk
m,α,n = −

∫
dxwl

m,α(x)(x×∇∇∇x)s
k
n(x), (115)

Jkl
m,α,n = −

∫
dxskn(x)(x×∇∇∇x)w

l
m,α(x). (116)

The decomposition for the rotationless boost generators is

K = K(a) +K(b) +K(ab). (117)

where

K(a) =

∫
1

2

∑
m,n

(
Fk

nm(: Π(n, 0)Π(m, 0) :

+µ2 : Φ(n, 0)Φ(m, 0) : +Gnm : Φ(n, 0)Φ(m, 0) :
)

(118)
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K(b) =

∫
1

2

∑
lmα,jnβ

(
Flj

m,α,n,β(: Π
l(m, α)Πj(n, β, 0) :

+µ2 : Φl(m, α, 0)Φj(n, β, 0) : +Glj
mαnβ : Φl(m, α, 0)Φj(n, β, 0) :

)
(119)

K(ab) =

∫ ∑
l,m,α,n

(
Flk

mα,n(: Π
l(m, α)Πk(n, 0) :

+µ2 : Φl(m, α, 0)Φk(n, 0) : +Glk
n,α,m : Φl(n, α, 0)Φk(m, 0) :

)
(120)

and the overlap integrals are

Fk
nm =

∫
dxskn(x)xs

k
m(x) (121)

Gk
nm =

∫
dx∇∇∇skn(x) · ∇∇∇skm(x)x (122)

Flj
nαmβ =

∫
dxwl

n,α(x)xw
j
m,β(x) (123)

Glj
nαmβ =

∫
dx∇∇∇wl

nα(x) · ∇∇∇w
j
mβ(x)x (124)

Flk
nαm =

∫
dxwl

n,α(x)xs
k
m(x) (125)

Glk
nαm =

∫
dx∇∇∇wl

nα(x) · ∇∇∇skm(x)x. (126)

All of the numerical coefficients can all be computed exactly using linear algebra
and the scaling equation. They vanish when the supports of the wavelets or
scaling functions have no overlap.

5 Integrals

The expressions for the Poincaré generators derived in the previous section
are linear combinations of normal products of discrete wavelet fields multiplied
by numerical coefficients. The numerical coefficients are integrals of products
of scaling functions, wavelets, first derivatives of these quantities and powers
of x. For a 3 + 1 dimensional field theory each coefficient is a product of
three coefficients involving one-dimensional integrals. In this section we discuss
methods for computing these one-dimensional integrals.

While all of the integrals involve functions with fractal values, making stan-
dard numerical methods impractical, the unique properties of the wavelet basis
makes it possible to compute all of the integrals appearing in the previous sec-
tion exactly. In this section we discuss how to compute the coefficients in the
previous section. We follow the general discussion with an illustrative example.
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The integrals in the last section are products of one-dimensional integrals of
the form

Γn =

∫
f1(x)f2(x) · · · fn(x)dx. (127)

where the functions fi(x) are scaling functions, wavelets, first derivatives of
these functions or powers of x

The important observation is that all of the functions that appear in the
integrand of the coefficient Γn have simple transformation properties under scale
transformation and translations. This, along with the scaling equation and
normalization condition, can be used to reduce the computation of all of these
quantities to finite linear algebra.

The computation uses the following relations, which follow from the defini-
tions: ∫

skn(x)dx =
1√
2k

(128)

DT 2k = T kD (129)

d

dx
D = 2D

d

dx
(130)

Dx = 2
√
2xD (131)

Tx = (x− 1)T. (132)

In addition, we use the scaling equation, the definition of the wavelet and the
derivatives of these equations in the form (25-27):

skm(x) =
∑
n

Hmns
k+1
n (x) (133)

wk
m(x) =

∑
n

Gmns
k+1
n (x) (134)

sk′m = 2
∑
n

Hmns
(k+1)′
n (135)

wk′
m = 2

∑
n

Gmns
(k+1)′
n . (136)

These equations can be used to express skm(x), wk
m(x), sk′m(x), and wk′

m(x), with
scale 2−k, as linear combinations of scaling functions and their derivatives with
scale 2−(k+1). Repeated application of these equations can be used to increase
k in each of the functions by any desired amount.

In addition, the scale factor k of all functions in the integral can be increased
or decreased by the same amount using∫

Dkf1(x)D
kf2(x) · · ·Dkfm(x)dx =

2k(
m
2 −1)

∫
f1(x)f2(x) · · · fm(x)dx (137)
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where in this equation k can be positive or negative. We recall from the defi-
nition (4) and (9) that D increases k by 1 when applied to scaling functions or
wavelets. For derivatives we also need to use (130).

Using (137) to make all of the k-values negative and then using (133-136) to
increase each one to zero leads to an expression for the integral (127) as a linear
combination of integrals involving products of scale 1/20 scaling functions, their
derivatives and powers of x.

It is useful to first consider integrals where there are no powers of x; we will
see later that the corresponding integrals with powers of x can be expressed in
terms of the integrals with no powers of x. To compute a general coefficient, Γn

we use the following steps.

1. Step 1: Use (137) to relate the integral to another integral where the finest
scale appearing in the integrand is 1/20. Then the scale of each function
in the integrand is 1/20 or coarser (negative k).

2. Step 2: Use repeated application (133-136) to replace all of the coarse
scale functions by linear combinations of scale 1/20 functions. The result
of these two steps is that original integral can be expressed as a finite sum
of coefficients where all of the functions in the integrand are scale 1/20

scaling functions or their derivatives. Note that the wavelet contributions
can always be expressed in terms of scaling functions using (134 or 136).

3. Step 3: Use integer translational invariance to make the support of the left
most function start at 0. Then, because each function has compact support
on an interval of width [2K-1], non-zero coefficients have translational
indices that vary from [−2K + 2, 2K − 2]. That means the number of
non-zero coefficients that cannot be generated by translations is less than
(4K − 3)n−1 (finite).

4. Step 4: Apply the scaling equation to the integrand of the resulting inte-
gral and use translational invariance to shift the left most index to zero.
This results in a set of (4K − 3)n−1 homogeneous linear equations for the
coefficient functions with left index zero.

5. Step 5: Use the partition of unity property (there is also one for the deriva-
tive of the scaling function) to get additional inhomogeneous equations for
these coefficients.

6. Step 6: Combine the homogeneous and inhomogeneous equations to get a
linear system and solve for the coefficients.

7. Step 7: Reverse the steps, using the finite number of solution of the linear
equations to construct the general coefficients.

All of the steps are straightforward; for step six some of the equations are
redundant and one must select a set of independent equations that include at
least one inhomogeneous equation.
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We illustrate construction with the example of computing the integral of the
product of a scaling function, wavelet, and derivative of a scaling function with
different scales

Ik,k+l,k+j
mnp :=

∫
skm(x)wk+l

n (x)
dsk+j

p

dx
(x)dx. (138)

To be specific we assume that j > l and k > 0. For the first step we use (137)
and (130) to reduce the finest scale, 1/2k+j to 1/20

Ik,k+l,k+j
mnp = 2−3(k+j)/2I−j,−j+l,0

mnp . (139)

This makes the last scale index 0 and the other two negative. Since all of the
other scale factors have a negative exponent, we can use (134-135) to increase
each of them to zero:

I−j,−j+l,0
mnp =

∑
m′n′

Hj
mm′(GH

j−l−1)nn′I0,0,0m′n′p (140)

where in (140) Hj
mm′ is the product of j factors of the matrix Hmn. While

the matrix Hmn is formally infinite, only a finite number of terms in this sum
contribute to a particular values of m, so the sums in (140) are finite. Similar
remarks apply to GHj−l−1. The integral on the right side of (140) is

I0,0,0m′n′p =

∫
sm′(x)sn′(x)

ds

dx
(x− p)dx. (141)

Note that the wavelet in (138-139) is replaced by a scaling function because
equation (134) expresses the scale 1/2l wavelet as a linear combination of scale
1/2l+1 scaling functions.

Next we use translational invariance to transform the first index to zero

I0,0,0m′n′p = I0,0,00,n′−m′,p−m′ . (142)

Thus we can express any of the integrals, Ik,k+l,k+j
mnp , in terms of the (2K − 2)2

non-trivial coefficients I0,0,00mn .
Because of the compact support of the scaling function and its derivative,

I0,0,00mn is non-vanishing only for values of m,n satisfying

−2K + 1 < m,n < 2K + 1; |m− n| < 2K − 1. (143)

These integrals have the form

I0,0,00mn =

∫
s(x)s(x−m)

ds

dx
(x− n)dx. (144)

Next we use (133,134,135) and (137) and translational invariance to get the
following scaling equation

I0,0,00mn =
1√
2
I−1,−1,−1
0mn =

2√
2

∑
l′m′n′

Hll′Hmm′Hnn′I000l′m′n′ =
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√
2
∑

l′m′n′

Hll′Hmm′Hnn′I0000,m′−l′,n′−l′ (145)

which is a system of (2K − 2)× (2K − 2) homogeneous equations for the values
of I0,0,00mn with −2K + 1 < m,n < 2K + 1.

In order to solve this system we also need an inhomogeneous equation, which
must be related to the normalization condition on the scaling function. The
Daubechies K = 3 scaling function is defined so 1, x and x2 can be pointwise
expanded as linear combinations of scaling functions

1 =
∑
n

ansn(x) and x =
∑
n

bnsn(x). (146)

The normalization condition (3) and the orthogonality condition (16) give an =
1 or

1 =
∑
n

sn(x), (147)

which is a restatement of the partition of unity property. To calculate bn use
the unitarity of D and the scaling equation to get

bn =

∫
xsn(x)dx = n+

∫
xs(x)dx = n+

∫
D−1xD−1s(x)dx =

n+
1

2
√
2

∑
l

hl

∫
xs(x− l)dx =

n+
1

2
√
2

∑
l

lhl

∫
s(x)dx+

1

2
√
2

∑
l

hl

∫
xs(x)dx =

n+
1

2
√
2

∑
l

lhl +
1

2

∫
xs(x)dx (148)

where we used (12),
∑

l hl =
√
2, in (148). Setting n = 0 gives∫
xs(x)dx =

1√
2

∑
l

lhl. (149)

It follows that

bn = n+
1√
2

∑
l

lhl (150)

and

x =
∑
n

nsn(x) +
1√
2

∑
l

lhl. (151)

If we differentiate (151) we get a partition of unity for the derivative of the
scaling function,

1 =
∑

ns′n(x). (152)
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Equation (152) implies that the coefficient functions satisfy∑
n

nI0mn = δm0 (153)

This gives a non-trivial inhomogeneous equation when m = 0. If we sum over
the first index we get the equivalent inhomogeneous equation∑

mn

nI0mn = 1. (154)

The next step is to identify a set of independent linear equations, including
(154), for the non-zero I0,0,00mn . Solving these equations gives the non-vanishing
I0,0,00mn .

Reversing these steps we get the following expression for the general coeffi-
cient in terms of the coefficients I0,0,00mn :

Ik,k+l,k+j
mnp = 2−3(k+j)/2

∑
m′n′

Hj
mm′(GH

j−l−1)nn′I0,0,00,n′−m′,p−m′ . (155)

This shows that the scaling properties lead to explicit formulas for an infinite
number of coefficients in terms of the finite set of coefficients I0,0,00,m,n with −2K+
1 < m,n,m− n < 2K − 1.

Given the above method to compute all of the integrals without powers of x,
is it easy to generalize the construction to treat integrands involving powers of
x. This computation uses the translations that appear in the scaling equations
to reduce the desired integral to one of the types discussed above.

The basic trick is to combine (133-137). For example, all of the moments,

< xm >s=

∫
s(x)xmdx < xm >w=

∫
w(x)xmdx, (156)

can be constructed recursively from the normalization condition

< x0 >s=

∫
dxs(x) = 1 (157)

using the scaling equation

< xm >s=

∫
D−1xmD−1s(x)dx

=
1√
2

1

2m

∑
l

hl

∫
xms(x− l)dx

=
1√
2

1

2m

∑
l

hl

∫
(x+ l)ms(x)dx

=
1√
2

1

2m

∑
l

hl

m∑
k=0

m!

k!(m− k)!
lm−k

∫
xks(x)dx. (158)
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Using
∑

l hl =
√
2, and moving the k = m term to the left side of equation (158)

gives the recursion relation for the m-th moments in terms of k < m moments∫
xms(x)dx =

1

2m − 1

1√
2

m−1∑
k=0

m!

k!(m− k)!

(
2K−1∑
l=1

hll
m−k

)∫
xks(x)dx. (159)

Moments of the wavelets are obtained by replacing hl in (158) by gl:

< xm >w=

∫
w(x)xmdx =

=
1√
2

1

2m

∑
l

gl

m∑
k=0

m!

k!(m− k)!
lm−k

∫
xks(x)dx. (160)

This means the first moment can be expressed in terms of the 0th moment, which
is 1 by the scale fixing condition. This method can be generalized to calculate
moments multiplied by arbitrary products of scaling functions, wavelets and
their first derivatives. In the general case one gets a linear system for the kth in
terms of the 0, 1, · · · , k − 1st moments.

Using these methods all of the coefficients appearing in the expressions for
the Poincaré generators can be expressed in terms of the scaling coefficients, hl,
and the solution of a finite system of linear equations. The factors of Hj and
GHj−l−1 in (155) are dominated by the terms involving j or j − l− 1 products
of h1 = g + 4 ≈ 1.1 or Hmn → 1.1δ1−n−2m and Gmn → 1.1δ4−n−2m.

Calculations of (99-101) are done explicitly in the appendix.

6 Poincaré Symmetry

There are three properties of the wavelet basis that are useful for investigating
Poincaré symmetry breaking in discrete truncations of field theory. First, the
scaling functions on a fixed scale are a compactly supported, locally finite par-
tition of unity. This makes it possible to test the Poincaré symmetry in finite
volumes. Second, the scaling functions and wavelets form a basis, which means
that it is possible to precisely identify the corrections that are needed to restore
Poincaré invariance in truncated theories. Third, because it is possible to com-
pute the coefficients of the operators that restore the commutation relations to
a set of truncated generators, it is possible to identify and classify the size of all
of the correction terms.

In this section we discuss these three properties in more detail. First we
consider the partition of unity property. Up to an overall multiplicative constant
the scaling functions on a given scale, 1/2k, form a partition of unity that has
the form

1 =
∑
m

2−3k/2skm(x). (161)

While this sum is formally infinite, at any given point there are at most (2K−1)3

non-vanishing terms in this sum.
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The partition of unity can be utilized to decompose each of the Poincaré
generators into sums of localized operators. To do this note that Noether’s
theorem gives formal expressions for the Poincaré generators as integrals of local
densities (48-49) over the t = 0 surface. The local densities involve products of
field operators and their derivatives at the same spacetime point.

The local density, Oi(x), of the i-th Poincaré generator satisfies

[Oi(x, 0), Oj(y, 0)] = iδ(x− y)f ijkOk(y, 0) (162)

where the f ijk are the structure constants of the Poincaré group. Generators
are integrals of these densities over the t = 0 hyperplane

Oi :=

∫
dxOi(x, 0). (163)

These integrals are the conserved charges in Noether’s theorem and formally
become time independent after integrating over a fixed-time hyperplane. The
Poincaré commutation relations are obtained by integrating both sides of equa-
tion (162) over a fixed-time hyperplane. This gives the commutation relations

[Oi, Oj ] = if ijkOk Oi =

∫
dxOi(x, 0). (164)

While the generators are not local operators, they involve integrals of local
densities over a 3-dimensional hyperplane, and the partition of unity for scale-
1/2k scaling functions can be used to express the commutation relations in an
almost local form. To do this we insert the partition of unity, (161), in (163) to
get

Oi =
∑
m

∫
Oki

m (165)

where the smeared density is

Oki
m :=

∫
2−3k/2skm(x)Oi(x, 0)dx (166)

and the integrals are over the t = 0 hyperplane.
In this notation the exact commutation relations (164) can be expressed in

terms of the sums: ∑
mn

[Oki
m, O

kj
n ] = i

∑
l

f ijl
∑
n

Okl
n . (167)

While these sums have an infinite number of terms, there are no convergence
problems because when (167) operates on the dense set of states |Ψ〉 constructed
out of finite linear combinations of products of creation operators smeared
against wavelets and scaling functions, whose support is necessarily contained
in a bounded region, then only a finite number of terms in the sum (167) are
non-zero, giving ∑

mn

[Oki
m, O

kj
n ]|ψ〉 = i

∑
l

f ijl
∑
n

Okl
n |ψ〉. (168)
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In (168) the sums are finite, with m and n running only over the indices corre-
sponding to scaling functions in the partition of unity that have common sup-
port with the smearing functions skn(x) and w

l
j(x) used in the discrete creation

operators.
Equation (168) is an exact consequence of Poincaré invariance, and if it is

satisfied on the dense set of vectors generated by finite numbers of discrete
creation operators, one recovers exact Poincaré invariance.

Thus Poincaré invariance can be tested by replacing the infinite sums in (167)
by a suitable finite sum of the localized operators, Okl

n . Where approximations
enter is that the local densities Oi(x, 0) that appear in the definition of Okl

n are
constructed out of normal products of field operators. The fields that appear in
these expressions can all be expanded in the form (63-64). The partition of unity
projects the product of different scale discrete fields on the scale 1/2k subspace.
As long as there is no truncation everything is exact. The problem is that for
normal products of more than one field, there are scale 1/2k contributions to the
operator products that involve fields on scales smaller than 1/2k. If we truncate
the theory by discarding all of contributions to the field operators associated
with scales smaller than 1/2k, then the discarded scale 1/2k contributions that
come from projection of products of smaller scale field operators are precisely
the corrections that are needed to restore Poincaré invariance.

To understand the structure of these discarded terms consider the exact
expression for the linear momentum of a free field using the scale 1/2k scaling
functions and associated wavelets. The scalar densityO(x, 0) for the momentum
operator is (51) which is the normal product the Π(x) field and the gradient of
the Φ(x) field:

P(x) = − : Π(x, 0)∇∇∇Φ(x, 0) : . (169)

Using the partition of unity (161) equation (51) can be expressed exactly as

P =
∑
m

Pk
m (170)

where

Pk
m = −

∫
: Π(x, 0)∇∇∇Φ(x, 0) : 2−3k/2skm(x)dx. (171)

Alternatively, we can express Pk
m using the exact expansion of each of the

fields in the scale 1/2k wavelet basis and smearing the result with the scale 1/2k

partition of unity:

Pk
m =

∑
j,n

: Πk(j, 0)P kkk
mnjΦ

k(n, 0) : +

∑
l,α,j,n

: Πl(j, α, 0)P lkk
j,α,nmΦk(n, 0) : +

∑
l,α,j,n

: Πk(n, 0)P klk
j,n,α,mΦl(n, α, 0) : +
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∑
l,α,j,n

: Πl(n, α, 0)P lsk
j,α,n,β,mΦs(n, β, 0) : (172)

where the expansion coefficients are

P kkk
mnj = −

∫
skm(x)skn(x)∇∇∇skj (x)dx (173)

P lkk
j,α,nm = −

∫
wl

j,α(x)s
k
n(x)∇∇∇skm(x)dx (174)

P klk
j,n,α,m = −

∫
skm(x)skj (x)∇∇∇wl

n,α(x)dx (175)

P lsk
j,α,n,β,m = −

∫
wl

j,α(x)s
k
m(x)∇∇∇ws

n,β(x)dx. (176)

The coefficients above are numerical coefficients.
To understand the interpretation of these results we note that (168) is an

exact consequence of the commutation relations expressed in terms of the scale
1/2k partition of unity. The expansion (172) is exact, and the resulting operators
satisfy (168). If the fields are replaced by resolution the 1/2k approximations
given by first term on the right of (63) and (64), then (172) would be replaced by
an “approximation” consisting of only the first line of (172). This approximation
would violate the commutation relations (168).

The “corrections” defined by the second through fourth line of (172) provide
the missing physics from smaller scales that is needed to restore the commu-
tation relations. Note that (168) only involves operators that act in a finite
volume, so any problems due to a volume truncation are not relevant.

In the free field case the generators (59-62) are sums of normal products
of one creation and one annihilation operator. The commutator of two oper-
ators with the structure ak(m)†ak(n) leads to another operator of the same
form. In addition commutators of operators of the structure ak(m)†bl(n, α)
with bl(n, α)†ak(j) also lead to structures of the form ak(m)†ak(j).

The breaking of Poincaré invariance is related to the question of how large
are the corrections P lkk

j,α,nm, P klk
j,n,α,m and P lsk

jαnβm that restore the commutation

relations relative to the coefficients Pkkk
mnj. that define the approximate genera-

tors in a model with a resolution 1/2k cutoff.
These coefficients can all be computed exactly using the methods of the

previous section in order to identify the largest correction terms.

7 Renormalization Group

The wavelet basis decomposes the Hilbert space L2(R3) into an orthogonal direct
sum of infinite dimensional subspaces of successively finer resolution.

The Hamiltonian can be truncated at any scale. The resulting operator
is something like averaging over lattice blocks, except the block functions are
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replaced by product of scaling functions of a given scale. In our free field example
the scale 1/2k truncated Hamiltonian has the form H(a) in (96).

It is useful to consider the relation of the free Hamiltonians H(a) truncated
on two different scales. To do this we use the scaling equation in the form (22)
to obtain the following identities:

δmn =

∫
skm(x)skn(x)dx =

∑
jl

hl−2mhj−2n

∫
sk+1
l (x)sk+1

j (x)dx =

∑
jl

hl−2mhj−2nδjl =
∑
j

hj−2mhj−2n (177)

and

Dk
mn =

∫
sk′m(x)sk′n (x)dx =

∑
jl

hl−2mhj−2n

∫
sk+1′
l (x)sk+1′

j (x)dx =
∑
jl

hl−2mhj−2nD
k+1
lj . (178)

Next consider the individual terms in the resolution 1/2k+1 truncated free
field Hamiltonain Hk+1(a). This Hamiltonain is the sum of the following three
terms

1

2

∑
n

: Πk+1(n, 0)Πk+1(n, 0) :, (179)

∑
mn

: Φk+1(m, 0)Dk+1
mn Φk+1(n, 0) :, (180)

and
µ2
∑
n

: Φk+1(n, 0)Φk+1(n, 0) :). (181)

The discrete fields in these terms have the form

Φk+1(n, 0) =

∫
Φ(x, 0)sk+1

n1
(x)sk+1

n2
(y)sk+1

n3
(x)dx (182)

and

Πk+1(n, 0) =

∫
Π(x, 0)sk+1

n1
(x)sk+1

n2
(y)sk+1

n3
(x)dx (183)

Using (24) these can be expressed in the form

Πk+1(n, 0) =∫
Π(x, 0)skn1

(x)skn2
(y)skn3

(x)dx =∫
Π(x, 0)(

∑
j1

hn1−2j1s
k
j1(x) +

∑
j1

gn1−2j1w
k−1
j1

(x))×
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(
∑
j2

hn2−2j2s
k
j2(y)+

∑
j2

gn2−2j2w
k−1
j2

(y))(
∑
j3

hn2−2j3s
k
j3(z)+

∑
j3

gn3−2j3w
k−1
j3

(z))dx

(184)
Φk+1(n, 0) =∫

Φ(x, 0)skn1
(x)skn2

(y)skn3
(x)dx =∫

Φ(x, 0)(
∑
j1

hn1−2j1s
k
j1(x) +

∑
j1

gn1−2j1w
k−1
j1

(x))×

(
∑
j2

hn2−2j2s
k
j2(y)+

∑
j2

gn2−2j2w
k−1
j2

(y))(
∑
j3

hn3−2j3s
k
j3(z)+

∑
j3

gn3−2j3w
k−1
j3

(z))dx.

(185)
These expressions have the form

Φk+1(n, 0) =
∑
j

∏
i

hni−2jiΦ
k(j, 0) + · · · (186)

Πk+1(n, 0) =
∑
j

∏
i

hni−2jiΠ
k(j, 0) + · · · (187)

where the · · · terms represent terms where at least one scale k wavelet wk
n(x)

appears in the integral. Using these expressions in (179) gives

1

2
(
∑
n

: Πk+1(n, 0)Πk+1(n, 0) :=

1

2
(
∑
n

:
∏
i

hni−2jiΠ
k(j, 0)

∏
m

hnm−2rmΠk(r, 0) + · · · =

1

2
(
∑
n

: Πk(j, 0)Πk(j, 0) + · · · = (188)

where we have used (177) three times. We see that this term in the resolution
1/2k+1 Hamiltonian can be expressed as the corresponding term in the resolution
1/2k Hamiltonian plus wavelet related corrections that restore the full 1/2k+1

scale physics.
Similarly we find the mass term has the same form

µ2
∑
n

: Φk+1(n, 0)Φk+1(n, 0) :) = µ2
∑
n

: Φk(n, 0)Φk(n, 0) : + · · · . (189)

Finally we consider the term (180)∑
mn

: Φk+1(m, 0)Dk+1
mn Φk+1(n, 0) :=

∑
mn

: (
∑
j

∏
i

hmi−2jiΦ
k(j, 0) + · · · )×
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∑
Dk+1

mini
(
∑
l

∏
i

hni−2liΦ
k(l, 0) + · · · ) (190)

Using (177) and (178) this becomes∑
mn

: Φk(m, 0)Dk
mnΦ

k(n, 0) : + · · · . (191)

Taken together these calculations show that the resolution 1/2k+1 free Hamil-
tonain is equal to the resolution 1/2k free Hamiltonian plus a correction that
fills in the missing degrees of freedom that appear in the scale 1/2k+1 but not
on scale 1/2k. The correction terms all involve fields smeared with wavelets.
An important observation is that for free fields the derivative terms provide the
coupling between the two scales. A similar analysis can be used to show that
all of the free-field Poincaré generators have the property that the resolution
1/2k+1 operators are equal to the resolution 1/2k generators plus wavelet field
corrections.

While we derived these results by considering the example of a free field,
the result also holds for interactions. For example a scale 1/2k+1 truncated∫
: Φn(x, 0) : dx interaction has the form∑

m1···mn

: Φk+1(m1, 0) · · ·Φk+1(mn, 0) : Γ
k+1
m1···mn

(192)

where

Γk+1
m1···mn

=

∫
sk+1
m1

(x) · · · sk+1
mn

(x)dx. (193)

It is straightforward to show, using (22) and (24), that

Γk
m1···mn

=
∏

hl1i−2m1i
· · ·hlni−2mni

Γk+1
l1···ln (194)

which when used with (186) and (187) gives∑
m1···mn

: Φk+1(m1, 0) · · ·Φk+1(mn, 0)Γ
k+1
m1···mn

=

∑
m1···mn

: Φk(m1, 0) · · ·Φk(mn, 0)Γ
k
m1···mn

+ · · · (195)

where the · · · terms represent the contributions where at least one of the ex-
pansions functions is a scale 1/2k wavelet, wk

m(x).
It follows that a resolution 1/2k+1 Hamiltonian has the form

Hk+1(a) = Hk(a) +Hk(b) +Hk(ab) (196)

where Hk(a) is the part of Hk+1 that has only scale 1/2k scaling function fields,
Hk(b) has only scale 1/2k wavelet fields and Hk(ab) contains the terms with
at least one wavelet and one scaling function field. In the interacting case the
interaction also contributes to Hk(ab)

30



The creation operators associated with scale 1/2k scaling function fields and
the creation operators associated with at least one scale 1/2k wavelet field each
generate mutually orthogonal subspaces on the Fock space generated by the
scale 1/2k+1 scaling function creation operators.

On can then seek a unitary transformation that Block diagonalizes Hk+1(a)
on the subspace generated by the scale 1/2k scaling function creation opera-
tors. The resulting effective Hamiltonain will be a Hamiltonian in the scale
1/2k degrees of freedom that includes the effects of the eliminated scale 1/2k+1

degrees of freedom. Both Hamiltonians are different functions of the same cou-
pling constants and mass parameters. Renormalization of the parameters in
the Hamiltonian of the model is necessary to keep some resolution 1/2k observ-
ables fixed. This gives a new coarse-scale Hamiltonain that includes additional
degrees of freedom at a finer scale.

Because the resolution 1/2k Hamiltonain has the same form for any k, the
starting scale is arbitrary so we can repeat this process, successively eliminating
degrees of freedom associated with smaller and smaller scales, renormalizing the
parameters in the Hamiltonain at each step. At some point one can stop and
the result will be an effective theory that describes the scale 1/2k degrees of
freedom, including the effects of the eliminated scale 1/2k+l degrees of freedom,
or one can proceed to try to find a fixed point of this renormalization group
equation.

The are a number of possible approaches that can be used to eliminate the
scale 1/2k+l degrees that appear in the scale 1/2k+1 Hamiltonain but not in the
scale 1/2k Hamiltonian.

An efficient method is to use the similarity renormalization group method[15].
This involves solving the differential equation

dH(λ)

dλ
= [H(λ)[H(λ,Hk(ab)]] (197)

with initial condition

H(0) = Hk+l(a) = Hk(a) +Hk(b) +Hk(ab). (198)

The resulting H(λ) will evolve to a Hamiltonian that is approximately block
diagonal on the space generated by scale 1/2k scaling function creation operators
and its orthogonal complement. In principle this can also be applied to the full
Hamiltonian. It is easy to see the iterative solution of this equation generates
more complicated interactions in the Hamiltonian with each iteration. The
iteration involves commutators of discrete creation and annihilation operators
multiplied by algebraically computable coefficients.

A second approach is to try to do this perturbatively. In this case the
Hamiltonian is expressed in the form(

H(a) HI

(HI)† Hc(a)

)
(199)

where in this expression H(a) is the part of Hamiltonian that maps the Fock
space generated by the scale 1/2k scaling function creation operators, Hc is
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the projection of the resolution 1/2k+1 Hamiltonian on the orthogonal comple-
ment of this space, and HI and (HI)† are the parts of the resolution 1/2k+1

Hamiltonian that couple these two spaces.
A unitary transformation of the Okobu [16][17] form

U =

(
(Ia +A†A)−1/2 −A†(Ib +AA†)−1/2

A(Ia +A†A)−1/2 (Ib +AA†)−1/2

)
(200)

with

A =

(
0 0

A(ba) 0

)
(201)

will block diagonailze the Hamiltonian on the Fock space generated by the scale
1/2k creation operators provided A satisfies

AH(a)−Hc(a)A+ (HI)† −AHIA = 0. (202)

Equation (202) is a non-linear equation for A that can be solved perturbatively
in HI . In this case we seek a solution for λ = 1 of

AH(a)−Hc(a)A+ λ(HI)† − λAHIA = 0. (203)

with

A =

∞∑
n=1

λnAn (204)

An important feature of the wavelet method is that the coupling of the scales
proceeds through the terms H(ab). These terms involve discrete operators mul-
tiplied by coefficients that involve integrals over product of scaling functions,
wavelets and their derivatives. Since these coefficients can all be computed ex-
actly (using finite linear algebra) it is possible to identify the largest or most
important terms and discard the smaller ones to get more efficient approximate
solutions.

8 Gauge Invariance

To motivate the implementation of local gauge invariance in the wavelet rep-
resentation of field theory we consider the example of an SU(3) gauge field.
The treatment of full gauge invariance with respect to fields smeared over four
space-time variables or time-independent gauge transformation restricted to a
fixed-time hyperplane for fields smeared over a basis for the hyperplane is sim-
ilar. Since most of our development has been for fields smeared over a basis for
the fixed-time hyperplane, we limit our discussion of gauge transformations to
time-independent gauge transformations.

In the wavelet basis the basis functions are not local, however if all of the
basis functions are retained linear combinations can be used to describe ob-
servables associated with arbitrarily small regions. Locally independent gauge
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transformations can be built out of independent gauge transformation associated
with each of the individual discrete wavelet fields. To be specific we consider an
SU(3) color gauge group.

We consider transformations of the form

Φk
c (n, t) → Φk

c (n, t) =
∑
c′

V k
cc′(n, t)Φ

k
c′(n, t) (205)

Φl
c(n, α, t) → Φl

c(n, α, t)
∑
c′

V l
cc′(n, α, t)Φ

l
c′(n, α, t) (206)

where V k
cc′(n, t) and V l

cc′(n, α, t) are SU(3) valued functions of the various pa-
rameters. They are independent for each independent discrete field operator.

It is obvious that quadratic expressions of the form:∑
n,c

Φ̄k
c (n, t)Φ

k
c (n, t) +

∑
l,α,c

Φ̄l
c(n, α, t)Φ

l
c(n, α, t) (207)

are invariant with respect to the gauge transformations (205 -206).
The construction of a representation for the covariant derivative can be de-

duced from the continuum covariant derivative

−iDDDcc′ = −∇∇∇δcc′ +Ad(x, t)λ
d
cc′ (208)

where λdcc′ are the Gell-Mann matrices. Matrix elements of these operators in
the wavelet basis have the form

−iDDDk
mn;cc′ = −i∇∇∇k

mn;cc′ +
∑
d

Ak
mn;d(x, t)λ

d
cc′ (209)

−iDDDkl
mnα;cc′ = −i∇∇∇kl

mnα;cc′ +
∑
d

Akl
mnα;d(x, t)λ

d
cc′ (210)

−iDDDlk
mαn;cc′ = −i∇∇∇lk

mαn;cc′ +
∑
d

Alk
mαn;d(x, t)λ

d
cc′ (211)

−iDDDjl
mαnβ;cc′ = −i∇∇∇jl

mαnβ;cc′ +
∑
d

Ajl
mαnβ;d(x, t)λ

d
cc′ (212)

where the multi-index quantities appearing in (209-212) are the matrix elements
in the wavelet basis

∇∇∇k
mn;cc′ =

∫
skm(x)∇∇∇δcc′skn(x)dx (213)

Ak
mn;d =

∑
l

∫
skm(x)Ad(x)s

k
n(x)dx (214)

∇∇∇kl
mnα;cc′ =

∫
skm(x)∇∇∇δcc′wl

nα(x)dx (215)
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Akl
mnα;d =

∑
l

∫
skm(x)Ad(x)w

l
nα(x)dx (216)

∇∇∇lk
mαn;cc′ =

∫
wl

mα(x)∇∇∇δcc′skn(x)dx (217)

Alk
mαn;d =

∑
l

∫
wl

mα(x)Ad(x)s
k
n(x)dx (218)

∇∇∇jl
mαnβ;cc′ =

∫
wj

mα(x)∇∇∇δcc′wl
nβ(x)dx (219)

Ajl
mαnβ;d =

∑
l

∫
wj

mα(x)Ad(x)w
l
nβ(x)dx (220)

This derivative will transform covariantly:

V k
cc′(m, t)DDDk

mnα;cc′ = DDDk′
mn;cc′V

k
cc′(n, t) (221)

V k
cc′(m, t)DDDkl

mnα;cc′ = DDDkl′
mnα;cc′V

l
cc′(n, α, t) (222)

V l
cc′(m, α, t)DDDlk

mαn;cc′ = DDDlk′
mαn;cc′V

k
cc′(n, α, t) (223)

V j
cc′(n, α, t)DDD

jl
mαnβ;cc′ = DDDkl′

mαnβ;cc′V
l
cc′(n, β, t) (224)

provided the vector potential matrix transforms like

−iV k
cc′(m, t)∇∇∇k

mn +
∑
dc′′

V k
cc′′(m, t)Ak

mn;dλ
d
c′′c =

−i∇∇∇k
mnV

k
cc′(n, t) +

∑
dc′′

A′k
mn;dλ

d
cc′′V

k
c′′c(n, t) (225)

−iV k
cc′(m, t)∇∇∇kl

mnα +
∑
dc′′

V k
cc′′(m, t)Akl

mnα;dλ
d
c′′c =

−i∇∇∇kl
mnαV

l
cc′(n, α, t) +

∑
dc′′

A′kl
mn;dλ

d
cc′′V

l
c′′c(n, αt) (226)

−iV l
cc′(m, α, t)∇∇∇lk

mαn +
∑
dc′′

V l
cc′′(m, α, t)Alk

mαn;dλ
d
c′′c =

−i∇∇∇lk
mαnV

k
cc′(n, t) +

∑
dc′′

A′lk
mαn;dλ

d
cc′′V

k
c′′c(n, t) (227)

−iV j
cc′(m, α, t)∇∇∇jl

mαnβ +
∑
dc′′

V j
cc′′(m, α, t)Ajl

mαnβ;dλ
d
c′′c =
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−i∇∇∇jl
mαnβV

j
cc′(n, α, t) +

∑
dc′′

A′jl
mαnβ;dλ

d
cc′′V

l
c′′c(n, β, t) (228)

With these transformation properties the quantities

−i
∑
mn

Φ̄k
c (m, t)DDDk

mn;cc′Φ̄
k
c (n, t) (229)

−i
∑
mαn

Φ̄l
c(m, α, t)DDDlk

mαn;cc′Φ̄
k
c (n, t) (230)

−i
∑
mn

Φ̄k
c (m, t)DDDkl

mnα;cc′Φ̄
l
c(n, α, t) (231)

−i
∑
mn

Φ̄j
c(m, α, t)DDDjl

mαnβ;cc′Φ̄
l
c(n, β, t) (232)

are invariant.
Because these are invariant, matrix element by matrix element, the invari-

ance is preserved by truncation. A covariant field strength tensor is obtained by
taking the commutator of the covariant derivatives projected on different axes.

Note that the generalization to 3+1 dimensions is a direct extension of the
three-dimensional results. The interesting feature is that in the full theory the
gauge invariance is implemented by an infinite number of independent non-local
gauge transformations that act independently on each degree of freedom.

9 Summary and Conclusion

In this paper we discussed some of the advantages of using the basis generated
by Daubechies scaling functions and wavelets to formulate exact discretizations
of local field theories. We emphasized on the special properties of the basis and
how these could be useful in field theoretic applications. The most important
properties are that the basis functions have compact support, contain locally
finite partitions of unity, and are related to fixed points of a renormalization
group equation.

The working assumption is that it is possible to make sense out of quantum
fields smeared with a class of test functions that are not infinitely differentiable,
but instead have a fractal character with a limited amount of smoothness. The
justification for this is that the integral of a product of Daubechies K = 3
scaling functions over the Källén-Lehmann representation of a mass µ two-point
Wightman function exists. This justifies the use of wavelet smeared fields in free-
field theories and more generally in models with volume and resolution cutoffs.

Given this assumption the wavelet basis leads to an exact representation of
the local field as an infinite linear combination of smeared fields multiplied by
compactly supported basis functions. The smeared field operators are operators
rather than operator valued distributions. They generate a local algebra in the
sense that in any open set of spacetime there are operators associated with
smearing functions that have support entirely in that open set.
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In the wavelet representation products of local field operators are replaced
by infinite sums of well-defined operators multiplied by products of wavelet basis
functions at different space-time points. In this representation singularities in
the operator products at nearby points are replaced by convergence questions.
For example, the local composite fields in the Wilson-Zimmermann formulation
of the operator product expansion[18] are recursively constructed by identifying
and ordering the most singular matrix elements as the separation between points
vanish. In the wavelet representation these matrix elements are represented
by infinite sums of products of basis functions at different points with well-
defined expectation values of discrete field operators. The identification of the
singularity class of a given matrix elements depends on the asymptotic properties
of the series as a function of the separation between points.

The discussions in this paper focused on fields smeared only over wavelet
basis functions in three dimensions at a fixed time. This representation is more
convenient for dealing with the Hamiltonian formulation of the dynamics as
well as the treatment of the Poincaré symmetry. In this representation, if the
basis is truncated to a finite number of degrees of freedom (equivalent to a
volume and resolution cutoff), then the interactions in the Hamiltonain become
well-defined operators and one can in principle solve for the truncated dynamics.
Because the basis functions are related to fixed points of a renormalization group
equation, Hamiltonians with fine scale degrees of freedom are equal to identical
Hamiltonians with coarse scale degrees of freedom plus additional operators
with additional fine scale degrees of freedom. Eliminating the fine scale degrees
of freedom, rescaling and adjusting the parameters of the theory leads to a
renormalization group transformation. While the calculations are not trivial,
implementation of the decoupling using similarity renormalization group method
involves commutators of discrete canonical fields and algebraically computable
coefficients. Methods for computing these coefficients were discussed in section
five and implemented in the appendix for the parts of the free Hamiltonain that
couple different scales.

Another important property of the wavelet basis is that the scaling functions
on any fixed scale are up, to an overall constant, a locally finite, compactly
supported partition of unity. When inserted in the formal expressions for the
Poincaré generators, expressed as integrals of the energy momentum and angular
momentum densities over a fixed time surface, the generator is decomposed into
a sum of operators that act in different spatial volumes at a given time. This
allows one to exactly test the Poincaré commutation relations in finite volumes.
These exact finite-volume components of the generators can be expressed in
terms of the discrete wavelet fields by replacing each field that appears in the
generator by its expansion in wavelet smeared fields. When these expansions
are truncated, by eliminating small-scale degrees of freedom, the commutation
relations are violated because the products of the small-scale degrees of freedom
couple to the large-scale degrees of freedom. In the wavelet basis these correction
can be identified and their relative importance can be calculated.

A final important property of the wavelet basis is the ability to reduce all of
the quadratures that are needed in the theory to finite algebra. This requires re-
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placing conventional computational techniques that depend on functions looking
smooth on small scales by new methods based on the renormalization group.

We also demonstrate that SU(3) gauge invariance could be implemented ex-
actly in wavelet truncated theories. While our discussion was limited to some
illustrative topics, there are a number of other topics where the wavelet repre-
sentation might have some advantages. These include the wavelet representation
of the operator product expansion, wavelet representations of the Poincaré Lie
algebra in momentum space.

This work was supported in part by the U.S. Department of Energy, under
contract DE-FG02-86ER40286. The authors would also like to thank Profes-
sor Robert Perry for useful discussions on the similarity renormalization group
method and Andreas Schaefer for bringing our attention to some applications
of wavelets in quantum field theory.
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[6] B. M. Kessler, G. L. Payne, W. N. Polyzou, Wavelet Notes, arXiv:nucl-
th/0305025v2, 2003.

[7] Christoph Best, Andreas Schaefer, ”Variational description of statistical field
theories using Daubechies’ wavelets”, arXiv: hep-lat/9402012, 1994

[8] Christoph Best, Wavelet induced renormalization group for the Landau-
Ginzburg model, Nucl. Phys. Proc. Suppl. 83 (2000) 848-850.

[9] Ahmed E. Ismail, Gregory C. Rutledge, and George Stephanopoulos, “Mul-
tiresolution analysis in statistical mechanics. I. Using wavelets to calculate
thermodynamic properties” J. Chem. Phys. 118, 4414 (2003).

[10] Ahmed E. Ismail, Gregory C. Rutledge, and George Stephanopoulos, ”Mul-
tiresolution analysis in statistical mechanics. II. ’The wavelet transform as
a basis for Monte Carlo simulations on lattices” J. Chem. Phys. 118, 4424
(2003).

37



[11] Mikhail V. Altaisky, “Wavelet-Based Quantum Field Theory Symmetry,
Integrability and Geometry: Methods and Applications”, SIGMA 3 (2007),
105.

[12] P. Federbush, New formulation and regularization of gauged theories using
a nonlinear wavelet expansion, Prog. Theor. Phys. 94 (1995) 1135-1146.

[13] Guy Battle, Wavelets and Renormalization, World Scientific, Series in Ap-
proximations and Decompositions, Volume 10, 1999.

[14] S.Albeverio, M.V.Altaiskyb, “A remark on gauge invariance in wavelet-
based quantum field theory” arXiv:0901.2806v2, 2009.

[15] E. Anderson, S.K. Bogner, R.J. Furnstahl, E.D. Jurgenson, R.J. Perry, A.
Schwenk, Block Diagonalization using SRG Flow Equations, arXiv:0801.1098,
2008.

[16] Okubo S., Prog. Theor. Phys., 1954, v.12, p.603.
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10 Appendix - overlap integrals

In this appendix we compute the overlap integrals Dk
mn that appear in the

free-field Hamiltonian. These are the terms responsible for the coupling of the
degrees of freedom associated with different scales.

The general coefficients are products of the matrices below in the x, y and
z variables. There are nine combinations.

Dk
mn =

∫
sk′m(x)sk′n (x)dx = 22k

∫
s′(x−m)s′(x− n) = 2kDmn (233)

Dkl
mn =

∫
sk′m(x)wl′

n(x)dx = 22(l+1)
∑
m′n′

H l+1−k
mm′ Gnn′Dm′n′ (234)

Djl
mn =

∫
wj′

m(x)wl′
n(x)dx = 22(l+1)

∑
m′n′

(GH l−j)mm′Gnn′Dm′n′ (l ≥ j).

(235)
The above expressions show that each of these integrals are linear combina-

tions of the matrices

Dlm =

∫
s′l(x)s

′
m(x)dx. (236)

We can use translational invariance to write (236) equation as

Dlm = D0,m−l =

∫
s′(x)s′m−l(x)dx. (237)
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Because of the support conditions on the scaling functions these vanish unless
|n −m| ≤ 4. It is difficult to get an inhomogeneous equation for Dlm because
the obvious choice, using the partition of unity (152) satisfies∑

l

lD0,m−l = 0 (238)

for any m. This is because what remains is the integral of the derivative of a
continuous function with compact support. To get around this problem we use
the partition of unity (21) to get the relation

D0,m−l = Dlm =
∑
n

Dnlm =
∑
n

∫
sn(x)s

′
l(x)s

′
m(x)dx. (239)

This expresses the coefficients Dmn as linear combinations of Dlmn. Using the
methods discussed in section five we find that coefficients Dnlm = D0,l−n,m−n

satisfy the Homogeneous equations

D0lm = 4
√
2
∑
n,k,j

H0nHl,k+nHm,j+nD0kj (240)

and ∑
m

D0lm = 0 D0lm −D0ml = 0 (241)

and the inhomogeneous equation∑
l

lDnlm =

∫
sn(x)s

′
m(x)dx = Γnm = Γ0,m−n. (242)

An independent subset of these equation can be solved for the non-zero D0lms
in terms of the Γ0n. The coefficients Γ0n satisfy the homogeneous equations

Γ0l = 2
∑
m,n

H0mHl,n+mΓ0n (243)

and ∑
n

nΓ0n = 1 (244)

where we have used the partition of unity (152). These equations can be solved
for the non-zero Γ0n and the solutions can be used to calculate D0lm from which
one can derive D0m using (239). These can be used calculate (233-235) and
products of these quantities give the coefficients (99-101) for any combination
of indicies. The results of the calculation of the nine non-vanishing D0m are
given in Table 2.

The results of the calculation of the non zero Γ0n and D0mn are given in
tables 3 and 4.
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D0−4 −5.357× 10−3

D0−3 −1.143× 10−1

D0−2 8.762× 10−1

D0−1 −3.390
D00 5.268
D01 −3.390
D02 8.762× 10−1

D03 −1.143× 10−1

D04 −5.357× 10−3

Table 2:

Γ0−4 −3.424658× 10−4

Γ0−3 −1.461187× 10−2

Γ0−2 1.452055× 10−1

Γ0−1 −7.452055× 10−1

Γ00 −5.116622× 10−16

Γ01 7.452055× 10−1

Γ02 −1.452055× 10−1

Γ03 1.461187× 10−2

Γ04 3.424658× 10−4

Table 3:

D0−4−4 4.056756× 10−5 D0−1−2 −6.544856× 10−1 D012 1.758631× 10−1

D0−4−3 1.620980× 10−4 D0−1−1 2.323493 D013 1.299066× 10−2

D0−4−2 −6.227505× 10−4 D0−10 −2.071142 D014 −8.819594× 10−5

D0−4−1 9.394026× 10−4 D0−11 3.284401× 10−1 D02−2 1.773552× 10−3

D0−40 −5.193176× 10−4 D0−12 3.304668× 10−2 D02−1 3.304668× 10−2

D0−3−4 1.620980× 10−4 D0−13 −3.892382× 10−4 D020 −8.023148× 10−2

D0−3−3 1.782152× 10−2 D00−4 −5.193176× 10−4 D021 1.758631× 10−1

D0−3−2 −4.290543× 10−2 D00−3 −8.962795× 10−3 D022 −1.066658× 10−1

D0−3−1 4.009720× 10−2 D00−2 5.753018× 10−1 D023 −2.400100× 10−2

D0−30 −8.962795× 10−3 D00−1 −2.071142 D024 2.149391× 10−4

D0−31 −6.212589× 10−3 D000 2.364229 D03−1 −3.892382× 10−4

D0−2−4 −6.227505× 10−4 D001 −7.734980× 10−1 D030 −5.168265× 10−3

D0−2−3 −4.290543× 10−2 D002 −8.023148× 10−2 D031 1.299066× 10−2

D0−2−2 2.549910× 10−1 D003 −5.168265× 10−3 D032 −2.400100× 10−2

D0−2−1 −6.544856× 10−1 D004 −9.550006× 10−6 D033 1.703740× 10−2

D0−20 5.753018× 10−1 D01−3 −6.212589× 10−3 D034 −4.695561× 10−4

D0−21 −1.340525× 10−1 D01−2 −1.340525× 10−1 D040 −9.550006× 10−6

D0−22 1.773552× 10−3 D01−1 3.284401× 10−1 D041 −8.819594× 10−5

D0−1−4 9.394026× 10−4 D010 −7.734980× 10−1 D042 2.149391× 10−4

D0−1−3 4.009720× 10−2 D011 3.965574× 10−1 D043 −4.695561× 10−4

D044 3.523629× 10−4

Table 4:
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