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Outline

• Mutli-resolution (wavelet) basis.

• Exact multi-resolution decomposition of quantum fields.

• Decoupling degrees of freedom by scale - construction of
coarse-scale effective theories.

• Results, observations and concluding remarks.



Strategy

• Construct multi-resolution basis.

• Exactly decompose fields into discrete degrees of
freedom with different resolutions.

• Perform resolution and volume truncations on fields

• Use truncated fields to construct a truncated
Hamiltonian.

• Block diagonalize the truncated Hamiltonian by
resolution.

• Evolve fields with truncated Hamiltonian.

• Construct correlation functions.



Basis functions (Daubechies wavelets)

Generated by the fixed point, s(x), of a
renormalization group equation

s(x) = D (
2K−1∑
l=0

hlT
ls(x))︸ ︷︷ ︸

block average︸ ︷︷ ︸
rescale

.

Unitary translations Unitary scale transformations

Ts(x) = s(x − 1) Ds(x) =
√

2s(2x).

Scale fixing∫
dxs(x) = 1



Weights hl (constants) determine properties of basis

Table: Filter weights for Daubechies K=3 Wavelets
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Determined uniquely (up to reflection) by requiring orthonormal
basis functions that can pointwise represent polynomials of degree 2.



Scaling functions, skn (x)

Rescale and translate fixed point, s(x)

skn (x) := DkT ns(x) = 2k/2s
(

2k(x − 2−kn)
)
.

Sk := resolution 2−k subspace, {skn (x)} basis

Sk := {f (x)|f (x) =
∞∑

n=−∞
cns

k
n (x),

∞∑
n=−∞

|cn|2 <∞}.

Sk := DkS0

Sk ⊂ Sk+n n ≥ 0

Sk+1 = Sk ⊕Wk Wk 6= {∅}.



Multi-resolution decomposition of Hilbert space

Sk+1 = Sk ⊕Wk

L2(R) = Sk ⊕Wk ⊕Wk+1 ⊕Wk+2 ⊕Wk+3 ⊕ · · · =

· · · ⊕Wk−2 ⊕Wk−1 ⊕Wk ⊕Wk+1 ⊕Wk+2 ⊕ · · ·

Wavelets (basis for Wk)

w(x) :=
2K−1∑
l=0

glT
ls(x) gl = (−)lh2K−1−l

wk
n (x) := DkT nw(x) = 2k/2w

(
2k(x − 2−kn)

)
.



Multi-resolution basis

{ξm(x)} = {skn (x)}∞n=−∞ ∪ {w l
n(x)}∞n=−∞∞l=k

• Complete, orthonormal

• Limited smoothness (increases with K)

• Compact support (skn (x),wk
n (x)) ⊂ 2−k [n, (n + 2K − 1)]

• Partition of unity 1 = 2k/2
∑

m skm(x)

• xn =
∑

m cms
k
m(x) (pointwise, n < K)

• skn (x) resolution 2−k , w l
n(x) resolution 2−l+1 not in 2−l

•
∫
dxxmw l

n(x) = 0, m < K

• Basis functions are fractal



Multi-resolution decomposition of canonical fields

ξn(x) ∈ {skn (x),w l
n(x)} ξn(x) := ξn1(x)ξn2(y)ξn3(z)

Φ(x, t) =
∑

n

Φk(n, t)ξn(x) Φk(n, t) =

∫
dxξn(x)Φ(x, t)

Π(x, t) =
∑

n

Πk(n, t)ξn(x) Πk(n, t) =

∫
dxξn(x)Π(x, t)

[Φ(n, t),Π(m, t)] = iδn,m

[Φ(n, t),Φ(m, t)] = [Π(n, t),Π(m, t)] = 0,



• Expansion is exact.

• Operator valued distributions replaced by infinite sums
of well-defined discrete field operators.

• Products of discrete fields are well defined.

• Discrete fields satisfy canonical commutation relations.

• Decomposes the field into local observables by
resolution.

• Natural resolution (limit l) and volume (limit n)
truncations.



Resolution and volume truncated fields

ΦT (x, t) =
∑
n∈I

Φk(n, t)ξn(x)

ΠT (x, t) =
∑
n∈I

Πk(n, t)ξn(x)

• Restrict index set to finite subset, I (finite volume,
finite resolution).

• Truncated fields are still differentiable functions of x

I = {k ≤ l ≤ lmax ,−nl ,max ≤ nl ≤ nl ,max}



Hamiltonians (exact multi-scale representation)

Mass and kinetic terms

µ2
∫

dxΦ2(x, t) = µ2
∑

Φ(m, t)2
∫

dxΠ2(x, t) =
∑

Π(m, t)2

Derivative terms∫
dx∇∇∇Φ(x, t) · ∇∇∇Φ(x, t) =

∑
Φ(m, t)DmnΦ(n, t)

Dmn :=

∫
dx∇∇∇ξm(x) · ∇∇∇ξn(x)

Local interactions∫
dxΦN(x, t) =

∑
Γn1···nN

Φ(n1, t) · · ·Φ(nN , t)

Γn1···nN
=

∫
dxξn1(x) · · · ξnN

(x)

Terms almost local due to support conditions



All coefficients can be computed analytically using the
renormalization group equation, scale fixing condition, and

weight coefficients, hl . For example the non-zero matrix
elements

D0
mn :=

∫
ds0m(x)

dx

ds0n(x)

dx
dx

have the following exact rational values

D0
s;40 = D0

s;−40 = −3/560

D0
s;30 = D0

s;−30 = −4/35

D0
s;20 = D0

s;−20 = 92/105

D0
s;10 = D0

s;−10 = −356/105

D0
s;00 = 295/56.



Truncated Hamiltonian
replace fields by truncated fields

Dynamics

Φ̇n(t) = i [HT ,Φn(t)] Π̇n(t) = i [HT ,Πn(t)]

Initial conditions

[Φ(n, 0),Π(m, 0)] = iδn,m

[Φ(n, 0),Φ(m, 0)] = [Π(n, 0),Π(m, 0)] = 0,

Hilbert space - the truncated problem well-defined in the
free field Fock space



Advantage of wavelet basis

Scaling properties of coefficients (dim = 1 + 1)

Sk+m = Sk ⊕Wk ⊕ · · · ⊕Wk+m

∑
Dk
mnΦk

mΦk
n = 22k

∑
D0
mnΦk

mΦk
n

and

∑
Γk
n+1···nN Φk

n1 · · ·Φ
k
nN

= 23k(
n
2
−1)
∑

Γ0
n+1···nN Φk

n1 · · ·Φ
k
nN



⇓

Operator renormalization group equation relates H truncated
at different scales (rescale + canonical transformation)

Hk(Φk ,Πk ,m2k , γkN) = 2kH0(Φ0,Π0, 2−2km0, 2k(N−4)γ0N)

Canonical transformation

Φk = ηΦ0 Πk = η−1Π0 η = 2−k/2

can be realized as a unitary transformation



The problem of constructing a coarse-scale effective theory
that includes the effects of eliminated fine-scale degrees of

freedom is studied first using a free field theory in 1+1
dimension

H =
1

2

∫
(Π(x , 0)Π(x , 0)+∇∇∇Φ(x , 0)·∇∇∇Φ(x , 0)+µ2Φ(x , 0)Φ(x , 0))dx ,

Spatial derivatives give non-trivial scale coupling

Hk+n
Ts = Hk

Ts + HTw + HTsw

• Resolution 1/2n+k Hamiltonian = resolution 1/2k

Hamiltonian + fine scale corrections + scale coupling
terms

• Goal - block diagonalize truncated Hamiltonian by
resolution



Hk
T :=

1

2
(
∑
n

Πk(s, n, 0)Πk(s, n, 0)+
∑
mn

Φk(s,m, 0)Dk
s;mnΦk(s, n, 0)

+µ2
∑
n

Φk(s, n, 0)Φk(s, n, 0)),

Hw :=
1

2
(
∑
n,l

Πl(w , n, 0)Πl(w , n, 0)+
∑

m,l ,n,j

Φl(w ,m, 0)D lj
w ;mnΦj(w , n, 0)

+µ2
∑
l ,n

Φl(w , n, 0)Φl(w , n, 0)),

Hsw :=
1

2

∑
m,l ,n

Φl(w ,m, 0)D lk
sw ;mnΦk(s, n, 0).



Use similarity renormalization group evolution to decouple
scales (eliminate D lk

sw ;mn)

Generate unitarily equivalent Hamiltonians

H(λ) = U(λ)H(0)U†(λ)

dU(λ)

dλ
=

dU(λ)

dλ
U†(λ)U(λ) = K (λ)U(λ)

K (λ) =
dU(λ)

dλ
U†(λ) = −K †(λ)

Use a generator K (λ) of the form

K (λ) = [G (λ),H(λ)]

dH(λ)

dλ
= [K (λ),H(λ)] = [[G (λ),H(λ)],H(λ)] = [H(λ), [H(λ),G (λ)]]



Initial conditions

H(0) = Hk+n
T G (0) = HTsw

G (λ) = part of H(λ) that couples scales

H(λ) = Hblock(λ) + G (λ)

Equations separate (free field case)

dHblock(λ)

dλ
= [G (λ), [G (λ),Hblock(λ)]]

dG (λ)

dλ
= −[Hblock(λ), [Hblock(λ),G (λ)]]



Expand first equation in basis of eigenstates of HC := G (λ),
second in eigenstates of HB := Hblock(λ)

dHBmn(λ)

dλ
= (ecm(λ)− ecn(λ))2HBmn(λ)

and
dHCmn(λ)

dλ
= −(ebm(λ)− ebn(λ))2HCmn(λ).

Integrating

HBmn(λ) = e
∫ λ
0 (ecm(λ′)−ecn(λ′))2dλ′HBmn(0)

HCmn(λ) = e−
∫ λ
0 (ebm(λ

′)−ebn(λ′))2dλ′HCmn(0).



• Formal solution shows coupling terms exponentially
suppressed.

• Evolves to decoupled effective Hamiltonians involving
degrees of freedom on different scales.

• Can stall when eigenvalues get close or cross.

• The choice of generator is specific to the free field case.

• Evolution easily computed - Hamiltonian has discrete
canonical fields with constant coefficients.

• Free field case allows a detailed analysis of the evolution
of scales.



Test case: 16 scaling functions, 16 wavelets, BC - vanish at
boundary

H(λ) has 16 quadratic types obtained by taking products of
Φs(n, 0), Πs(m, 0), Φw (n, 0), and Πw (m, 0).

The λ evolution should drive the coefficients of the
Φs(n, 0)Φw (m, 0), · · · to 0.

Plots show the Hilbert-Schmidt norms of the coefficient
matrices of each type of operator as a function of λ.
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Observations

• Coefficients exhibit expected behavior.

• The decay of the coefficients of the scale coupling terms
is initially fast, but slows significantly.

• Truncated free fields are equivalent to coupled
oscillators; how does the SRG evolution distribute the
normal modes among the blocks?



To get a more detailed understanding of the effects of the λ
flow note that the truncated Hamiltonian has the form

HT =
1

2
[(Πs ,Πw )

(
Is 0
0 Iw

)(
Πs

Πw

)
+

(Φs ,Φw )

(
µ2I + Ds Dsw

Dws µ2I + Dw

)(
Φs

Φw

)
]



M :=

(
µ2I + Ds Dsw

Dws µ2I + Dw

)
OtMO =

(
ms 0
0 mw

)
where ms and mw are diagonal matrices consisting of

eigenvalues of the matrix M.

Transformed discrete fields are related by the canonical
transformation(

Φ′s

Φ′w

)
:= Ot

(
Φs

Φw

)
and

(
Π′s

Π′w

)
:= Ot

(
Πs

Πw

)
.



H ′ = UHU† =
1

2
[(Π′s ,Π′w )

(
I 0
0 I

)(
Π′s

Π′w

)
+

(Φ′s ,Φ′w )

(
ms 0
0 mw

)(
Φ′s

Φ′w

)
]

• Transformed Hamiltonian is the Hamiltonian for
uncoupled harmonic oscillators with frequencies

√
mi

• ΠΠ coefficients in flow-evolved Hamiltonian are
approximately (1/2)(Is ⊕ Iw ) so √ of eigenvalues of M
correspond to normal mode frequencies.

• A general O will separate the eigenvalues of M into two
distinct groups - there is no general relation between
normal mode frequencies and scale.



Table: Normal mode frequencies

λ = 20, µ = 1 truncated exact 1:16 exact 17:32

1.037e+00 1.037e+00 1.041e+00 1.665e+01
1.145e+00 1.146e+00 1.153e+00 1.925e+01
1.326e+00 1.333e+00 1.340e+00 2.208e+01
1.583e+00 1.609e+00 1.604e+00 2.512e+01
1.919e+00 1.995e+00 1.947e+00 2.834e+01
2.341e+00 2.525e+00 2.373e+00 3.167e+01
2.861e+00 3.236e+00 2.890e+00 3.507e+01
3.493e+00 4.161e+00 3.508e+00 3.846e+01
4.263e+00 5.317e+00 4.243e+00 4.178e+01
5.201e+00 6.689e+00 5.112e+00 4.495e+01
6.346e+00 8.232e+00 6.134e+00 4.789e+01
7.722e+00 9.859e+00 7.332e+00 5.053e+01
9.309e+00 1.145e+01 8.729e+00 5.279e+01
1.102e+01 1.289e+01 1.034e+01 5.462e+01
1.274e+01 1.403e+01 1.219e+01 5.597e+01
1.435e+01 1.476e+01 1.429e+01 5.679e+01



The table shows that the SRG flow equation puts the lowest
normal modes in coarse scale Hamiltonian and the highest

normal mode frequencies in the fine scale Hamiltonian



Conclusions

1. Flow equation methods with a suitable generator can be
used to construct an effective field theory with coarse
scale degrees of freedom.

2. The generator used separates both energy and distance
scales.

3. Increasing the truncated volume generated new low
frequency modes, while increasing the resolution
increased the separation between modes. The mass sets
a lower bound on the normal mode frequencies.

4. The flow equation also exhibited convergence for mass 0.



Summary

5. For this problem, the flow equation was successfully
applied directly to the Hamiltonian, without projecting
on a subspace.

6. We found the that flow equation could be integrated
using the Euler method, but perturbation theory failed
to converge.

7. The final evolved Hamiltonian was approximately local.
8. The spectral properties suggest the in order to approach

the continuous spectrum of the exact theory, the volume
and resolution truncations need to be removed together.

9. In our test the coefficients of the coupling terms initially
fell off quickly, but the rate of fall off slowed down
significantly as the flow parameter increased. The
method reduced the coupling coefficients by a factors of
about 100 for a modest value of the flow parameter.

10. The convergence of the flow equation will slow down as
the separation between normal modes decreases.



Outlook

1 It has been shown that the truncated correlation
functions converge to the exact free field Wightman
functions as the resolution is increased (Singh-Brennan
Arxiv 1606:050686).

2 Basis functions have only a finite number of derivatives -
but the Fourier transform of the test functions are entire.

3 Solution of Heisenberg equations of motion + ground
state can be used to construct space-real-time
correlation functions as functions of continuous variables

4 In interacting theories integrating the flow equation
generates infinite numbers of operators.

5 Fields differentiable functions of x - mathematics
discrete.
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