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Abstract The role of relativity and dynamics in defining the spin and orbital angular momentum
content of hadronic systems is discussed.
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1 Introduction

There is a great deal of interest in the distribution of spin and orbital angular momentum in hadronic
systems. In general the underlying dynamics of partons in hadrons is relativistic. The treatment of spin
in relativistic systems is different than it is in non-relativistic systems. In a relativistic system the spin
of a parton is identified with the angular momentum of the parton in its rest frame while the spin of
the hadron is defined as the angular momentum of the hadron in its rest frame. Transforming a parton
from its rest frame to the hadrons rest frame, where the spins can be coupled, involves boosts which
generate dynamical rotations. These rotations transform the parton spins and also impact the relative
orbital angular momentum before they can be coupled. The spin of the constituents, the internal
orbital angular momentum and the spin of the system are related by Clebsch-Gordan coefficients of
the Poincaré group[1][2][3] . The Poincaré group Clebsch-Gordan coefficients are labeled by eigenvalues
of mass and spin Casimir operators, which are dynamical operators.

An additional complication is that boosts to the rest fame are not unique; a boost to the rest frame
followed by a momentum dependent rotation is a different boost to the rest frame. There are as many
different kinds of boosts as there are momentum dependent rotations. Each boost defines a different
spin observable. For example, there are distinct boosts that are used to define the helicity, light front
spin or canonical spin. These are three specific choices, that are distinguished by useful properties, out
of an infinite number of possibilities. In many-body systems there is another relevant spin, which I call
the constituent spin[3], which is distinguished by the property that spins and orbital angular momenta
can be combined using ordinary SU(2) coupling methods to get the hadronic spin.

While all of the spins satisfy SU(2) commutation relations, the different spins observables are related
by the momentum dependent (Melosh) rotations[4] that relate different boosts. Because different spin
observables differ by momentum-dependent rotations, partial derivatives with respect to momentum
that hold one spin observable constant will not commute with a different spin observable. This means
not only are there an infinite number of possible spin observables, but each one is associated with a
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different quantity that can be identified with an orbital angular momentum. As a result the spin and
orbital angular momentum content of a hadron is dynamical and representation dependent. In what
follows we discuss some of the relevant issues.

The dependence of the spin on the choice of boost is seen in the relations between the spin and
angular momentum

jlx :=
1

2
εlmnB−1x (p)mµB

−1
x (p)nνJ

µν (1)

where B−1x (p)mµ is a boost that maps p to its rest frame.
This definition can be equivalently expressed in terms of the polarization vectors that are three

space-like vectors emx µ(p) that are orthogonal to the four momentum, that can be identified with the
space-like rows of the boost B−1x (p)mµ:

jlx =
1

2
εlmnemx µ(p)enxν(p)Jµν . (2)

Spins constructed using different boosts are related by momentum-dependent Melosh rotations

jlx = Rxy(p)lmj
m
y where Rxy(p)lm = B−1x (p)lµBy(p)µm. (3)

Because the different types of spin observables differ by momentum-dependent rotations, “Position
operators” [5][6][2]that involve partial derivatives with respect to momentum need to specify which
kind of spins is being held constant during the differentiation,

[∇∇∇P|jx
, jx] = 0⇒ [∇∇∇P|jx

, jy] 6= 0. (4)

These partial derivatives can be written in terms of the Poincaré generators with V = P/M by [6][2]

Xk
x = i∇∇∇P|jx

= −1

2
{H−1,Kk}+ iH−1Ckl1x(V)jlx. (5)

In terms of these operators the spins and angular momentum are related by

Jj = (Xx ×P)j + Cjk2x(V)jkx (6)

where the operators Cjk1x(V) and Cjk2x(V) are the following functions of the Poincaré generators:

Cjk1x(V) =
1

2
Tr[Bx(V)−1σjBx(V)σk]− V 0Tr[Bx(V)−1

∂

∂Vl
Bx(V)σm] (7)

Cjk2x(V) =
1

2
Tr[Bx(V)−1σjBx(V)σk] + iεjlmTr[Bx(V)−1

∂

∂Vl
Bx(V)σm] (8)

and Bx(V) is the SL(2,C) representation of the x-boost. The quantity Xx×P is the associated orbital
angular momentum [6][2]

Three components of the four momentum and the projection of any of these spin observables on a
given axis are labels for vectors in irreducible subspaces. Products of two such irreducible representa-
tions can be expressed as direct integrals of composite irreducible representations using the Clebsch-
Gordan coefficients for the Poincaré group. Like any set of Clebsch-Gordan coefficients, the actual
coefficients depend on the choice of irreducible basis. The Poincaré group Clebsch-Gordan coefficients
for a basis labeled by the x-type spin are

x〈(M1, j1)P1, µ1(M2, j2)P2, µ2|k, j(M1, j1,M2, j2)P, µ, l, s12〉x =∑
µ′
1,µ

′
2,µ

′′
1 ,µ

′′
2 ,µs,m

δ(P−P1 −P2)
δ(k − k(P1,P2))

k2
×

√
ωM1

(k)ωM2
(k)

ωM1(P1)ωM2(P2)

√
ωM1

(P1) + ωM2
(P1)

ωM1(k) + ωM2(k)
×

Dj1
µ1µ′

1
[Rwx(Bx(V ), k1)]Dj1

µ′
1µ

′′
1
[Rxc(k1)]×
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Dj2
µ2µ′

2
[Rwx(Bx(V ), k2)]Dj2

µ′
2µ

′′
2
[Rxc(k2)]×

Y lm(k̂(P1,P2))〈j1, µ′′1 , j2, µ′′2 |s12, µs〉〈l,m, s12, µs|j, µ〉 (9)

These involve two types of spin rotations. There are Wigner rotations Rwx(Bx(V ), ki) that arise from
the x-boosts that relate the system and parton rest frames and generalized Melosh rotations, Rxc(k2),
that transform the resulting spins to the canonical spin representation where all of the spins and orbital
angular momenta Wigner rotate together so they can be added using ordinary SU(2) spin addition.

The spins obtained by applying these two rotations to the hadronic spins are the constituent spins
mentioned earlier. These are the spins associated with the magnetic quantum numbers µ′′i in (9). It is
apparent from this equation that when these spins are combined with the orbital angular momentum
using spherical harmonics and SU(2) Clebsch-Gordan coefficients the result is the total spin.

The Poincaré group Clebsch-Gordan coefficients (9) simplify in special bases. If the spins are defined
using the standard rotationless boosts there are no Melosh rotations, if the rotationless boost is replaced
by a light-front boost there are no Wigner rotations, and if the rotationless boost is replaced by a
helicity boost the Wigner rotations become multiplication by a phase.

One result of the momentum-dependence of the rotations is that the momentum dependence of the
hadronic wave function affects the expectation values of both the spins and orbital angular momentum.
Since the structure of the hadronic wave function is dynamical, the dynamics enters in spin coupling
when the the Poincaré Clebsch-Gordan coefficients are integrated against the hadronic wave functions.

When one couples two interacting subsystems, one has to ask whether the masses in the Poincaré
Clebsch-Gordan coefficients are the physical masses of the subsystems or the invariant masses of their
constituents. For example, the mass of a meson or the invariant mass of a quark antiquark pair? So far
we have treated them as invariant masses of the constituents. Cluster properties suggest that one should
really use the physical mass operators of the subsystems. Fortunately there is a unitary transformation
that removes the interaction dependence from the hadronic spin[7][8]. In this representation the spins
can be coupled by sequential coupling using the Clebsch-Gordan coefficients of the Poincaré group as
if the particles were not interacting. This unitary transformation changes the Hamiltonian, generating
many-body interactions. It also changes the representation of the wave function in a way that preserves
probabilities, expectation values, as well as scattering observables. In this case all of the dynamical
spin effects can be absorbed by changing the representation of the wave function.

A second ambiguity with spin has to do with whether the dynamics formulated using Poincaré
covariant or Lorentz covariant bases. The unitary representation of the Poincaré group on positive-
mass positive-energy irreducible basis states has the form

U(Λ, 0)|(M, j)P, µ〉x =
∑
|(M, j)ΛΛΛP, ν〉xDj

νµ(Rwx(Λ,P )). (10)

The Wigner rotation can be decomposed into the composition of a boost followed by a Lorentz trans-
formation followed by an inverse boost with the transformed four momentum

Rwx(Λ,P ) = B−1x (ΛP )ΛBx(P ). (11)

The group representation property can be used to split the Wigner function apart. The finite dimen-
sional representations of SU(2) are related to finite dimensional representation of SL(2,C) by analytic
continuation[9][3], so we can still use the group representation property. Absorbing the Wigner func-
tions of the boosts into the states gives the Lorentz spinor representation of the states:

|(m, j)P, b〉 :=
∑
µ

|(m, j)P, µ〉xDj
µb[B

−1
x (P/M)]. (12)

Here the boosts are represented by 2× 2SL(2,C) transformations. These spinor basis states (12) have
the following Lorentz covariant transformation property

U(Λ, 0)|(m, j)P, b〉 =
∑
b′

|(m, j)ΛΛΛP, b′〉Dj
b′b[Λ]. (13)

The price paid for using the covariant representation is that the Hilbert space inner product becomes
dynamical

〈ψ|φ〉 =
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∫
〈ψ|(m, j)P, b〉d4Pθ(P 0)δ(P 2 +M2)Dj

bb′ [P
µσµ/M ]〈(m, j)P, b′|φ〉 (14)

where we have used the hermiticity of the SL(2,C) representation of the rotationless boost which gives

Bx(V )B†x(V ) = Bc(V )Rcx(V )R†cxB
†
c(V ) = Bc(V )B†c(V ) = B2

c (V ) = Pµσµ/M (15)

independent of the type (x) of boost. Here the dynamics is contained in the mass-shell condition,
which makes the Wigner function into a positive matrix. The inner product (14) identical the original
Poincaré covariant inner product.

Unlike representations of SU(2), the representations of SL(2, C) are not equivalent to the complex
conjugate representations. This means that we could alternatively replace (12) by

|(m, j)P, ḃ〉 :=
∑
µ

|(m, j)P, µ〉xDj

µḃ
[B†x(P/M)]. (16)

and (13) by

U(Λ, 0)|(m, j)P, ḃ〉 =
∑
b′

|(m, j)ΛΛΛP, ḃ′〉Dj

ḃ′ḃ
[((Λ)†)−1)]. (17)

This gives a representation of the scalar product that has the same form as (14) with the replacement

Dj
bb′ [P

µσµ/M ]→ Dj

ḃḃ′
[Pµσ2σ

∗
µσ2/M ]. (18)

While the inner products in all three representations are identical, the Lorentz covariant and its complex
conjugate representations are related by space reflection. Space reflection changes the kernel of the
Hilbert-space scalar product in the covariant representations. Space reflection can be represented as an
operator on states by replacing the representation (12) and (16) by a direct sum of both representations.
In the direct sum representation the wave function becomes a 2× (2j + 1) component spinor

ψ(P, b)→
(
ξ(P, b)

χ(P, ḃ)

)
(19)

and the kernel of the inner product becomes

d4Pθ(P 0)δ(P 2 +M2)

(
Dj
bb′ [P

µσµ/M ] 0

0 Dj

ḃḃ′
[Pµσ2σ

∗
µσ2/M ]

)
. (20)

.
One desirable feature of the covariant representation is that the basis-dependent features are hidden

in the wave functions. To see this note that for rotations the upper and lower components have identical
transformations laws

U(R, 0)|(M, j)P, b〉 =
∑
ḃ′

|(M, j)RP, b′〉Dj
b′b[R]. (21)

and
U(R, 0)|(M, j)P, ḃ〉 =

∑
ḃ′

|(M, j)RP, ḃ′〉Dj

ḃ′ḃ
[R]. (22)

which is the standard rotational transformation law that leads to standard relation

J = X×P + j (23)

in the covariant representation.
In this representation the relation between the spin, angular momentum, and orbital angular mo-

mentum add very much like the corresponding non-relativistic quantities. The price paid for this
simplification is that the Hilbert space inner product has a non-trivial kernel. This kernel contains all
of the dynamics effects discussed in the context of Poincare irreducible spins. The covariant spin is
related to the Poincaré irreducible spin of a particle by a boost. For spin 1/2 particles the usual u and
v spinors are direct sum representations of a Lorentz boost. The choice (helicity, canonical, light front
spin) appear in the representation of these spinors.
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In the end there are many different kinds of spin observables. In order to measure the spin we
need to know how the various spin operators couple to the electroweak current operators. This will be
different for each type of spin observable.

The conclusion is that for relativistic systems the coupling of spin is more complicated than it is
for non-relativistic systems. It requires determining the relation between the irreducible representation
of the Poincaré group associated with the hadron and the irreducible representations of the Poincaré
group associated with the partons. In all cases the relation between the hadronic and parton spins
depends on the momenta of the partons in the hadron, which is determined by the dynamics.

In addition, there are many different spin and orbital angular momentum observables. How there
different quantities contribute to the hadronic spin is representation dependent.
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