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Abstract Daubechies wavelets are used to make an exact multi-scale decom-
position of quantum fields. For reactions that involve a finite energy that take
place in a finite volume, the number of relevant quantum mechanical degrees
of freedom is finite. The wavelet decomposition has natural resolution and vol-
ume truncations that can be used to isolate the relevant degrees of freedom.
The application of flow equation methods to construct effective theories that
decouple coarse and fine scale degrees of freedom is examined.

1 Introduction

Daubechies wavelets [1][2] are used to decompose quantum fields into localized
degrees of freedom on all distance scales. For reactions that involve a finite
energy that take place in a finite volume, the number of relevant quantum
mechanical degrees of freedom is finite. While a truncation to these degrees of
freedom leads to a mathematically well-defined framework, a realistic treat-
ment of the dynamics may still require a prohibitively large number of degrees
of freedom for computation.

The Daubechies wavelet decomposition has natural resolution and volume
truncations that can be used to identify the relevant degrees of freedom. It is
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desirable to construct an effective theory that eliminates degrees of freedom
that are important for a realistic treatment of the dynamics, but not directly
related to the scales of experimental interest. The application of flow equation
methods to construct effective theories that decouple degrees of freedom with
different resolutions is examined.

2 Daubechies basis

The basis functions are constructed from the fixed point, s(x), of the renor-
malization group equation

s(x) = D (

2K−1∑
l=0

hlT
ls(x))︸ ︷︷ ︸

block average︸ ︷︷ ︸
rescale

(1)

where T and D are unitary translation and dilatation operators

(Tf)(x) = f(x− 1) (Df)(x) =
√

2f(2x).

The weights hl are real numbers determined by the conditions that the func-
tions sn(x) := s(x− n) are orthonormal and locally finite linear combinations
of these functions can pointwise represent polynomials of degree m < K. In
this work K = 3 is chosen. For this choice s(x) has one continuous derivative
and has compact support on [0, 5]. The condition

∫
s(x)dx = 1 is imposed on

the fixed point s(x) to fix an initial scale. Functions of finer resolution are
constructed by applying powers of D to the sn(x):

skn(x) := DkTns(x) = 2k/2s
(
2k(x− 2−kn)

)
.

These functions have support on intervals of width (2K − 1)× 2−k, They are
orthonormal and span a resolution 2−k linear subspace of L2(R) defined by:

Sk := {f(x)|f(x) =

∞∑
n=−∞

cns
k
n(x),

∞∑
n=−∞

|cn|2 <∞}.

Equation (1) implies that the subspaces for different resolutions are nested

Sk ⊂ Sk+n n ≥ 0

and successive subspaces have non-trivial orthogonal complements

Sk+1 = Sk ⊕Wk Wk 6= {∅}.

Iterating this identity gives the exact decomposition of L2(R) into mutually
orthogonal subspaces of different resolutions

L2(R) = Sk ⊕Wk ⊕Wk+1 ⊕Wk+2 ⊕Wk+3 ⊕ · · · . (2)
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An orthonormal basis for Wk is given by functions {wkn(x)}n, that are con-
structed from the fixed point s(x) by

wkn(x) := DkTnw(x) = 2k/2w
(
2k(x− 2−kn)

)
where

w(x) :=

2K−1∑
l=0

glT
ls(x) and gl = (−)lh2K−1−l.

It follows from (2) that for any fixed starting resolution, 2−k, the functions

ξn(x) := ξn1
(x)ξn2

(y)ξn3
(z) ξn(x) ∈ {skn(x), wln(x)}∞n=−∞;l≥k (3)

are an orthonormal multi-resolution basis of L2(R3) of functions that have
compact support and one continuous derivative.

3 Multiresolution decomposition of quantum fields

The basis (3) can be used to decompose the quantum fields by resolution [3][4]:

Φ(x, t) =
∑
n

Φk(n, t)ξn(x) Φk(n, t) =

∫
dxξn(x)Φ(x, t). (4)

While the basis functions are not Schwartz functions, direct computation shows
that the resulting discrete fields are well-defined operators in the free-field case.

Given a pair of canonical fields, Φ(x, t) and Π(x, t), that satisfy canonical
equal-time commutation relations, the corresponding discrete fields will satisfy
discrete equal-time canonical commutation relations:

[Φ(n, t), Π(m, t)] = iδn,m

with all other commutators vanishing. These expansions can be used in field-
theoretic Hamiltonians. In this discrete representation the integral over the
Hamiltonian density is replaced by an infinite sum. Terms in a typical Hamil-
tonian are replaced by the infinite sums

µ2

∫
dxΦ2(x, 0)→ µ2

∑
m

Φ2(m, 0)

∫
dxΠ2(x, 0)→

∑
m

Π2(m, 0)

∫
dx∇∇∇Φ(x, 0) · ∇∇∇Φ(x, 0)→

∑
mn

DmnΦ(m, 0)Φ(n, 0)

λ

∫
dxΦn(x, 0)→ λ

∑
m1···mn

Γm1···mn
Φ(m1, 0) · · ·Φ(nn, 0)

where

Dmn :=

∫
dx∇∇∇ξm(x) · ∇∇∇ξn(x) and Γn1···nN =

∫
dxξn1(x) · · · ξnN (x)

(5)
are constant coefficients. They can be computed exactly using the renormal-
ization group equation and properties of the basis [5][3] .
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4 Truncated quantum fields

There are natural volume and/or resolution truncations of quantum fields
represented by a Daubechies expansion. Truncations are defined by retaining
the terms in the expansion (4) whose basis functions have support in a given
volume and is larger than a minimal support volume. The resulting truncated
fields are still differentiable functions of x; they are expressed as a finite sum

ΦT (x, t) =
∑
n∈I

Φk(n, t)ξn(x). (6)

A truncated Hamiltonian is defined by replacing the fields in the exact
Hamiltonian by the truncated fields. This truncation limits the volume and
finest resolution of the theory. The resulting truncated Hamiltonian has a finite
number of degrees of freedom. The scaling properties of the integrals [3],

Dk
mn = 22k

∑
D0
mn Γ kn1···nN = 23k(

n
2−1)Γ 0

n1···nN

which follow from (5), lead to an exact renormalization group equation for
infinite volume truncated Hamiltonians with different resolutions

Hk(Φk, Πk,m2k, γkN ) = 2kH0(Φ0, Π0, 2−2km0, 2k(N−4)γ0N )

where the fields in these two Hamiltonians (1 + 1 dimension) are related by
the canonical transformation

Φk = ηΦ0 Πk = η−1Π0 η = 2−k/2.

The vacuum of the truncated theory can be constructed by decomposing the
canonical fields into creation and annihilation parts

an :=
1√
2

(αΦn + i
1

α
Πn)

where α is any constant; and then solving the coupled cluster equations [6]

e−SHT e
S |0〉0 = 0 an|0〉0 = 0 S =

∑
Smn1···nna

†
n1
· · · a†nm

for the coefficients Smn1·nn . The vacuum of the truncated theory is |0〉 =
NeS |0〉0, where N is a normalization constant.

The truncated fields are solutions of the Heisenberg equations

Φ̇n(t) = i[HT , Φn(t)] Π̇n(t) = i[HT , Πn(t)]

with initial conditions

[Φ(n, 0), Π(m, 0)] = iδn,m [Φ(n, 0), Φ(m, 0)] = [Π(n, 0), Π(m, 0)] = 0.

The solutions have the form (4). Correlation functions are defined as vacuum
expectation values of products of the truncated fields. They are differentiable
functions of the space-time coordinates.
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5 Effective theories

A benefit of decomposing fields into degrees of freedom with different reso-
lutions is that it becomes possible to formulate the problem of constructing
an effective theory with physical-scale degrees of freedom by eliminating dy-
namically important small-scale degrees of freedom. This can be achieved by
a block diagonalization of the Hamiltonian by resolution. While defining the
exact Hamiltonian requires renormalization, a truncated Hamiltonian that has
all of the degrees of freedom relevant to a given energy and volume is well-
defined and should accurately describe the system of interest.

The problem of decoupling scales is examined for the case of a free field
theory where the scale coupling appears in the constant matrices Dmn. The
advantage of the free field case is that a block diagonalization by scale can
be performed at the operator level and nature of the degrees of freedom in
each block can be examined. This test uses a truncated Hamiltonian for a free
scalar field in 1+1 dimensions. The fields are truncated to include 16 scaling
basis functions, sn(x), and 16 wavelet basis functions, wn(x). These functions
represent degrees of freedom on scales that differ by factor of 2.

The truncated Hamiltonian has general form

HT =
1

2
[(Πs, Πw)

(
Is 0
0 Iw

)(
Πs

Πw

)
+

(Φs, Φw)

(
µ2Is +Ds Dsw

Dws µ2Iw +Dw

)(
Φs

Φw

)
]

where each block represents a 16 × 16 matrix and the non-diagonal elements
Dsw and Dws are the integrals of products of derivatives (5) of the basis
functions. The upper block represents the coarse-scale degrees of freedom while
the lower block represents the fine-scale degrees of freedom. The goal is to find
a unitarily equivalent Hamiltonian, H(λ) where the block coupling terms are
absent or small.

This is tested [4] using flow-equation methods due to Wegner [7] [8]

H(λ) = U(λ)H(0)U†(λ)
dU(λ)

dλ
=
dU(λ)

dλ
U†(λ)U(λ) = K(λ)U(λ).

The generator K(λ) is chosen to be

K(λ) =
dU(λ)

dλ
U†(λ) := [G(λ), H(λ)]

where G(λ) is the block diagonal part of H(λ). This leads to a differential
equation directly for H(λ) that becomes a set of coupled equations for the
block diagonal, G(λ) and coupling parts Hc(λ) of H(λ):

dG(λ)

dλ
= [Hc(λ), [Hc(λ), G(λ)]]

dHc(λ)

dλ
= −[G(λ), [G(λ), Hc(λ)]].
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These equations can be solved in the bases of eigenstates of G(λ) and Hc(λ)
respectively

Gmn(λ) = e
∫ λ
0
(ecm(λ′)−ecn(λ′))2dλ′

Gmn(0) (7)

Hcmn(λ) = e−
∫ λ
0
(ebm(λ′)−ebn(λ′))2dλ′

Hcmn(0). (8)

The solutions indicate that the scale-coupling parts of the matrix are expo-
nentially suppressed as the flow parameter, λ, is increased.

To test this the Hilbert-Schmidt norms of the coupling matrices as func-
tions of the flow parameter λ are computed. Figures 1 and 2 compare the evo-
lution of the Hilbert-Schmidt norms for a representative set of scale coupling
coefficients (Figure 1) to fixed-scale coefficients (Figure 2). Figure 1 shows that
the scale coupling terms are driven to 0, but the rate of decrease falls off as the
flow parameter is increased, while Figure 2 shows that Hilbert-Schmidt norm
of the fixed scale coefficients converges to a finite size.

Figures 3 and 4 give a more detailed picture of the evolution of each co-
efficient, initially (Figure 3) and when λ = 20 (Figure 4). The first quadrant
shows the 16× 16 matrix of coefficients for the Φ-Φ scaling function fields, the
next diagonal quadrant shows the coefficients for the Π-Π scaling function
fields. The third diagonal quadrant shows the coefficients for the Φ-Φ wavelet
function fields and the fourth diagonal quadrant shows the coefficients for the
Π-Π scaling function fields. The off-diagonal terms in figure 3 are the coeffi-
cients of the scale coupling terms. Figure 4 shows that they are driven to 0 for
λ = 20.

One advantage of the free-field is that the truncated Hamiltonian is the
Hamiltonian for 32 coupled harmonic oscillators. The block diagonalization
will put oscillators with 16 normal modes into the coarse-scale block and the
other 16 into the fine-scale block. At the level of the approximation (there
is still a small coupling at λ = 20) the flow equation method used here to
separate scales put the 16 lowest normal modes in the coarse-scale block and
the 16 highest normal modes in the fine-scale block. This is both the expected
and desired behavior.

While this example demonstrates how flow equation methods can be used
to separate scales, a number of issues remain. This investigation showed that
increasing the resolution adds higher energy normal modes, but does not re-
duce the separation between normal mode frequencies that one would expect
in a continuum limit. In order to reduce this separation the truncated volume
must be increased. This means the continuum limit requires that the reso-
lution and volume limits be taken together. Another concern is that as the
normal mode frequencies get closer, the separation of the eigenvalues in (7-
8) will get smaller, resulting much slower convergence of the flow equation. A
third concern is that for interacting theories each iteration of the flow equation
will generate new many-body interactions. In order to control the growth in
the number of generated interactions, the scaling properties of each generated
interaction need to be investigated so irrelevant ones can be eliminated. Also,
the operator form of the flow equation that worked for the free field, may not
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be possible with interactions; however it can be made to work using projection
operators.

The extension to 3-dimensions is straightforward. Convergence of the flow
equation method was also established for 0 mass.
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