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1 Introduction

While there is strong evidence that QCD is the theory of the strong interactions,

direct calculations of scattering observables in QCD with mathematically controlled

errors are difficult at some important energy scales. These difficulties are particularly

significant at the few-GeV scale, where perturbative methods are not applicable. This

is an interesting energy scale because it is the scale where sensitivity to sub-nuclear

degrees of freedom is expected to begin. Mathematical models that are motivated by

QCD may provide useful insight into the dynamics at these energy scales.

Poincaré invariant quantum mechanics is one of a number of approaches that can

be used to model systems of strongly interacting particles at the few GeV energy scale.

At the simplest level it is quantum mechanics with an underlying Poincaré symmetry.

While Poincaré invariant quantum mechanics can be treated as a phenomenology that

is independent of QCD, it can also be related to QCD. Poincaré invariant quantum

mechanics has proved to be useful in applications, but there are no textbook treatments

of the subject.

Historically, Poincaré invariant quantum mechanics was first articulated by Wigner

[1], who pointed out that a necessary and sufficient condition for a quantum theory

to be relativistically invariant is the existence of a unitary ray representation of the

Poincaré group on the quantum mechanical Hilbert space. Wigner’s work did not have

a significant impact on applications of quantum field theory, but it directly motivated

attempts to provide an axiomatic [2–4] foundation for quantum field theory. These

axioms provide a Hilbert space formulation of quantum field theory that can be directly

related to Poincaré invariant quantum mechanics.

Dirac [5] studied the problem of constructing the Poincaré Lie algebra for systems

of interacting particles. He observed that the presence of interactions in the Hamil-

tonian implied that at most a sub-algebra of the Poincaré Lie algebra could be free

of interactions. He identified the three largest sub-algebras, and classified dynamical

models according to which sub-algebra remained free of interactions. Dirac used the

terms instant, point, and front-forms of dynamics to label the different kinematic sub-

algebras. Bakamjian and Thomas [6] provided the first construction of the full Poincaré

Lie algebra for a system of two interacting particles in Dirac’s instant-form of the dy-

namics. Coester [7] generalized Bakamjian and Thomas’ construction to systems of

three interacting particles. His construction also led to a S matrix that satisfied space-

like cluster properties. Sokolov [8] provided a complete construction of the Poincaré

Lie Algebra for a system of N interacting particles in Dirac’s point-form of the dynam-

ics that was consistent with a stronger form of spacelike cluster properties, where the

Poincaré generators satisfy cluster properties. This stronger form of cluster properties

provides a simple relation between the few and many-body systems that is difficult

to realize in theories satisfying only S-matrix cluster properties. Coester and Polyzou

[9] provided the complete solution for systems of N-particles in all three of Dirac’s

forms of the dynamics satisfying the strong form of cluster properties. A more general

construction based on only group representations, that has Dirac’s form of dynamics

as special cases, was given in [10,11]. The subject was reviewed by Keister and Polyzou

in [12].

There have been many applications of Poincaré invariant quantum mechanics in

all three of Dirac’s forms of dynamics. The earliest applications involved the study of

electromagnetic probes on mesons, nucleons, and nuclei. Some of the relevant papers

are [13–27]. The first three-nucleon bound state calculation using this framework was
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performed by Glöckle, Coester and Lee [28]. Calculations of the triton binding energy

with realistic interactions have been performed recently [29]. Applications to nuclear

reactions appear in [30–35] which include reactions with particle production [36].

This mini-review is limited to theories that are formulated by constructing exact

unitary representations of the Poincaré group on few-particle Hilbert spaces. There are

many other approaches to relativistic quantum mechanics that have been successfully

applied at the few GeV scale. Each one emphasizes different desirable features of the

full field theory, however when the number of degrees of freedom is limited, it is im-

possible to satisfy all of the axioms of the underlying field theory. Our preference for

using Poincaré invariant quantum mechanics is based on three observations: (1) many

computational methods successfully used in non-relativistic quantum mechanics can

be directly applied in Poincaré invariant quantum mechanics, (2) the theories involve

a finite number of degrees of freedom, allowing exact numerical calculations of model

predictions, (3) the theories share most of the axiomatic properties of quantum field

theory and there is a direct relation to the Hilbert space formulation of field theory. The

fundamental property of the quantum field theory that is given up in order to have a

theory of a finite number of degrees of freedom is microscopic locality. The justification

for this choice is that microscopic locality is not an experimentally testable property

since probing a system at arbitrarily short distance scales requires arbitrarily large

energy transfers. In addition, Poincaré invariant quantum mechanics does not have a

large enough algebra of observables to localize particles in arbitrarily small spacetime

regions. One manifestation of this is the absence of a reasonable position operator [37]

in relativistic quantum theories of a finite number of degrees of freedom.

In the next section we discuss the construction of representations of single-particle

Hilbert spaces. In section 3 we discuss irreducible representations of the Poincaré group

that act on the single-particle Hilbert spaces. In section 4 we construct a dynamical

representation of the Poincaré group by adding interactions to the mass Casimir opera-

tor of a non-interacting irreducible representation constructed from tensor products of

single particle representations. The strong and weak form of cluster properties are dis-

cussed in section 5. The formulation of the three-body problem is discussed in section

6. The relation to quantum field theory is discussed in section 7. Selected few-nucleon

applications are discussed in section 8.

2 Particles, Hilbert spaces and irreducible representations

Experiments measure observables that describe the state of free particles by considering

how the particles interact with classical electromagnetic fields. A complete experiment

measures the linear momentum and spin state of each initial and final particle. There

is a natural connection with these single-particle observables and irreducible represen-

tations of the Poincaré group. The Poincaré group has ten infinitesimal generators.

These Hermitian operators include the Hamiltonian which generates time translations,

the linear momentum operators which generate space translations, the angular momen-

tum operators which generate rotations, and the rotationless boost generators which

generate transformations that change the momentum of the particle. From these ten

infinitesimal generators it is possible to construct two Casimir invariants, four inde-

pendent commuting Hermitian observables and four conjugate operators. The Casimir

invariants fix the mass and spin of the particle. Eigenvalues of the commuting ob-
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servables label the states of the particle, and the conjugate operators determine the

spectrum of the commuting observables and thus the allowed states of the particle.

For a standard description of a particle, the commuting observables can be taken to

be the three components of the linear momentum, and a component of a spin operator.

The spectrum of the momentum is R
3, while the spectrum of a component of the spin

vector takes on discrete values in integer steps from −j to j. In this case the Hilbert

space is

Hmj = L2(R3) ⊗ C
2j+1. (1)

Single-particle states are represented by wave functions, ψ(p, µ) = 〈(m, j)p, µ|ψ〉. The

relations of the operators m, j2,p and j · ẑ to the Poincaré Lie Algebra determines a

unitary representation, U1(Λ, a), of Poincaré group on Hmj :

〈(m, j)p, µ|U1(Λ, a)|ψ〉 =

Z j
X

µ′=−j

Dm,j
p,µ;p′,µ′ [Λ, a]dp

′ψ(p′, µ′) = ψ′(p, µ) (2)

where the Poincaré group Wigner function is

Dm,j
p,µ;p′,µ′ [Λ, a] := 〈(m, j)p, µ|U1(Λ, a)|(m, j)p′, µ′〉 =

δ(p − Λp′)

s

ωm(p)

ωm(p′)
eip·aDj

µµ′ [Rwc(Λ, p)] (3)

and Rwc(Λ, p) is a Wigner rotation.

Because a sequence of Lorentz boosts that start and end at the rest frame generally

define a rotation, in order to obtain an unambiguous definition of a spin vector for all

values of the particle’s momentum, it is necessary to define a standard way to measure

a spin observable. The above representation implicitly defines the spin projection by

its value in the particle’s rest frame after the particle is transformed to the rest frame

with a rotationless Lorentz transformation. This is one of an infinite number of pos-

sible choices of spin observables. This choice is consistent with the “canonical” spin

that appears in standard Dirac u and v spinors. Different spin observables are related

by momentum-dependent rotations that lead to different couplings to the electromag-

netic field. This ensures that measurable physical quantities are independent of the

observables used to label single particle states.

These single-particle representations are irreducible, and all positive-mass positive-

energy irreducible representations of the Poincaré group can be put in this general

form. These irreducible representations will be important in formulating dynamical

models. In general, any unitary representation of the Poincaré group can be decomposed

into a direct sum or direct integral (for continuous mass eigenvalues) of irreducible

representations. We will build the dynamical unitary representation of the Poincaré

group out of the non-interacting irreducible representations.

3 Poincaré group Wigner functions and kinematic subgroups

In the previous section we represented single-particle wave functions in the basis of

generalized eigenstates |(m, j),p, µ〉 .



5

The state of the particle could be also alternatively determined by measuring the

particles’ four velocity, vµ = (
√

1 − v · v,v), and spin projection:

|(m, j),v, µ〉 = |(m, j),p(v,m), µ〉m3/2, (4)

or the light-front components of the four momentum p+ =
p

m2 + p2 + p · ẑ, p⊥ =

(p · x̂,p · ŷ), and light-front spin projection:

|(m, j), p+,p⊥, µ〉 =

j
X

µ′=−j

|(m, j),p(p+,p⊥,m), µ′〉
s

ωm(p)

p+
Dj

µ′µ[B−1
c (p)Bf (p)]

(5)

where B−1
c (p)Bf (p) is a Melosh rotation [38], defined by a light-front-preserving boost

followed by the inverse of a rotationless boost. The different basis choices are related

to the basis |(m, j),p, µ〉 by the unitary transformations in (4) and (5). The light-front

preserving boosts have the desirable property that they form a group, which means

that there are no Winger rotations for any sequence of light-front preserving boosts

that start and end in the rest frame; the price paid for this is that the Wigner rotation

of a pure rotation is not equal to the rotation.

The Poincaré group Wigner functions depend on the choice of basis. The Wigner

functions

Dm,j
v,µ;v′,µ′ [Λ, a] := 〈(m, j)v, µ|U1(Λ, a)|(m, j)v′, µ′〉 (6)

Dm,j
p+,p⊥,µ;p′+,p′

⊥
,µ′ [Λ, a] := 〈(m, j)p+,p⊥, µ|U1(Λ, a)|(m, j)p′+,p′

⊥, µ
′〉 (7)

are related to the Wigner function (3) by the unitary transformations (4) and (5).

While the concept of a kinematic subgroup does not make sense for a single particle,

the kinematic subgroup for an instant-form dynamics is the subgroup of the Poincaré

group that leaves the Wigner function (3) independent of mass; the kinematic subgroup

for a point-form dynamics is the subgroup of the Poincaré group that leaves the Wigner

function (6) independent of mass; the kinematic subgroup for a front-form dynamics is

the subgroup of the Poincaré group that leaves the Wigner function (7) independent

of mass. Different mass-independent subgroups appear in different irreducible bases

because the unitary transformations relating the irreducible bases (4) and (5) to the

basis |(m, j)p, µ〉 depend on the particles’ mass. These mass-independent subgroups

become kinematic subgroups in dynamical models because the mass acquires an inter-

action while the other operators used to construct dynamical irreducible bases remain

interaction free. More generally, it is possible to define perfectly good single-particle

bases where the identity is the only subgroup where the corresponding Wigner function

is independent of mass.

4 Two-body models - Clebsch-Gordan coefficients

The two-body Hilbert space is a tensor product of two single-particle Hilbert spaces,

H = Hm1j1 ⊗Hm2j2 . The non-interacting representation of the Poincaré group on H is

the tensor product of two single-particle (irreducible) representations of the Poincaré

group, U0(Λ, a) := U1(Λ, a)⊗U2(Λ, a) . While the single-particle representations of the

Poincaré group are irreducible, their tensor product is reducible. Formally the tensor
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product representation can be expressed as a direct integral of irreducible representa-

tions,

U0(Λ, a) =
X

Z

⊕
jls
dmU0,m,j,l,s(Λ, a), (8)

where U0,m,j,l,s(Λ, a) are mass m spin j irreducible representations of the Poincaré

group. The quantum numbers l and s are invariant degeneracy parameters that dis-

tinguish multiple copies of the irreducible representations with the same m and j.

They have the same quantum numbers as the spin and orbital angular momentum.

The mass m is the two-particle invariant mass that has a continuous spectrum start-

ing from m1 + m2. The Poincaré group Clebsch-Gordan coefficients relate the tensor

product representation to the direct integral of irreducible representations and satisfy

X

Z

Dm,j
p,µ;p′,µ′ [Λ, a]dp

′〈(m, j, l, s),p′, µ′|(m1, j1),p1, µ1; (m2, j2),p2, µ2〉 =

X

Z

〈(m, j, l, s),p, µ|(m1, j1),p′
1, µ

′
1; (m2, j2),p

′
2, µ

′
2〉dp′

1p
′
2×

Dm1,j1
p

′

1,µ′

1;p1,µ1
[Λ, a]Dm2,j2

p
′

2,µ′

2;p2,µ2
[Λ, a]. (9)

The Clebsch-Gordan coefficients, 〈(m, j, d),p, µ|(m1, j1),p1, µ1; (m2, j2),p2, µ2〉, d :=

{l, s}, are basis-dependent and are known in all three of the representations ([39,7,40,

12]).

The two-body irreducible basis states look similar to relative and center of mass

variables in non-relativistic quantum mechanics; but they differ in the structure of the

Poincaré group Clebsch-Gordan coefficients, which contain momentum-dependent spin

rotation functions and non-trivial kinematic factors that ensure unitarity.

The basis states {|(m, j, l, s),p, µ〉} transform irreducibly under U0(Λ, a):

U0(Λ, a)|(m, j, d),p, µ〉 =

′
X

Z

dp′|(m, j, d),p′, µ′〉Dm,j
p′,µ′;p,µ[Λ, a]. (10)

While (10) is not the dynamical representation of the Poincaré group, by working

in this non-interacting irreducible basis it is possible to construct dynamical represen-

tations by adding an interaction v, which in this basis has a kernel of the form

〈(m′, j′, d′),p′, µ′|v|(m, j, d),p, µ〉 = δj′jδµ′µδ(p
′ − p)〈m′, d′‖vj‖m, d〉, (11)

to the non-interacting two-body mass operator. This interaction has the same form as

a typical Galilean invariant non-relativistic interaction if we replace m =
q

m2
1 + k2 +

q

m2
2 + k2 by k and d = {l, s} by (l, s).

We define the dynamical mass operator M :=
q

m2
1 + k2 +

q

m2
2 + k2 + v . Simul-

taneous eigenstates of M , p, j2 and j · ẑ can be constructed by diagonalizing M in the

irreducible non-interacting basis. These eigenfunctions have the form

〈(k′, j′, l′, s′),p′, µ′|(λ, j),p, µ〉 = δj′jδµ′µδ(p
′ − p)φλ,j(k

2, l, s) (12)

where the wave function, φλ,j(k
2, l, s), is the solution of the mass eigenvalue problem

with eigenvalue λ:

(λ−
q

m2
1 + k2 −

q

m2
2 + k2)φλ,j(k, l, s) =
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Z ∞

0
k′2dk′

X

s′

j+s
X

l′=|j−s|

〈k, l, s|V j |k′, l′, s′〉φλ,j(k
′, l′, s′). (13)

The dynamical unitary representation of the Poincaré group is defined on this

complete set of states, |(λ, j),p, µ〉 by

U(Λ, a)|(λ, j),p, µ〉 =

j
X

µ′=−j

Z

dp′|(λ, j),p′, µ′〉Dλ,j
p′,µ′;p,µ[Λ, a]. (14)

The relevant dynamical feature is that the Poincaré group Wigner function now de-

pends on the eigenvalue λ of the dynamical mass operator, which requires solving (13).

Because of the choice of basis, the Poincaré group Wigner function Dλ,j
p′,µ′;p,µ[Λ, a]

has the same structure as the Wigner function (3) and thus has the property that when

(Λ, a) is in the three-dimensional Euclidean subgroup, it is independent of the mass

eigenvalue λ, which means that for this dynamical model the kinematic subgroup is

dictated by the choice of representation used to define the irreducible basis.

Even though the dynamics has a non-trivial interaction dependence, it is only

necessary to solve (13), which is analogous to solving the center of mass Schrödinger

equation in the non-relativistic case.

This construction can be repeated using different irreducible bases, such as (4) or

(5), where the Wigner functions have different mass-independent symmetry groups.

For these bases if we choose to use the interactions

〈(k′, j′, l′, s′),v′, µ′|vpoint|(k, j, l, s), v, µ〉 = δj′jδµ′µδ(v
′ − v)〈k′, l′, s′‖vj‖k, l, s〉 (15)

〈(k′, j′, l′, s′), p′+,p′
⊥, µ

′|vfront|(k, j, l, s), p+,p⊥, µ〉 =

δj′jδµ′µδ(p
′
⊥ − p⊥)δ(p′+ − p+)〈k′, l′, s′‖vj‖k, l, s〉, (16)

where the reduced kernels 〈k′, l′, s′‖vj‖k, l, s〉 are the same in (11), (15), and (16) in

the bases (2), (4), and (5), respectively, and construct dynamical eigenstates of the

form

|(λ, j),v, µ〉, |(λ, j), p+,p⊥, µ〉 , (17)

then equation (13) still determines the binding energy and scattering phase shifts. It

follows that the resulting two-body models have the same bound-state and scattering

observables, however each of the resulting unitary representations of the Poincaré group

has a different kinematic subgroup. The dynamical irreducible eigenstates transform

like |(λ, j),p, µ〉 with the Wigner function (14) replaced by (6) or (7) where m is

replaced by λ. This makes these unitary transformations dynamical.

The mass operators and interactions, v, vpoint and vfront are distinct operators,

but the three representations are related by unitary transformation that leave the

binding energies and scattering observables unchanged. The dynamical calculations are

identical in all three cases and are given by solving (13). This shows that dynamical

models with different kinematic subgroups are equivalent and cannot be distinguished

on the basis of any experimental observations.
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5 Cluster properties - Ekstein’s theorem

An important feature of non-relativistic quantum mechanics is that the same inter-

actions appear in the few and many-body problems. Specifically, the Hamiltonian be-

comes a sum of subsystem Hamiltonians when the short-ranged interactions between

particles in different subsystems are turned off. In the relativistic case the corresponding

requirement is that the unitary time-translation group breaks up into a tensor product

of subsystem groups when the system is asymptotically separated into independent

subsystems. We call this the strong form of cluster properties.

The observable requirement is that the S-matrix clusters. We call this the weak

form of cluster properties because it follows from the strong form of cluster properties,

however because different Hamiltonians can have the same S-matrix, the weak form

of cluster properties does not imply that the same interactions appear in the few

and many-body Hamiltonians. Because of this, in order to maintain a simple relation

between the few and many-body problem, we require that Poincaré invariant quantum

theories satisfy the strong form of cluster properties.

A theorem of Ekstein [41] provides necessary and sufficient conditions for two short-

ranged interactions to give the same S matrix. The requirement is that the Hamilto-

nians are related by a unitary transformation A satisfying the asymptotic condition

lim
t→±∞

‖(I −A)U0(t)|ψ〉‖ = 0 (18)

where U0(t) is the non-interacting time translation operator. We refer to unitary trans-

formations with this property as scattering equivalences. It is important that this con-

dition be satisfied for both time limits; to appreciate the relevance of this condition

consider two Hamiltonians with different repulsive potentials. Because these Hamilto-

nians have the same spectrum and multiplicities they are related by a unitary trans-

formation, however the derived S-matrices may have different phase shifts. The phase

shifts differ if and only if two time limits do not agree.

Scattering equivalences that preserve weak cluster properties but not strong cluster

properties exist and are the key to restoring the strong form of cluster properties in

Poincaré invariant quantum theory. The strategy is illustrated in the formulation of

the three-body problem in the next section.

6 Three-body problem

The strong form of cluster properties implies that given a set of dynamical two-body

generators, the three-body generators necessarily can be expressed as sums of one, two

and three-body operators

H = H1 +H2 +H3 +H12 +H23 +H31 +H123 (19)

P = P1 + P2 + P3 + P12 + P23 + P31 + P123 (20)

J = J1 + J2 + J3 + J12 + J23 + J31 + J123 (21)

K = K1 + K2 + K3 + K12 + K23 + K31 + K123. (22)

The one and two-body operators in (19-22) are the same operators that appear in the

two-body problems, while the three-body operators, H123,P123,J123 and K123 are the

only new ingredients in the three-particle generators.
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It is easy to show that if the generators have this form it is impossible to satisfy

the Poincaré commutation relations if all of the three-body operators vanish. However,

although the commutation relations put non-linear constraints on these operators, it

will become clear that the solutions are not unique.

To avoid solving the non-linear problem of satisfying the commutation relations, it

is more productive to start by first satisfying the commutation relations at the expense

of strong cluster properties. This can be done by applying the method of section 4

directly to the three-body problem. This involves adding suitable interactions to the

non-interacting invariant three-body mass operator.

To begin the construction we consider a three-body system where only one pair

of particles interact. The relevant basis is a non-interacting three-body irreducible

representation of the Poincaré group. It is constructed by successive pairwise coupling

using the Poincaré group Clebsch-Gordan coefficients. If we assume that particles one

and two are the interacting pair then preferred order of coupling would be (12) →
((12)(3)):

|p1, µ1〉 ⊗ |p2, µ2〉 → |(k12, l12, s12, j12)p12, µ12〉 (23)

|(k12, l12, s12, j12)p12, µ12〉 ⊗ |p3, µ3〉 →

|(q, L(12)(3), S(12)(3)J(12)(3), k12, l12, s12, j12)p, µ〉. (24)

We introduce the following shorthand notation for the basis states in these equations.

We write (23) as |1 ⊗ 2〉 → |(12)〉 and (24) as |(12) ⊗ 3〉 → |(12)(3)〉. Using this

notation we define two different embeddings of the two-body interaction in the three-

body Hilbert space using the two representation in (24):

〈(12)′ ⊗ 3′|v12⊗|(12) ⊗ 3〉 =

〈k′12, l′12, s′12‖vj‖k12, l12, s12, 〉δ(p′
12 − p12)δ(p

′
3 − p3)δj′12j12δj′3j3 (25)

and

〈(12)′(3)′|v12|(12)(3)〉 =

〈k′12, l′12, s′12‖vj‖k12, l12, s12, 〉δ(p′ − p)×

δ(q′ − q)

q2
δj′

(12)(3)
j(12)(3) δj′12j12δL′

(12)(3)
L(12)(3)

δS′

(12)(3)
S(12)(3)

δµ′µ (26)

where the reduced kernel, 〈k′12, l′12, s′12‖vj‖k12, l12, s12, 〉, is identical in (25) and (26).

These expressions define different interactions, (v12⊗ 6= v12).

We use these two interactions to define two different 2 + 1-body mass operators

M(12)⊗(3) and M(12)(3) defined by

M(12)⊗(3) :=

s

(

r

(
q

m2
1 + k2

12 +
q

m2
2 + k2

12 + v12⊗)2 + p2
12) +

q

m2 + p2
3)2 − p2)

(27)

M(12)(3) :=

r

(
q

m2
1 + k2

12 +
q

m2
2 + k2

12 + v12)2 + q2 +
q

m2
3 + q2. (28)

Because of the invariance principle [42–44] the S-matrix can be computed by replacing

the Hamiltonian by the mass operator (this is equivalent to evaluating the S-matrix

in the three-body rest frame) in the standard time-dependent representation of the

scattering operator.
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M(12)⊗(3) is the mass operator of the tensor product of a two-body representation

involving particles one and two and a spectator representation of the Poincaré group

associated with particle three, U12(Λ, a) ⊗ U3(Λ, a). By construction it is consistent

with the strong form of cluster properties. The mass operator M(12)(3) commutes

with the three-body spin and commutes with and is independent of the total three-

body momentum and z-component of the three-body canonical spin. Simultaneous

eigenstates of M(12)(3),p, j
2, jz are complete and transform irreducible with respect to

the Poincaré group. This defines a dynamical unitary representation of the Poincaré

group, U(12)(3)(Λ, a), on the three-body Hilbert space following the construction of

section 4.

The scattering operators associated with both of these operators are related by

〈(12) ⊗ (3)|S(12)⊗(3)|(12) ⊗ (3)〉 =

〈k′12, l′12, s′12‖Sj‖k12, l12, s12, 〉δ(p′
12 − p12)δ(p′

3 − p3)δj′12j12δj′3j3 (29)

and

〈(12)(3)|S(12)(3)|(12)(3)〉 = 〈k′12, l′12, s′12‖Sj‖k12, l12, s12, 〉δ(p′ − p)×

δ(q′ − q)

q2
δj′

(12)(3)
j(12)(3) δj′12j12δL′

(12)(3)
L(12)(3)

δS′

(12)(3)
S(12)(3)

δµ′µ (30)

where the reduced two-body kernels 〈k′12, l′12, s′12‖Sj‖k12, l12, s12, 〉 are identical. Be-

cause the delta functions become equivalent when they are evaluated on shell, the S

matrices in both representations are identical. Ekstein’s theorem implies the scattering

equivalence A(12)(3)U12(Λ, a) ⊗ U3(Λ, a)A†
(12)(3)

= U(12)(3)(Λ, a).

To construct a dynamical representation of the Poincaré group with all three par-

ticles interacting we first construct the mass operator

M = M(12)(3) +M(23)(1) +M(31) − 2M0. (31)

Because each term in (31) commutes with p, j2, jz, and is independent of p and jz
it follows that simultaneous eigenstates of M,p, j2, jz are complete and transform

irreducibly, thus defining a dynamical unitary representation, U(Λ, a), of the Poincaré

group on the three-nucleon Hilbert space.

Because each of the 2 + 1 mass operators in (31) is scattering equivalent to 2 + 1

mass operators associated with a tensor product representation, it follows that M can

be expressed as

M = A(12)(3)M(12)⊗(3)A
†
(12)(3)

+ A(23)(1)M(23)⊗(1)A
†
(23)(1)

+

A(31)(2)M(31)⊗(2)A
†
(31)(2)

− 2M0. (32)

From this representation it follows that when interaction between the ith particle and

the other two particles are turned off that

U(Λ, a) → A(jk)(i)U(jk)(Λ, a) ⊗ Ui(Λ, a)A
†
(jk)(i)

(33)

which formally violates the strong form of cluster properties.

The strong form of cluster properties can be restored by transforming U(Λ, a)

with the product A† = A†
(12)(3)

A†
(31)(2)

A†
(23)(1)

. Because products of scattering equiv-

alences are scattering equivalences, this does not change the three-body S matrix. This
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transformation also restores strong-cluster properties, because A† → A†
(jk)(i)

when the

interactions between particle i and the other two particles are turned off, canceling

off the extra unitary transformations in (33). The undesirable feature of A is that the

individual A(jk)(i)’s do not commute, so it introduces an exchange asymmetry that

does not affect the S-matrix. The exchange symmetry can be manifestly restored by

replacing the product of the A(jk)(i)’s by a symmetrized product, such as:

A := eln(A(12)(3))+ln(A(23)(1))+ln(A(31)(2)) (34)

U⊗(Λ, a) = A†U(Λ, a)A. (35)

Equation (35) defines a unitary representation, U⊗(Λ, a), of the Poincaré group that

satisfies the strong form of cluster properties because

A→ A(jk)(i) (36)

when the interactions between particle i and the other two particles are turned off.

Thus

U⊗(Λ, a) → A†
(jk)(i)

U(jk)(i)(Λ, a)A(jk)(i) =

A†
(jk)(i)

A(jk)(i)U(jk)(Λ, a) ⊗ Ui(Λ, a)A
†
(jk)(i)

A(jk)(i) =

U(jk)(Λ, a) ⊗ Ui(Λ, a) (37)

This property ensures that the infinitesimal generators have the additive form (19-22)

and (35) generates the required three-body interactions.

Because there are many other ways to construct symmetric products of non-commuting

operators and because it is possible to add a three-body interaction to M that com-

mutes with and is independent of the total momentum and spin, it is clear the three-

body parts of the generators that are required to restore the commutation relations are

not unique. It is also important to note that it is not possible to use the freedom to add

three-body interactions to eliminate the three-body interactions required to restore the

commutation relations; in this representation the generated three-body interactions do

not commute with the non-interacting spin.

This construction can be extended to formulate dynamical models satisfying the

strong form of cluster properties for any fixed number of particles, isobar models in

any of Dirac’s form of dynamics. It is even possible to treat production beyond isobar

types of models.

Models with different kinematic subgroups can be constructed by starting with dif-

ferent irreducible bases (4), (5). As long as the reduced kernels of the interactions are

identical, all of the Bakamjian-Thomas three-body mass operators, M , will give identi-

cal bound-state and scattering observables. They are related by scattering equivalences

constructed by applying the unitary transformations

|(λ, j),v, µ, · · · 〉 = |(λ, j),p(v, λ), µ, · · · 〉λ3/2, (38)

or

|(λ, j), p+,p⊥, µ, · · · 〉 = |(λ, j),p(p+,p⊥, λ), µ′, · · · 〉
s

ωλ(p)

p+
Dj

µ′µ[B−1
c (p)Bf (p)]

(39)
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on each invariant subspace of the associated mass operator. Each of these represen-

tation is in turn scattering equivalent to a representation that satisfies strong cluster

properties and has the same kinematic subgroup.

Because A is a scattering equivalence, it is only necessary to solve the Faddeev

equations for the mass operator M in a non-interacting irreducible basis. Furthermore,

since all bound state and scattering observables can be computed using only the internal

mass operator, with the delta functions in p and µ removed, this equation is the same

in all of Dirac’s forms of dynamics when expressed in terms of the kinematic mass and

kinematically invariant degeneracy quantum numbers. The operators A and the choice

of kinematic subgroup are only needed if the three-body system is embedded in the

four-body Hilbert space or if the eigenstates are used to construct electroweak current

matrix elements.

7 Connection with quantum field theory

Poincaré invariant quantum mechanics as formulated by Bakamjian and Thomas resem-

bles non-relativistic quantum mechanics more than quantum field theory. The Hilbert

spaces have the same structure as non-relativistic Hilbert spaces, the theory is not

manifestly covariant, spin 1/2 particles are treated using two-component spinors. In

spite of these apparent differences there is a direct connection to quantum field theory

which we outline below.

To develop the connection we assume the existence of an underlying quantum

field theory with a Poincaré invariant vacuum and a collection of Heisenberg fields,

φi(x), where the bold face indicates a multi-component field. The index i distinguishes

different types of fields.

In quantum field theory Hilbert-space vectors are constructed by applying functions

of smeared fields,

φi(f) =

Z

d4xf(x) · φi(x) (40)

to the physical vacuum |0〉.
Polynomials in the smeared fields applied to the physical vacuum generate a dense

set of vectors. The field theoretic unitary representation of the Poincaré group U†(Λ, a)

acts covariantly on the smeared fields:

U†(Λ, a)φi(f)U(Λ, a) =

Z

d4xf(Λx+ a)S(Λ)φi(x) (41)

where S(Λ) is the finite dimensional representation of the Lorentz group appropriate

to the field. The covariance of the fields implies Poincaré transformation properties of

test functions that leave the scalar product invariant.

If the field theory has one-particle states, then there are functions, A, of smeared

fields with the property that A|0〉 is a one particle state. One-particle eigenstates

that transform irreducibly with respect to the Poincaré group can be constructed by

projecting A|0〉 on states of sharp linear momentum and canonical spin. This can be

done using the unitary representation (41) of the Poincaré group

|(m, j)p, µ〉 = A(p, µ)|0〉 :=

j
X

ν=−j

Z

dRdp0d4xeip·xU(R, x)A|0〉Dj∗
µν(R)δ(p2 +m2)θ(P 0) (42)
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where R is a rotation, dR is the SU(2) Haar measure, U(R, x) is the unitary repre-

sentation of the Poincaré group restricted to rotations and spacetime translations, and

Dj∗
µµ(R) is a SU(2) Wigner function.

The normalization of these states can be chosen so

〈(m′, j′)p′, µ′|(m, j)p, µ〉 = δ(p′ − p)δm′mδj′jδµ′µ. (43)

It follows from the definitions and the group representation properties that these states

transform as mass m spin j irreducible representations of the Poincaré group:

U(Λ, a)|(m, j)p, µ〉 =

j
X

µ′=−j

|(m, j)Λp, µ′〉eiΛp·aDj∗
µ′µ[B−1(Λ(p))ΛB(p)]

s

ωm(Λp)

ωm(p)
=

j
X

µ′=−j

Z

dp′|(m, j)p′, µ′〉D′mj
µ′,p′;p,µ[Λ, a] (44)

To construct scattering states define C(p, µ) := (
p

m2 + p2A(p, µ)) − [H,A(p, µ)]−).

Scattering states are then given by the Haag-Ruelle method: [45][46]

|(p1, µ1, · · · ,pN , µN )±〉 = lim
t→±∞

U(−t)
Y

j

[Cj(pj , µj)e
−itωmj

(pj)]|0〉 (45)

where the limits are strong limits after smearing over suitable momentum wave packets.

The operators
Q

j [Cj(pj , µj)|0〉 can be considered as mappings from an N par-

ticle channel Hilbert space, Hα, to the Hilbert space of the field theory. Vectors in

the N-particle channel Hilbert space are square integrable functions in the variables

p1, µ1, · · · ,pN , µN . We denote these operators by Ωα± where α indicates the channel.

The direct sum of all of the channel Hilbert spaces, including the one-particle

channels, defines an asymptotic Hilbert space. We define Ω± that maps the asymptotic

Hilbert space to the physical Hilbert space by

Ω±

0

B

@

|fα1 〉
|fα2 〉
...

1

C

A
=

X

α

Ωαi±|fαi〉. (46)

By construction these wave operators satisfy the intertwining relations [46]

U(Λ, a)Ω± = Ω± ⊕α Uα(Λ, a). (47)

The Poincaré invariant S operator of the field theory is given by

S = Ω†
+Ω− (48)

where each Uα(Λ, a) is a tensor product of single particle irreducible representations

of the Poincaré group on the channel subspace Hα

Poincaré invariant quantum mechanics formulated in the previous sections has the

same basic structure. The primary difference is that the asymptotic Hilbert space for

the field theory has an infinite number of channels and describes physics at all energy

scales, while the Poincaré invariant quantum mechanical wave operators involve only

a subset of these channels that are experimentally relevant only up to a given energy

scale.
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If Π is a Poincaré invariant projection operator on the asymptotic subspaces corre-

sponding channels of a Poincaré invariant quantum model that also limits the maximum

invariant mass of the asymptotic states, then the following operator

W = Ωf+ΠΩ
†
qm+ = Ωf−ΠΩ

†
qm− (49)

maps an invariant subspace of the quantum mechanical Hilbert space to an invariant

subspace of the field theory Hilbert space in a manner that satisfies

ΠSqmΠ = ΠSfΠ (50)

WUp(Λ, a) = Uf (Λ, a)W . (51)

These mappings define the relevant relation between the Poincaré invariant quantum

theory and the underlying field theory.

Thus, for asymptotic scattering states in the range of Π the Poincaré invariant

quantum mechanical theory can be designed to give identical results to the field theory.

Obviously the two theories differ on asymptotic states that are not in the range of Π .

Even though the Poincaré invariant quantum theory does not satisfy microscopic

locality, we see that it can give the same S matrix elements as the full field theory at

a given energy scale.

8 Few nucleon applications

In this section we discuss an illustrative set of applications to few nucleon problems.

A realistic nucleon-nucleon interaction is needed for these applications. The invariant

mass operator for two free nucleons can be expressed in terms of a relative momentum

as

m012 =:
q

k2 +m2
1 +

q

k2 +m2
2. (52)

It is always possible to express the two-body interaction as an addition to k2:

M12 = m12 + v12 :=
q

k2 + 2µvnn +m2
1 +

q

k2 + 2µvnn +m2
2 (53)

where following [47] vnn is a realistic nucleon-nucleon interaction [48,49] and µ is the

reduced mass

µ =
m1m2

m1 +m2
. (54)

In this representation the dynamical two-body mass operator becomes a function of

the non-relativistic center of mass Hamiltonian:

M12 =
q

2µhnr +m2
1 +

q

2µhnr +m2
2 (55)

where

hnr =
k2

2µ
+ vnr. (56)

It is a consequence of the Kato-Birman [42–44] invariance principle that the relativistic

wave operators for (53) and non-relativistic wave operators for (56) are identical

Ωnr± := lim
t→±∞

eiHnrte−iHnr0t = lim
t→±∞

eihnrte−ih0t = lim
t→±∞

eiMte−iM0t =
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lim
t→±∞

eiM
2te−iM2

0 t = lim
t→±∞

eiH
2
r te−H2

r0t = lim
t→±∞

eiHrte−iHr0t = Ωr± (57)

where M = M12 in (57). The identity (57) ensures that both scattering operators are

identical as functions of k2:

Snr = Ω†
nr+Ωnr− = Ω†

r+Ωr− = Sr (58)

Here the relativistic and non-relativistic S are related because the interactions are fit

to the same two-body data correctly transformed to the center of momentum frame.

The non-relativistic Hamiltonian (56) is NOT the non-relativistic limit of (53).

This construction, which first appeared in [47], shows that existing realistic interac-

tions can be directly used in the formulation of a Poincaré invariant two-body problem.

Equation (55) implies that the wave functions of (56) and (53) are identical functions

of k2, l, s.

If we replace the interaction in (11) by the interaction v12 in (53) and use this in

the three-body calculation discussed in section 6 then the three-body S-matrix can be

expressed in terms of three-body mass operators:

S̄ac = δac − 2πiδ(Ma −Mc)T
ac(zc) (59)

which are functions of the transition operators

T ac(z) = T ac(z) = V c + V aR(z)V c (60)

where a, b, c ∈ {(12)(3), (23)(1), (31)(2)},

M(ij)(k) =

r

(
q

m2
i + k2 + 2µvnn +

q

m2
j + k2 + 2µvnn)2 + q2 +

q

m2
k + q2. (61)

Va = Ma −M0 V c =
X

a6=b

Va R(z) = (z −M)−1 (62)

Rc(z) = (z −M0 − Vc)
−1 (63)

R(z) = Rc(z) +Rc(z)V
cR(z) (64)

and vnn is the nucleon-nucleon interaction that appears in (53) embedded in the three-

nucleon Hilbert space with the delta functions in (26). The Faddeev equations can be

derived using standard methods

T ab(z) = V b +
X

c 6=a

VcRc(z)T
cb(z). (65)

While it does not make any sense to study the non-relativistic limit of interactions that

are constructed by fitting to two-body bound and scattering data, we can compare

the relativistic and non-relativistic three-body calculations that use the same two-

body interaction, vnn, as input. In the Poincaré invariant quantum mechanics case the

Faddeev equations have the form

〈a|T ab(z)|b〉 = 〈a|V b|b〉 +
X

c 6=a

Z

〈a|c〉〈c|VcRc(z)|c〉〈c|T cb(z)|b〉 (66)
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where 〈a|c〉 are Poincaré group Racah coefficients, which are the unitary transformation

that relate three-body Poincaré irreducible bases constructed using pairwise coupling

in different orders. These coefficients, which have the form

〈a|c〉 = δ(p − p
′)δµµ′δ(m−m′)δjj′Rmj(da, dc), (67)

with da and db distinct sets of invariant degeneracy parameter, replace the non-

relativistic permutation operators.

The construction of the kernel is facilitated by the fact that the two-body eigen-

functions of (55) and (56) are identical. The kernel of the relativistic Faddeev equation

can be directly related to the non-relativistic two-body t using the following relations:

〈c′|VcRc(zc)|c〉 = 〈c′|Tc(zc)(zc −M0)−1|c〉 =

〈c′|Vc|c−〉(zc −M0)
−1 = 〈c′|Mc −M0|c−〉(zc −M0)

−1 =

2µ

ω1ω2 + ω′
1ω

′
2

(ω1 + ω2)
2 + (ω′

1 + ω′
2)

2

p

(ω1 + ω2)2 + q2 +
q

(ω′
1 + ω′

2)
2 + q2

〈c′|tnr(kc)|c〉(zc −M0)
−1 (68)

where

ωi =
q

k2 +m2
i , (69)

which holds for the half shell kernel; this can be used as input to construct the fully

off-shell kernel using the first resolvent identity [50]

Tc(z
′) = Tc(zc) + Tc(z

′)
(z′ − zc)

(z′ −M0)(zc −M0)
Tc(zc) z′ 6= zc (70)

Alternatively, this kernel has also been computed using an iterative procedure based

on a non-linear integral equation[51].

The differences with the non-relativistic three-body calculations are the different

off-shell dependence dictated by (68), the differences in the Poincaré group Racah coef-

ficients (67) and the non-relativistic permutation operators. These differences show up

for the first time in the three-body system, since our two-body interactions are designed

to reproduce the same experimental two-body cross sections as the non-relativistic cal-

culations.

Solving these equations leads to three types of predictions: binding energies,

M |Ψ〉 = λ|Ψ〉 (71)

|Ψ〉 = E(V )|Ψbt〉 Mbt|Ψbt〉 = λ|Ψbt〉, (72)

scattering probabilities (N = 3 only),

|Sfi|2 = |〈Ψ+
f |Ψ−

i 〉|2 = |〈Ψ+
btf |Ψ

−
bti〉|

2 , (73)

electromagnetic and weak current matrix elements

〈Ψf |Iν(0)|Ψi〉 = 〈Ψf |AIν(0)A†|Ψi〉 , (74)

where Iµ(0) is a current that is conserved, covariant, and clusters in the representation

(35) of the three-body dynamics.

In what follows we discuss three applications of Poincaré invariant quantum me-

chanics that illustrate its ability to model a variety reactions where relativity may be

important.
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8.1 Relativisitic spin rotations in low energy Ay

A calculation by Miller and Schewnk [52] suggested that Wigner rotations might have

an observable effect on the polarization observable Ay for low-energy p-d scattering.

Comparison of three-body calculations based on Poincaré invariant quantum mechanics

[34] and non-relativistic quantum mechanics using the same realistic CD-Bonn interac-

tion [49] as input indeed show a surprising sensitivity of Ay to Wigner rotations. These

calculations, which are shown in Fig. 8.1, compare the non-relativistic result (dotted

curve), the relativistic result without Wigner rotations (dashed curve) and the full rel-

ativistic calculation (solid curve) to data [53,54]. While the relativistic effects move the

calculations away from the data, this calculation illustrates that the relativistic effects

cannot be ignored in these calculations, even at these low energies.

8.2 Relativistic Effects in Exclusive pd Breakup

The value of Poincaré invariant quantum mechanics is that it provides a consistent

framework to study strong interactions in the few GeV energy scale. At this scale it is

more efficient to perform calculations using direct integration [55,56] rather than with

partial wave expansions. The feasibility of using Poincå’e invariant quantum mechanics

to treat nucleon deuteron-scattering at these energy scales was established by solving

the Faddeev equation of section 6 using Malfliet-Tjon [57] interactions to model the

nucleon-nucleon potential. The two-body interactions were included using the method

discussed above. Convergence of the solutions of the Faddeev equations was established

up to 2GeV [31–33]. In three-body reactions there are many observables that can be

used to test the sensitivity of relativistic effects. One interesting observable is the cross

section when the outgoing protons in a breakup reaction are measured at symmetric

angles relative to the beam direction. These cross sections were computed [32] in non-

relativistic and Poincaré invariant three-body models using the same Malfliet-Tjon

two-body interactions as input.

Fig. 8.3 shows cross sections for different choices of angles symmetric about the

beam direction. The solid curve is the relativistic calculation while the long dashed

curve is the non-relativistic one. The other two curves compare the exact calculation

to the first terms in the multiple scattering series both for the relativistic and non-

relativistic cases. As the angle is increased the relativistic and non-relativistic curves,

exhibit different behavior. For this kinematic configuration the multiple scattering se-

ries converges quickly, although this result depends on what is measured. Fig. 8.2 shows

similar plots for non-symmetric angles. Again the first order multiple scattering calcu-

lations work reasonably well and there is a definite difference between the relativistic

and non-relativistic predictions. In both cases the data [58], has the same qualitative

behavior as the relativistic calculations.

8.3 Exchange currents in electron-deuteron scattering

The last application involves electron scattering off of nuclear targets at values of mo-

mentum transfer Q2 appropriate to J-lab experiments. In Poincaré invariant quantum

mechanics electron scattering observables in the one-photon-exchange approximation
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can be expressed in terms of matrix elements of a conserved covariant current Iµ(x)

which should have a cluster expansion

Iµ(x) =
X

Iµ
i (x) +

X

Iµ
ij(x) +

X

Iµ
ijk(x) + · · · . (75)

Both Poincaré covariance, current conservation, and cluster properties put dynamical

constraints on the current operator.

The deuteron is the simplest electromgnetic target that is sensitive to the two-

body part of the current. While a general method for constructing Iµ(x) based on

dynamical considerations is not known, the constraints can be satisfied by using the

Wigner-Eckart theorem for the Poincaré group, which amounts to computing a max-

imal set of linearly independent current matrix elements and using covariance and

current conservation to generate the remaining matrix elements. Different model two-

body currents can be tested in this framework. For elastic scattering off of a deuteron

there are three independent observables which can be taken as, A(Q2), B(Q2), and

T20(Q
2, 70o). The input to a calculation is a deuteron wave function, a dynamical rep-

resentation of the Poincaré group, nucleon form factors [59–63], and a model exchange

current [64]. The calculations illustrated in Figs. 8.4-8.6 use a model of the deuteron

with a light front kinematic symmetry. The dynamical representation of the Poincaré

group is constructed from the Argonne V18 interaction[48], and the exchange current

is the long-range part of a “pair current” derived from the one-pion-exchange part of

the V18 interaction. Figs. 8.4, 8.5, and 8.6 show comparisons of A(Q2), B(Q2), and

T20(Q
2, 70o) to experimental data with and without the exchange current. Two differ-

ent implementations of the Poincaré group Wigner-Eckart theorem are responsible for

the small difference in the curves labeled II and III.

These three calculations illustrate both the power and flexibility of Poincaé invari-

ant quantum mechanics as a tool to study systems of strongly interacting particles at

scales up to a few GeV. Data shown for A are from [65–75], for B are from [76,77,71,

78,72,65], and for T20 from [79–84].

These calculations demonstrate that Poincaré invariant quantum mechanics is a

useful framework for making realistic models of system of strongly interacting particles

at the few-GeV energy scale. Some of these effects extend to surprisingly low energies.
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