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Abstract

This paper uses Schwinger’s representation of quantum systems of a finite number of degrees of

freedom to formulate discrete path integral representations of the dynamics. The representation

starts with an observable with a finite number of distinct eigenvalues. Using that observable

Schwinger constructs complementary pairs of finite dimensional unitary operators that are finite

dimensional analogs of the irreducible Weyl algebra. These can be decomposed into products of

irreducible sub-algebras that reduce to q-bit gates for the case of 2N degrees of freedom. In the

limit of a large number of discrete degrees of freedom these representations can be used to model

quantum systems with continuous degrees of freedom. This limit recovers the continuum Weyl

algebra. Path integrals can be formulated in the discrete case. They have the advantage that

the number of paths for a finite number of time slices is finite. In this work the path integral is

interpreted as the expectation value of a potential functional with respect to a complex probability

distribution on the space of “paths”. An application to scattering from a short-range potential is

given. Multi-resolution wavelet bases are used exactly represent a local φ4(x) quantum field theory

as a theory with an infinite number of discrete local modes. The discrete path integral is illustrated

by computing time evolution when this theory is truncated to two coupled modes.
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I. INTRODUCTION

Quantum computers consist of a finite number, M , of two state systems. The resulting

Hilbert space for this quantum system is finite dimensional. Elementary gates are used to

build an irreducible algebra of operators on this space that can be used to model complex

systems. The goal is to time evolve these systems to solve problems that are difficult to

solve classically. This requires time evolving vectors with large numbers of components and

measuring the results. At the computational level results are achieved using finite quantum

systems. Julian Schwinger’s textbook [1] treatment of measurement theory generalizes the

standard measurement theoretic treatment of the Stern Gerlach experiment to a system of

a finite number of degrees of freedom. It is a natural framework for numerical treatments

of path integrals, although these applications are limited on classical computers. Schwinger

begins with a quantum observable that has a finite number of possible outcomes. He then

constructs a complementary set of unitary operators - one that has the same eigenvectors

as the original observable and one that cyclically shifts the eigenvectors. These two unitary

operators are finite degree of freedom analogs of the Weyl algebra, which is the exponential

form of the canonical commutation relations. In this case there is no identification of these

observables with coordinates or momenta. When M can be expressed as a product of prime

factors, he shows that this algebra can be decomposed into products of irreducible sub-

algebras acting on independent sets of prime numbers of degrees of freedom. When M = 2L

these elementary unitary operators can be represented by the q-bit gates σx and σz.

While Schwinger’s representation provides a general structure theorem for quantum sys-

tems of a finite numbers of degrees of freedom, there are natural limits that provide models

of quantum systems based on commuting observables with continuous eigenvalues. These

systems can be approximated by finite systems with large number of degrees of freedom.

The discrete representation leads to a discrete formulation of the path integral where for N

time steps there are a finite number, MN , “paths” that pass through the M allowed values

of one of the observables at each time step. For a canonical system that is quadratic in

the “momentum” variables, the amplitude for free propagation between time steps defines

a “complex probability” on the space of paths. The path integral can be interpreted as the

small time step limit of the expectation value of an interaction functional of the discrete of

paths between time steps. An application of this discrete path integral to scattering in one
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dimension is illustrated in section VIII. The discrete path integral is used to approximate

sharp-momentum half-shell transition matrix elements. The same method can be applied to

time evolve quantum fields using an exact discrete multi-resolution representation of the field

algebra. The computation of time evolution of a volume and resolution truncated quantum

field theory using the discrete path integral is discussed in section IX. It is illustrated using

a trivial two mode truncation of the theory.

While the Schwinger representation does not solve any of the problems that quantum

computers are designed to solve, it leads to a simple framework for modeling general quantum

problems as finite quantum systems, where these finite systems can also be represented by

products of elementary 2 or 3 state quantum systems. The 2-3 state algebras are more

localized and should provide a more practical representation for quantum computations.

In general applications are limited by the dimension of the vectors that represent realistic

systems.

The next section provides a brief discussion of the role of Hilbert spaces in the formulation

of three valued quantum logic represented by q-bits. This emphasizes the relevant difference

between digital and quantum computing. Section III provides a summary of Schwinger’s

construction of irreducible algebras of systems of M degrees of freedom. Section IV discusses

the factorization of a 2M degree of freedom system into a direct product of irreducible two-

degree of freedom systems which results in a representation of the algebra of section III in

terms of qbits. Section V discusses the limit to a system with continuous eigenvalues. In

this case the general construction requires additional boundary conditions. Section VI gives

a short discussion of the subject of complex probabilities, which will be used in the discrete

formulation of the path integral. Section VII discusses the treatment of time evolution using

a discrete formulation of the path integral as the expectation value of a potential functional

with respect to a complex probability on a finite sample space of paths. Section VIII

illustrates the application of the path integral in section VII to scattering in one dimension.

Section IX discusses an exact discrete multi-resolution representation of a scalar field theory

and uses the path integral in section VII to time evolve a two field-mode truncation of the

theory. Section X gives a summary and conclusion.
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II. QUANTUM LOGIC

Classically if a system is prepared in a state A and a later measurement tests if it will

be detected in state B, there are two possible outcomes, true or false. This leads to a two

valued system of logic that is encoded in the bits used in digital computing. In quantum

mechanics there are three possibilities - the final system will always be measured to be in

the state B, it will never be measured to be in the state B, or there is a finite probability

P , with 0 < P < 1, that it will be measured to be in state B. This leads to a three-valued

logic or quantum logic.

The three valued logic of quantum mechanics [2] has a straightforward geometrical inter-

pretation. If state A is represented by a one-dimensional subspace of a Hilbert space and

state B is represented by another one dimensional subspace then there are three possibilities

- (1) the subspace B is the subspace A, (2) the subspace B is orthogonal to the subspace A,

or a non-0 vector in A has a non-zero projection on the subspace B.

In the quantum case states are represented by vectors or rays, |a〉 in a Hilbert space.

Quantum probabilities are expressed in terms of the Hilbert space inner product:

Pab :=
〈a|b〉〈b|a〉
〈a|a〉〈b|b〉

which is independent of the vectors in the rays. The three possibilities correspond to

(1) Pab = 1 (2) Pab = 0 (3) 0 < Pab < 1. (1)

When the Hilbert space is two dimensional the difference in these two types of logic is

encoded in bits or q-bits respectively.

In quantum mechanics observable quantities are represented by linear operators A on a

Hilbert space. The only possible outcomes for measuring A are one of its eigenvalues, an

(this assumes A is a normal operator whose eigenvectors form a basis). In this case the

Hilbert space has a decomposition H = ⊕nHn, where the Hn are A-invariant subspaces of

H.

The mean value of a measurement of A in state |b〉 is

〈b|A|b〉 =
∑
n

Panban an eigenvalue of A (2)

which is the weighted average of the quantum probabilities for a measurement of b to be in

one of the eigenstates of A.
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III. SCHWINGER’S DISCRETE WEYL ALGEBRA

This section reviews Schwinger’s [1] method of constructing an irreducible algebra of com-

plementary unitary operators for quantum systems of a finite number of degrees of freedom.

This construction generates a finite degree of freedom version of the Weyl (exponential) form

of the canonical commutations relations. This algebra can be used to build discrete models

of any quantum system. This construction is essentially the same as the treatment of the

quantum Fourier transform discussed in [3] and elsewhere.

Let H be a M -dimensional complex Hilbert space. Let A be a normal operator on H
with M distinct eigenvalues and unit normalized eigenvectors:

A|am〉 = am|am〉 m = 1, · · · ,M am 6= an for m 6= n. (3)

Define the operator U on H that cyclically shifts the eigenvectors of A:

U |am〉 = |am+1〉 m < M U |aM〉 = |a1〉. (4)

In what follows the labels m on eigenvectors and eigenvalues are treated as integers mod M

so 0 is identified with M , 1 with M + 1 etc.. U defined by (4) is unitary since

UU † =
M∑
m=1

U |am〉〈am|U † =
M−1∑
m=1

|am+1〉〈am+1|+ |a1〉〈a1| =
M∑

m′=1

|am′〉〈am′ | = I. (5)

Since M applications of U leaves all M basis vectors, |am〉, unchanged, it follows that

UM = I. This means that the characteristic polynomial of U is P (λ) = λM − 1 = 0. The

eigenvalues of U are the M roots of 1:

λ = um = e
2πmi
M . (6)

Let |um〉 denote the associated eigenvectors:

U |um〉 = um|um〉 (7)

with unit normalization

〈um|un〉 = δmn. (8)

The normalization does not fix the phase which will be fixed later. Since both UM = I and

uMn = 1 it follows that

0 = (UM − I) =
1

uMn
(UM − I) =
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(
(
U

un
)M − I

)
=

M∏
m=1

(
U

un
− um
un

) = (
U

un
− 1)(1 +

U

un
+ (

U

un
)2 + · · ·+ (

U

un
)M−1). (9)

Since this expression is identically zero and (um
un
− 1) 6= 0 for m 6= n it follows that

1 +
U

un
+ (

U

un
)2 + · · · ( U

un
)M−1 = c|un〉〈un| (10)

for some constant c. Applying (10) to |un〉 implies that the constant c = M . This results

in an expression for the projection operator on each eigenstate of U as a degree M − 1

polynomial in U

|un〉〈un| =
1

M

M∑
m=1

(
U

un
)m =

1

M

M−1∑
m=0

(
U

un
)m. (11)

Using (11) it follows that

〈ak|un〉〈un|ak〉 =
1

M

M−1∑
m=0

〈ak|(
U

un
)m|ak〉 =

1

M

M−1∑
m=0

(
1

un
)m〈ak|ak+m〉 =

1

M
. (12)

This means for any k and n that

|〈ak|un〉| =
1√
M
. (13)

The interpretation is that if the system is prepared in any eigenstate of U and A is subse-

quently measured, then the probability of measuring any of the eigenvalues of A is the same

(1/M). This means that all of the information about the identity of the initial eigenstate

of U is lost after measuring A. This is the condition for the observables A and U to be

complementary.

The phase of |un〉 is defined by choosing

〈aM |un〉 = 〈un|aM〉 =
1√
M
. (14)

It then follows from (14) that

〈ak|un〉〈un|aM〉 = 〈ak|un〉
1√
M

=

1

M
〈ak|

M∑
m=1

u−mn |am〉 =
1

M
u−kn =

1

M
e−2πink/M (15)

which gives the inner product

〈ak|un〉 =
1√
M
e−2πink/M . (16)
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Next define another unitary operator, V , that shifts the eigenvectors of U cyclically, but in

the opposite direction

V |un〉 = |un−1〉, n 6= 1, V |u1〉 = |uM〉. (17)

The same methods, with U replaced by V , give

V M = I (18)

V |vm〉 = vm|vm〉 vm = e
2πim
M (19)

|vn〉〈vn| =
1

M

M−1∑
m=0

(
V

vn
)m =

1

M

M∑
m=1

(
V

vn
)m (20)

and for unit normalized |vn〉
|〈uk|vn〉| =

1√
M
. (21)

The phase of the |vn〉 is defined by choosing

〈uM |vn〉 =
1√
M
. (22)

With this choice of phase

〈uM |vn〉〈vn|uk〉 = 〈vn|uk〉
1√
M

=
1

M

M−1∑
m=0

v−mn 〈um|uk〉 =
1

M
v−kn (23)

which gives

〈vk|un〉 =
1√
M
e−2πink/M . (24)

Comparing (16) and (24) it follows that

|vk〉 =
M−1∑
m=0

|um〉〈um|vk〉 =
M−1∑
m=0

|um〉
e2πink/M

√
M

=
M−1∑
m=0

|um〉〈um|ak〉 = |ak〉 (25)

so the operators A and V have the same eigenvectors. The unitary operators U and V

defined above satisfy

UV = U
M=1−1∑
m=0

|vm〉e
i2πm
M 〈vm| =

M−1∑
m=0

|vm+1〉e
i2πm
M 〈vm| =

M−1∑
m=0

|vm+1〉e
i2πm
M 〈vm+1|U =

M−1∑
m=0

|vm+1〉e
i2π(m+1)

M 〈vm+1|U = e
−2πi
M V U (26)
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or

UV = V Ue
−2πi
M . (27)

U and V form an irreducible set of operators in the sense that that any operator on the

Hilbert space can be expressed as a degree (M−1)×(M−1) polynomial these two operators.

To show this note

|vm〉〈vk| = Um−k|vk〉〈vk| =

1

M

M−1∑
n=0

e−2πink/MUm−kV n =
1

M

M−1∑
n=0

e−2πimn/MV nUm−k (28)

where (27) was used to change the order of the U and V operators in (28). Irreducibility

follows since a general operator O can be expressed in terms of its matrix elements in a basis

O =
M−1∑
m,k=0

|vm〉〈vm|O|vk〉〈vk| =
M−1∑
m,k=0

〈vm|O|vk〉|vm〉〈vk| =

1

M

M−1∑
m,n,k=0

e−2πink/M〈vm|O|vk〉Um−kV n =
1

M

M−1∑
m,n,k=0

e−2πimn/M〈vm|O|vk〉V nUm−k. (29)

These equations have the form

O =
M−1∑
m,n=0

amnU
mV n =

M−1∑
m,n=0

bmnV
mUn (30)

which is the Weyl representation of O. If O commutes with U then

0 =
M−1∑
mn=0

amn[UmV n, U ] =
M−1∑
mnk=0

amnU
m+1V n(e2πin/M − 1) (31)

which requires n = M or 0. This means O is independent of V . Similarly if O commutes

with V it must be independent of U . This means that any operator that commutes with

both U and V is a constant multiple of the identity.

The following property will be used in the discussion of complex probabilities

M−1∑
m=0

〈un|vm〉 =
1√
M

M−1∑
m=0

e
2πimn
M = δn0

√
M = δnM

√
M . (32)

To prove this consider two cases. If n = 0 or M the sum is M . Otherwise

M−1∑
m=0

e
2πimn
M =

1− e2πin

1− e2πin/M
= 0 0 < n < M. (33)
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IV. QBITS

One property of the Schwinger representation is that it has a natural representation in

terms of q-bits. When M can be factored into products of prime numbers the U and V can

be replaced by an algebra of commuting pairs of operators with cycles the length of each

prime factor. The case of most interest for quantum computing is when M = 2L. In that

case the irreducible algebra is represented by a product of q-bit gates.

To show this assume that M = 2L for large L. The indices n = 0 · · · 2L−1 can be labeled

by L numbers that can only take the values 0 and 1: n↔ (n1, n2, · · · , nL)

n =
L∑

m=1

nm2m−1. (34)

This results in the identifications

|un1···nL〉 := |un〉 |vn1···nL〉 := |vn〉. (35)

Define unitary operators Ui and Vi by

Ui|vn1···nL〉 = |vn1···[ni+1]mod 2···nL
〉 (36)

Vi|un1···nL〉 = |un1···[ni−1]mod 2···nL
〉. (37)

Applying what was done in the general case to M = 2L gives

U2
i − 1 = V 2

i − 1 = 0, (38)

[Ui, Uj] = [Vi, Vj] = 0 [Ui, Vj] = 0 i 6= j ViUi = UiVie
iπ (39)

Un =
L∏

m=1

Unm
m (40)

V n =
L∏

m=1

V nm
m . (41)

Since U and V can be constructed from the Ui and Vi the set of {Ui} and {Vi} is also

irreducible.

A simple matrix representation of Ui and Vi is

Vi = σ3 Ui = σ1 (42)
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which are simple quantum gates. In this representation, v0 = u0 = 1; v1 = u1 = −1 and

|v0〉 =

 1

0

 |v1〉 =

 0

1

 (43)

|u0〉 =
1√
2

 1

1

 |u1〉 =
1√
2

 1

−1

 . (44)

The operators σ1 and σ3

Ui = σ1 =

 0 1

1 0

 Vi = σ3 =

 1 0

0 −1

 (45)

satisfy (4) and (17) for M = 2. They also satisfy

σ3σ1 = σ1σ3e
2πi
2 (σ2

1 − 1) = (σ2
3 − 1) = 0. (46)

Any linear operator A on this 2-dimensional vector space is a polynomial with constant

coefficients ai in these operators:

A = a1I + a2σ1 + a3σ3 + a4σ3σ1. (47)

This shows how the discrete version of the irreducible Weyl algebra can be built up out of

q-bits using the two elementary gates σ1 and σ3 acting on each qbit. This means that any

operator on the 2L dimensional Hilbert space can be expressed as a polynomial in the L

pairs of 2 state U and V operators.

Note for M odd the same construction works with 3× 3 matrices with

Ui =


0 0 1

1 0 0

0 1 0

 Vi =


1 0 0

0 e2πi/3 0

0 0 e4πi/3

 . (48)

V. SCHWINGER’S CONTINUUM LIMIT

The eigenvalue spectrum of many observables of interest, like momenta and coordinates,

are continuous. It is possible to use the discrete algebra generated by U and V to make a

discrete approximation to the continuum in the large M limit. To do this assume M is large

and define the small quantity ε by

ε2 := 2π/M. (49)
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For the purpose of approximating the continuum it is convenient (but not necessary) to

choose M = 2K + 1 odd and number the eigenvectors and eigenvalues from −K ≤ n ≤ K

instead of 0 to M − 1 or 1 to M . Discrete approximations to continuous variables p and q

are defined by

pl = lε = l

√
2π

M
ql = lε = l

√
2π

M
−Kε ≤ ql, pl ≤ Kε (50)

where

Kε =

√
Mπ

2
−
√

π

2M
. (51)

With these definitions the separation between successive values of pl and ql, pl+1 − pl =

ql+1−ql = ε vanishes as M →∞ while at the same time the maximum and minimum values

of pl and ql, p±K = q±K = ±(
√

Mπ
2
−√ π

2M
) approach ±∞ in same limit.

While for finite M any vector with finite elements has a finite norm - in the continuum

limit (M → ∞) this is no longer true so the limiting vectors with finite norm should be

square summable. This means that components of vectors with large |l| should approach 0

in the M →∞ limit.

For U and V given by (4) and (17) Hermitian operators p̂ and q̂ are defined by

V = eiεp̂ U = eiεq̂ . (52)

These can be used to define

V (qm) = eip̂qm = eip̂εm = V m (53)

U(pn) = eiq̂pn = eiq̂εn = Un. (54)

With these definitions equation (27) becomes

V (qm)U(pk) = U(pk)V (qm)e
i2πmk
M = U(pk)V (qm)eiεmεk = U(pk)V (qm)eipkqm (55)

V (qm)U(pk) = U(pk)V (qm)eipkqm (56)

which is the Weyl [4] form of the canonical commutation relations, where in this case the

variables are discrete. Equations (53-54) motivate the definitions

dp = εdn =

√
2π

M
dn dq = εdn =

√
2π

M
dn. (57)
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It follows from (52) that eigenvectors of V are also eigenvectors of p̂ and the eigenvectors of

U are also eigenvectors of q̂. Choosing normalization of the state |pn〉 and |qn〉 so∫
dp ≈

K∑
l=−K

dp

dl
= ε

K∑
l=−K

∫
dq ≈

K∑
l=−K

dq

dl
= ε

K∑
l=−K

(58)

I =
K∑

l=−K

|vl〉〈vl| =
K∑

l=−K

|pl〉dpl〈pl| =
K∑

l=−K

|pl〉ε〈pl| (59)

I =
K∑

l=−K

|ul〉〈ul| =
K∑

l=−K

|ql〉dql〈ql| =
K∑

l=−K

|ql〉ε〈ql| (60)

and comparing these equations leads to the definitions

|pl〉 := |vl〉/
√
ε (61)

and

|ql〉 := |ul〉/
√
ε. (62)

Using these relations gives

〈pm|qn〉 =
1

ε
〈vm|un〉 =

1

ε
√
M
e
−2πimn

M =
1√
2π
e−ipmqn (63)

〈pm|pn〉 =
1

ε
〈vm|vn〉 =

δmn
ε

(64)

and

〈qm|qn〉 =
1

ε
〈um|un〉 =

δmn
ε
. (65)

A result that will be used later to reinterpret the path integral as the expectation of a

potential functional with respect to a complex probability distribution follows from (32).

Consider the expression∑
lm

〈qn|pl〉dplf(pl)〈pl|qm〉dqm =
ε2

2π

K∑
l=−K

K∑
m=−K

ei(qn−qm)plf(pl). (66)

The m sum can be computed in closed form

K∑
m=−K

eiqmpl =
K∑

m=−K

e
2πml
M = e

−iπlK
M

(
1

1− e 2πl
M

− e2πl

1− e 2πl
M

)
= δl0M. (67)

Using (67) in (66) with (49) gives∑
lm

〈qn|pl〉dplf(pl)〈pl|qm〉dqm =
Mε2

2π
f(0) = f(0). (68)

The same result is obtained by “integrating” over the final qn instead of the initial qm. This

result will be used in the development of discrete path integrals that follows.

12



VI. COMPLEX PROBABILITIES

A complex probability system is defined by a sample set S and a complex valued function

P on subsets of S with the properties

P (Si) =
∑
s∈Si

P (s) P (S) = 1. (69)

P (Si) is the complex probability assigned to the subset Si of S. It follows that

P (Si) + P (Sci ) = 1 (70)

where Sci is the complement of Si in S, and for a finite set of non-intersecting subsets of S

Si ∩ Sj = i 6= j P (∪Si) =
∑
i

P (Si). (71)

In the applications that follow the sample set will be a finite collection of paths.

More generally, since P (s) is complex, equation (71) cannot be extended to countable non-

intersecting subsets, which is where complex probabilities differ from ordinary probabilities

[5][6]. This is not an issue for finite sample sets. The extension of the notion of complex

probabilities to continuous a sample set generated from intervals by complements and finite

unions, based on the Henstock integral [7][8][9], was used in [10][11] to prove that the real-

time path integral formulated as the expectation of a potential functional with respect to

a complex probability distribution on cylinder sets of paths converges to a global solution

of the Schrödinger equation. This was applied to compute scattering amplitudes using real-

time path integrals in a simple model in [12]. In that case the complex probability was a

probability on a finite collection of cylinder sets rather than a discrete set of paths. To treat

the large number of cylinder sets, the probability was approximately factored into products

of one-step probabilities, which reduced the problem to computing powers of approximate

transfer matrices. Because of the approximation unitarity was only preserved approximately.

In the discrete case the sample set is finite, the complex probability exactly factors into a

product of one time step complex probabilities and the transfer matrices associated with

the one-step probabilities are exactly unitary.

A random variable F (s) is a function on the sample set S with expectation value

E[F ] =
∑
s∈S

P (s)F (s).
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In this paper the sample set is the finite collection of paths that have M possible values

at each of N time steps, the complex probability, P (s) is associated with free propagation

through N time steps along the path “s”, and F (s) is the contribution from the potential

due to the path “s”. This is discussed in the next section.

VII. COMPLEX PROBABILITIES IN REAL TIME PATH INTEGRALS

The path integral for a system with one degree of freedom is formulated using the discrete

representation discussed section III. Following references [6][10][11], the path integral will

be defined as the expectation value of a potential functional with respect to a complex

probability distribution.

To do this it is necessary to:

1.) Define the space of paths

2.) Define complex probabilities on the space of paths

3.) Identify the path integral with the expectation value of a functional on the space of

paths.

Let H be a canonical Hamiltonian with one degree of freedom of the form

H =
p̂2

2µ
+ V (q̂) (72)

where q̂ and p̂ are canonically conjugate operators satisfying

[q̂, p̂] = i. (73)

The starting point for constructing a path integral is the Trotter product formula [13][14]:

〈qf , tf |e−iHt|qi, ti〉 = 〈qf , tf |(e−iHt/N)N |qi, ti〉 =

lim
N→∞

〈qf , tf |(e−iHt/N)N |qi, ti〉 = lim
N→∞

〈qf , tf |(e−i(p̂
2/2µ)∆te−iV (q̂)∆t)N |qi, ti〉 (74)

where ∆t := t/N . This is the operator generalization of the representation

ex = lim
N→∞

(1 +
x

N
)N (75)
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of ex. Equation (74) is exact in the limit that N →∞ when applied to a normalizable wave

packet. It is also possible to express e−iH∆t in terms of the U and V operators in the Weyl

representation (30), however the more familiar representations are used in this section.

Following the standard steps in evaluating the path integrals, sums over complete sets of

eigenstates of U and V are inserted between the operators in (74):

〈qf |e−iHt|ψ〉 =

∫
〈qf |e−iHt|qi〉dqiψ(qi)dqi =

lim
N→∞

∫
〈qf |pN〉dpNe−i(p

2
N/2µ)∆t〈pN |qN〉dqNe−iV (qN )∆t · · ·

· · · 〈q2|p1〉dp1e
−i(p2

1/2µ)∆t〈p1|q1〉dq1〈q1|e−iV (q1)∆t|ψ〉. (76)

The next step is to approximate the integrals by numerical quadratures. This is done using

the discrete variables introduced in the previous section. While this is not the most efficient

approximation, it has the advantage that everything is discrete, finite and exactly unitary.

In this case for an N time step Trotter approximation the discrete variable qi for the

i-th time step can take on the 2K + 1 discrete values lε, −K ≤ l ≤ K and the transition

amplitude (76) becomes

〈qf |e−iH(t)|ψ〉 ≈
∑
〈qf |pNnN 〉εe−i(p

2
NnN

/2µ)∆t〈pNnN |qNnN 〉εe−iV (qNnN )∆t×

〈qNnN |pN−1nN−1
〉εe−i(p

2
N−1nN−1

/2µ)∆t · · · 〈pNnN |qNnN 〉εe−iV (qNnN )∆t × · · ·

〈q2n2 |p1n1〉εe−i(p
2
1n1

/2µ)∆t〈p1n1|q1n1〉εe−iV (q1n1 )∆t〈q1n1|ψi〉. (77)

The next step is to “integrate” over the “momentum” variables. While this can be done

exactly for quadratic functions of p in terms of Fresnel integrals, here this integral is replaced

by a finite sum. The first step is to define a one time step free propagation operator. This

is the q-space representation of the transfer matrix for free propagation [15][16] for a time

∆t:

K(q′m, qn,∆t)dqn :=
K∑

l=−K

〈qm|pl〉εe−i(p
2
l /2µ)∆t〈pl|qn〉ε =

ε2

2π

K∑
l=−K

ei(q
′
m−qn)pl−i(p2

l /2µ)∆t. (78)

It follows from (68) that the integral over the initial coordinate is 1:∫
K(q′, q,∆t)dq →

K∑
n=−K

K(qm, qn,∆t)ε = 1 (79)
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independent of qm. Because of this, K(qm, qn,∆t)dq, is interpreted as the complex proba-

bility for making a transition from state qn to state qm in time step ∆t. The probability

interpretation follows because the sum is 1. In this case the sample set of probabilities is

finite. The interpretation of equation (79) is that a state that ends up at qm has to have

started at one of the 2K + 1 qn’s with complex probability 1.

The path integral (77) can be expressed in terms of (79) as

〈qf |e−iHt|qi, 〉 ≈∑
n1···nN

K(qf , qN,nN ,∆t)e
−iV (qNnN )∆tεK(qN,nN , qN−1,nN−1

,∆t)e−iV (qN−1,nN−1
)∆tε · · ·

· · ·K(q2,n2 , q1,n1 ,∆t)e
−iV (q1,n1 )∆tε =∑

n1···nN

K(qf , qN,nN ,∆t)εK(qN,nN , qN−1,nN−1
,∆t)ε · · ·K(q2,n2 , q1,n1 ,∆t)ε×

e−i
∑N
l=1 V (qlnl )∆t. (80)

This is expressed as finite powers of products of finite-dimensional unitary transfer matrices.

Define

PN(qf , qN , qN−1, · · · , q2, q1) :=

K(qf , qN ,∆t)εK(qN , qN−1∆t)ε · · ·K(q3, q2,∆t)εK(q2, q1,∆t)ε (81)

which represents free propagation from q1 to qf along a path through q2, q3, · · · qN . By (79)

it follows that summing over all of qi,ni gives 1 independent of qf ,∑
n1,··· ,nN

PN(qf , qN , qN−1, · · · , q2, q1) := 1 (82)

It is now possible to define the space of paths between qi and qf . A path γ is a N -

dimensional vector (q1, q2, · · · qN) where each of the qn can have one of the M discrete

eigenvalues of q. This vector represents a path that starts at q1 = n1ε and after time ∆t is

at q2 = n2ε, · · · , and after N − 1 time steps is at qN = nNε and arrives at qf after N time

steps. The set of all MN paths that end up at qf is denoted by Γ.

The quantity PN(γ) := PN(qf ; qN , qN−1, · · · , q2, q1) is a complex number that is inter-

preted as the complex probability for a particle to travel on the path γ = q1 → q2 → · · · →
qN−1 → qN → qf since ∑

γ∈Γ

PN(γ) = 1. (83)
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It is the discrete analog of the complex probability that path lies in a given cylinder set of

paths.

For the path γ a potential “functional” of the path γ is defined by

W [γ] = e−i
∑N
n=1 V (qn)∆t (84)

where the sum is over each of the qn ∈ γ. With this notation the approximate transition

amplitude is

〈qf , tf |e−iHt|qi, ti〉 ≈
M∑

n1,n2,··· ,nN=1

PN(qf , qNnN , qN−1nN1
, · · · , q2n2 , q1n1)× e−i

∑N
k=1 V (εnk)∆tδq1n1 ,qi

=

∑
γ∈Γ

PN(γ)W [γ]δq1n1 ,qi
(85)

which is represented by the expectation E[Wδ] of the potential functional W [γ]δq1n1 ,qi
with

respect to the complex probability distribution PN(γ).

Note that this transition amplitude can be expressed exactly as the N -th power

XN
fjδji (86)

of the transfer matrix

Xij := KijWj (87)

where

Kij := K(qj, qk,∆t)ε Wj := e−iV (qj)∆t (88)

applied to the initial state. The important observation is that even though there are (2K +

1)N discrete paths, the discrete path integral involves computing the N th power of a single

(2K + 1)× (2K + 1) dimensional matrix.

It is interesting to note that while the computation of the path integral is reduced to

matrix multiplication, the matrix product can be deconstructed to find the contribution of

each path to E[Wδ].

In [12] a similar method was used to compute sharp momentum scattering transition

matrix elements using real-time path integrals interpreted as expectation values of a potential

functional with respect to a complex probability distribution on cylinder sets of paths. In

that application the factorization of the complex probability into a product of one time step

probabilities was only approximate and as a result unitarity was only satisfied approximately.

17



In [12] sharp momentum scattering matrix elements were approximated using a path

integral approximation to matrix elements of the scattering transition operator

Tfi = lim
t→−∞

〈kf |V e−Hte−iH0t|ki〉. (89)

The sharp momentum eigenstates |kf/i〉 were replaced by normalizable states |ΨI〉 and |ΨF 〉
that are sharply peaked about the initial and final momenta respectively and have spatial

support in the interaction volume. They were normalized like delta functions in the sense

that they integrate to 1.

In the form (89) the interaction V provides a convenient volume cutoff on the localized

initial scattering state. The matrix (K†)NX2N(K†)N , which converges to the scattering

operator, is exactly unitary so it can be diagonalized with eigenvalues of the form e2iδn ,

where δn are eigenvalues of a phase shift operator.

The convergence of this method depends on the convergence of the Trotter limit and

the convergence of the discrete quadrature. Mathematically the Trotter product formula

converges strongly for suitable Hamiltonians; this was used in [11] to show that in the

continuum case the expectation of the potential functional with respect to the complex

probability associated with free propagation converges to global solutions of the Schrödinger

equation. This suggests that final result is independent of the order of making the Trotter

approximation and the discrete quadrature approximation.

This interpretation of the path integral as the expectation value of a random variable over

a complex probability on a space of paths has a conceptual advantage over the conventional

interpretation. In the conventional interpretation of the path integral in terms of the action

functional, the finite difference representation of the “derivatives” in the action involves

differences that never get small as the time steps get small, rendering the interpretation of

the path integral as an integral over paths weighted by a “measure” depending on the action

questionable. The representation in terms of complex probabilities involves a real potential

functional defined on continuous paths. The potential functional can be thought of as a

perturbation of a complex Gaussian process associated with free propagation.
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VIII. SCATTERING IN THE DISCRETE REPRESENTATION

Formal scattering theory is an idealization. A real scattering experiment takes place in

a finite volume during a finite time interval. The relevant physics is dominated by a finite

number of degrees of freedom that are limited by the energy and scattering volume.

The fundamental quantum mechanical observable is the probability for a transition from

a prepared initial state to a detected final state

Pfi = |〈ψf (t)|ψi(t)〉|2. (90)

While the individual states depend on time, the probability (90) is independent of t due

to the unitarity of the time evolution operator. The important consideration is that both

states have to be evaluated at the same time. The problem of scattering theory is that there

is no common time when both the initial and final states are simple. On the other hand the

initial state is simple before the collision and the final state is simple after the collision.

The initial and final states at the time of collision can be determined by evolving them

from times where they behave like non-interacting subsystems to the collision time. Since

localized wave packets spread, the effects of spreading can be eliminated by starting with

localized wave packets at the collision time, evolving them beyond the range of interactions

using free time evolution, and then evolving them back to the interaction region using the

full Hamiltonian. The result is a unitary mapping that transforms the free wave packet at

the collision time to the dynamical wave packet at the same time.

If U0(t) and U(t) represent the free and dynamical unitary time evolution operators, then

assuming the time of collision is approximately at time t = 0 the scattering asymptotic

conditions have the form

‖|U(±τ)|ψ±(0)〉 − U0(±τ)||ψ0±(0)〉‖ ≈ 0 (91)

where τ is sufficiently large for the interacting particles to be separated beyond the range

of their mutual interactions. This expression is independent of τ for sufficiently large τ ,

but the minimum value of τ depends on the range of the interaction and the structure of

|ψ0±(0)〉. Normally dependence on these conditions is removed by taking the limit τ →∞.

In this work, for computational reasons, it is desirable to choose τ as small as possible, which

requires paying attention to the range of the interaction and the structure of the initial and

final states.
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The unitarity of the time evolution operator means that (91) can be replaced by

‖|ψ±(0)〉 − U(∓τ)U0(±τ)|ψ0±(0)〉‖ ≈ 0. (92)

The operators

Ω±(τ) := U(±τ)U0(∓τ) (93)

are unitary mappings from |ψ0±(0)〉 to |ψ±(0)〉.
Using these definitions the scattering probability can be expressed as

Pfi = |〈ψ0+(0)|S(τ)|ψ0−(0)〉|2 (94)

where

S(τ) := Ω†(τ)Ω(−τ) (95)

is the scattering operator. Since S(τ) is unitary it can be expressed in terms of a self-adjoint

phase shift operator

S(τ) = e2iδ(τ) (96)

where S(τ) should be independent of τ for sufficiently large τ .

In a real experimental measurement the probability (94) depends on the structure of

the initial and final wave packets, which cannot be precisely controlled by experiment. If

the matrix elements of S(τ) in sharp momentum states are slowly varying functions of

momentum, then the dependence on the wave packet factors out [17] and can be eliminated

to compute differential cross sections. In this case the sharp momentum matrix elements

can be approximated from the matrix elements using Gaussian (minimal uncertainty) wave

packets with a “delta-function normalization” that are sharply peaked about the desired

momenta.

This formulation of scattering is amenable to a path integral treatment. As previously

discussed scattering reactions are dominated by a finite number of degrees of freedom. The

use of the discrete Weyl representation has the advantage that unitarity is exactly preserved

on truncation to a finite number of degrees of freedom. Alternative path integral treatments

of scattering appear in [18][19][20].

The advantage of the discrete representation is that U0(−τ)U(2τ)U0(−τ) can be ex-

pressed as the limit of products of the transfer matrices defined in the previous section

S(τ) = lim
N→∞

K−NX2NK−N (97)
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where

Kij = K(qi, qj,∆t)ε (X)ij = K(qi, qj,∆t)εe
−iV (qj)∆t, (98)

∆t = τ/N and N is the number of Trotter time slices. Note also that

KN = K(ff , qi, N∆t). (99)

Sharp-momentum matrix elements of the scattering operator can be expressed in terms of

the matrix elements of the transition operator T , which is easier to calculate in the discrete

representation

S = I − 2πiδ(Ef − Ei)T (100)

where T is approximately given by

Ts ≈ V Ω(−τ) (101)

when evaluated in normalizable states with sharply peaked momenta. The advantage of this

representation is that for scattering problems V is a short range operator that provides a

volume cutoff.

In the discrete representation sharp momentum eigenstates are normalizable however they

cannot be used in scattering calculations because they are completely delocalized in space

because the discrete momenta and coordinates are complementary - making it impossible to

get to the asymptotic region.

The most straightforward way to construct suitable initial or final wave packets in the

discrete representation is to approximate the corresponding minimal uncertainty states of

the continuum theory. The quantities to control are the mean position, momentum and the

uncertainty in both of these quantities defined for a given state |ψ〉 by:

〈q〉ψ :=
K∑

n=−K

〈ψ|un〉nε〈un|ψ〉
〈ψ|ψ〉 〈p〉ψ :=

K∑
n=−K

〈ψ|vn〉nε〈vn|ψ〉
〈ψ|ψ〉 (102)

(∆q)2 = 〈ψ|(q − 〈q〉)2|ψ〉 =
K∑

n=−K

〈ψ|un〉((nε)2 − 〈q〉2)〈un|ψ〉
〈ψ|ψ〉 (103)

(∆p)2 = 〈ψ|(p− 〈p〉)2|ψ〉 =
K∑

n=−K

〈ψ|vn〉((nε)2 − 〈p〉2)〈vn|ψ〉
〈ψ|ψ〉 . (104)

The continuum delta function normalized minimal uncertainty states are

〈p|ψ0(0)〉 =
1

2
√
π∆p

e
− (p−〈p〉)2

4(∆p)2 . (105)
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where 〈p〉 is the mean momentum and ∆p is the quantum mechanical uncertainty in p for

this wave packet. This wave packet needs to be evolved to −τ using the free time evolution

which adds a phase to (105):

〈p|ψ0(−τ)〉 =
1

2
√
π∆p

e
− (p−pi)

2

4(∆p)2
+i p

2

2µ
τ
. (106)

In the discrete “p” representation this is replaced by

〈n|ψ0(−τ)〉 = Ce
− (εn−〈p〉)2

4(∆p)2
+in

2ε2

2µ
τ
. (107)

where C is a normalization constant. In the x representation this becomes

〈mq|ψ0〉 =
ε√
2π

K∑
n=−K

eiε
2mn〈n|ψ0(−τ)〉. (108)

To illustrate that this gives a good approximation to the continuum results 〈p〉, 〈p〉, ∆q

and ∆p were calculated starting with 〈p〉 = 2.5, ∆p = .25 and K = 300 as input parameters

in (106). The results of the calculation

meanp−calc = 2.500000 (109)

meanq−calc = −2.51× 10−17 (110)

∆p−calc = .3000000 (111)

∆q−calc = 1.666667 (112)

are consistent with the input parameters, the minimal uncertainty condition ∆p∆q = 1/2,

and the continuum results.

As a test the discrete approximation was applied to the problem of one-dimensional

scattering of particle of mass m by a repulsive Gaussian potential of the form

V (q) = λe−αq
2

(113)

with λ = .5 and α = 2.0. The potential is plotted in figure 1. The particle’s mass is taken

to be 1 in dimensionless units so the velocity and momentum can be identified. The initial

wave packet is a Gaussian with a delta function normalization in momentum space with

mean momentum p = 2.5 and width ∆p = .25. It is pictured in figure 2. The Fourier

transform of the initial wave packet is given in figure 3. The oscillations are due the to fact

that the momentum space wave packet has a non-zero mean momentum. Given the size of
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the potential and wave packets, the wave packet needs to move about 18 units to the left

in order to be out of the range of the potential. This suggest that for v = p/m = 2.5 that

τ = 7 should be sufficient to move the wave packet out of the range of the potential. The

resulting free wave packet at τ = −7 is shown in figure 4. The scattered wave function

with K = 300 (M = 601) after N = 100 time steps is shown in figure 5, and that result

multiplied by the potential is shown in figure 6. Compared to the wave function in figure 3,

the wave function in figure 5 includes the effects of the interaction. Figure 6 illustrates the

cutoff due to the short range potential; it illustrates how only the part of the wave function

inside the range of the interaction contributes to the scattering operator. Figure 7 compares

the result of the off-shell Born approximation 〈p|V |ψ(0)〉 to the calculation of the real and

imaginary parts of 〈p|T |ψ(0)〉 while figure 8 compares 〈p|T |ψ(0)〉 to 〈p|T (p0)|p0〉 obtained

by numerically solving the Lippmann-Schwinger equation using the method [21].

Figure 8 shows that the path integral computation with an initial wave packet with a

width of 1/10 of the momentum converges to the numerical solution of the integral equation.

In unrelated time-dependent scattering calculations [22] a ∆p of about a tenth of p gave good

approximations to sharp momentum matrix elements of the transition operator for a wide

range of momenta.

Unlike the solution of the Lippmann Schwinger equation, in the path integral approach for

each energy it is necessary to determine minimal values of M ,N ,τ and ∆p that are needed for

convergence. In practice there are a number of trade offs. Making the wave packets narrow

in momentum increases the scattering volume in the coordinate representation. This in turn

requires a larger τ to get out of the range of the potential. If τ gets too large the wave

packet can move past qmax = Kε and will reappear at qmin = −Kε. As p gets large the

oscillations in the q space wave function have higher frequencies, which requires smaller time

steps, while when p gets small it is necessary to make the wave packet width in momentum

small enough so the coordinate space tail of the wave function gets out of the interaction

volume.

The computations require storing the initial vector. It is not necessary to store the

transfer matrix - it can be computed efficiently on the fly. This is important for realistic

calculations since the vectors will be significantly larger in higher dimensions. The hope is

that in the future q-bits can be used to represent large vectors.

This one-dimensional example approximated half-shell sharp-momentum transition ma-
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trix elements. The on-shell values can be used to extract other observables such as phase

shifts and in the one-dimensional case transmission and reflection coefficients. This formu-

lation of the one-dimensional problem in terms of transition operators has the advantage

that the method can be formally extended to treat a large class of scattering problems.

The formulation of the discrete path integral used a reducible discrete Schwinger repre-

sentation where the complex one time step probability is represented by a dense matrix. An

equivalent irreducible representation in terms of qbits involves a product of matrices (40-41)

that act on single qbits, which may have computational advantages.
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IX. DISCRETE MULTI-RESOLUTION REPRESENTATION OF QUANTUM

FIELD THEORY

One motivation for studying quantum computing in physics is that it might provide a

framework for a numerical treatment of problems in quantum field theory. Clearly this goal is

a long way off for realistic theories, but the state of quantum computing is advancing rapidly.

Discrete formulations of field theory naturally fit into the discrete framework discussed in

this work and should be relevant for future applications.

A numerical treatment of quantum field theory requires a truncation to a system with

25



a finite number of degrees of freedom. For reactions that take place in a finite space-time

volume and involve a finite energy it is natural to limit the number of degrees of freedom

by making volume and resolution truncations. Degrees of freedom that are outside of this

volume or energetically inaccessible are expected to be unimportant for the given reaction.

Daubechies wavelets [23][24][25] and scaling functions are a basis for square integrable func-

tions and a natural representation to perform both kinds of truncations. The basis consists

of a complete orthonormal set of functions that have compact support and a limited amount

of smoothness. They have the property that for any small volume there are an infinite num-

ber of basis functions supported entirely in that volume. This means that they can be used

to construct “local” observables by smearing the fields with basis functions. All of the basis

functions ξn(x) are generated from the solution of a linear renormalization group equation

by translations and dyadic scale transformations, which facilitates computations. Because

they are complete they can be used to exactly expand canonical fields

Φ(x, t) =
∑

Φn(t)ξn(x) Π(x, t) =
∑

Πn(t)ξn(x) (114)

where Φn(t) and Πn(t) are discrete field operators. If the fields satisfy canonical equal time

commutation relations

[Φ(x, t),Π(y, t)] = iδ(x− y) (115)

then the discrete fields Φn and Πn will satisfy discrete versions of the canonical equal time

commutation relations [26] [27] [28]:

[Φm(t),Πn(t)] = iδmn [Φm(t),Φn(t)] = 0 [Πm(t),Πn(t)] = 0. (116)

In terms of these degrees of freedom the Hamiltonian for a φ4 theory has the form

H =
1

2

∑
n

ΠnΠn +
m2

2

∑
n

ΦnΦn +
∑
mn

DmnΦmΦn + λ
∑
klmn

ΓklmnΦkΦlΦmΦn (117)

where the sum are all infinite. Since H commutes with itself the discrete fields can be

evaluated at t = 0. The constant matrices are defined by the integrals

Dmn =
1

2

∫
∇∇∇ξn(x) · ∇∇∇ξm(x)dx (118)

Γklmn =

∫
ξk(x)ξl(x)ξm(x)ξn(x)dx. (119)
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For the wavelet basis these constants vanish unless all of the functions appearing in the

integrals have a common support, which makes them almost local. In addition, because all

of the functions in the integrand are related by translations and scale transformations to a

single function, the integrals can all be expressed as linear combinations of solutions of some

small linear systems generated by the renormalization group equation (120). Unlike a lattice

truncation, the wavelet representation of the field theory is (formally) exact (before trunca-

tion). The basis functions regularize the fields so local products of fields that appear in the

Hamiltonian are replaced by infinite sums of well-defined products of discrete field operators.

The basis functions are differentiable, so there are no finite difference approximations.

Wavelet representations of quantum field theories have been discussed by a number of

authors [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [38] [39] [26] [40] [41] [42] [43] [44] [45]

[46] [27] [47] [48] [28] [49].

What is relevant is that the Hamiltonian (117) has the same form as (72), except it

involves an infinite number of degrees of freedom. It is diagonal and quadratic in the

discrete momentum operators and has a non-trivial (almost local) dependence on the Φn

operators. Because all of the basis functions are constructed from the fixed point s(x) of

the renormalization group equation (120) the constant quantities Dmn and Γklmn can be

expressed in terms of a finite set of elementary integrals.

The advantage of this basis is that it has natural volume and resolution truncations.

For reactions taking place in a finite volume with a finite energy a (large) finite number of

these degrees of freedom should provide a good approximation. This reduces the problem

to a problem with a finite number of discrete degrees of freedom. In addition the truncated

Hamiltonian still has the form (117), except the sums are only over the retained discrete

modes. As the volume and resolution are increased (i.e as more modes are added) the

parameters of the theory have to be adjusted to keep the some physical observables constant.

The truncated problem is a finite number of degree of freedom generalization of the one

degree of freedom problem discussed in the section VIII. For a quantum field theory the

vector representing the state of the field will be much larger than in the one degree of freedom

scattering case.

The construction of the wavelet basis used to construct the discrete representation of

the Hamiltonian (117) is outlined below. The starting point the solution of the linear
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renormalization group equation

s(x) =
2L−1∑
l=0

hlDT
ls(x) (120)

where

Df(x) :=
√

2f(2x) and Tf(x) := f(x− 1) (121)

are unitary discrete dyadic scale transformations and unit translations. The hl are constants

that depend on the choice of L. Generally as L increases the solutions, s(x), become

smoother but the support increases. A useful case is L = 3 where the solution s(x) of

(120), called the scaling function, has support on [0, 2L− 1] = [0, 5] and has one continuous

derivative. In that case the coefficients hl for the Daubechies L = 3 scaling functions are

h0 = (1 +
√

10 +

√
5 + 2

√
10 )/16

√
2

h1 = (5 +
√

10 + 3

√
5 + 2

√
10 )/16

√
2

h2 = (10− 2
√

10 + 2

√
5 + 2

√
10 )/16

√
2

h3 = (10− 2
√

10− 2

√
5 + 2

√
10 )/16

√
2

h4 = (5 +
√

10− 3

√
5 + 2

√
10 )/16

√
2

h5 = (1 +
√

10−
√

5 + 2
√

10 )/16
√

2. (122)

They are chosen so the solution of (120) and unit translates are orthonormal and locally

finite linear combinations of these unit translates can be used to locally pointwise represent

degree 2 polynomials. Given the solution, s(x), of (120) new functions are constructed from

s(x) by rescaling and translating

skn(x) := DkT n(x)s(x) =
√

2ks(2kx− n). (123)

The starting scale is fixed using ∫
s(x)dx = 1. (124)

The functions skn(x) for fixed k span a subspace of the square integrable functions on the

real line with a resolution 2−kL:

Sk := {f(x)|f(x) =
∞∑

n=−∞

cns
k
n(x)

∞∑
n=−∞

|cn|2 <∞}. (125)
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The renormalization group equation (120) implies

Sk ⊂ Sk+1. (126)

It follows that

Sk+1 = Sk ⊕Wk. (127)

where Wk is the orthogonal complement of Sk in Sk+1. An orthonormal basis for the

subspace Wk is the “wavelet functions”:

wkn(x) = DkT nw(x) (128)

where

w(x) :=
2L−1∑
l=0

(−)lh2L−1−lDT
ls(x) (129)

is called the “mother wavelet”. This decomposition can be continued to generate a multi-

resolution decomposition of L2(R)

L2(R) = Sk ⊕∞l=0Wk+l. (130)

This results in a multi-resolution orthonormal basis for L2(R)

{ξn(x)}∞n=−∞ := {skn(x)}∞n=−∞ ∪ {wmn (x)}∞n=−∞,l=k. (131)

For the choice L = 3 the basis functions skn(x) and wkn(x) have compact support on

[2−kn, 2−k(n + 5)]. All of the basis functions have one continuous derivative so the coef-

ficients (118) are defined . The functions skn(x) are like splines in that linear combinations

can be used to locally pointwise represent degree 2 polynomials while the functions wln(x)

are orthogonal to the same polynomials on their support. The Fourier transforms of the

basis functions are entire functions due to their compact support. Orthonormal three di-

mensional basis functions are products of one-dimensional basis functions. In spite of these

nice properties, the basis functions are fractal valued (since they are related to fixed points

of a renormalization group equation) and cannot be written down in closed form.

In order to use this representation the constant coefficients Dmn and Γn1···nk that appear

in the Hamiltonian (117) need to be computed. Using scale transformations (121) and the

renormalization group equation (120) they can all be expressed in terms of the integrals

dn =

∫
ds(x)

dx

ds(x− n)

dx
dx − 4 ≤ n ≤ 4 (132)
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γm,n,k =

∫
s(x)s(x−m)s(x− n)s(x− k)dx − 4 ≤ mnk ≤ 4. (133)

These integrals are related to each other by finite linear equations derived from the renor-

malization group equation (120) and the scale fixing condition (124). These linear systems

can formally be solved in terms of the coefficients hl (122). The coefficients dn are rational

numbers and can be found in the literature on wavelets [50]. To find the γmnk requires

finding eigenvalues of a 93 × 93 matrix. This eliminates the need be able to evaluate frac-

tal valued functions. Alternatively the integrals γmnk can be approximated by noting that

the renormalization group equation (120) and the scale fixing condition (124) can be used

to exactly calculate the basis functions and their derivatives exactly at all dyadic rational

points. Since the functions and their derivatives are continuous this can be used to estimate

these quantities and integrals involving these quantities to any desired accuracy.

In order to illustrate a path integral treatment of this system consider a truncation of

the theory in 1+1 dimension where only 2 adjacent modes of the Hamiltonian (117) are

retained. In this case the overlap coefficients that appear in the Hamiltonian and couple

adjacent modes can be expressed in terms of the following quantities

Γ0000 = 0.9528539 (134)

Γ0001 = 0.0670946 (135)

Γ0011 = 0.0890895 (136)

Γ0111 = −0.1424536 (137)

D00 = 295./56.; (138)

D01 = −356./105.; (139)

D10 = D01; (140)

D11 = D00 (141)

where the Γ coefficients were computed by numerical integration using the trapezoidal rule

with the basis functions evaluated at 256 dyadic points on their support. Convergence was

verified using 512 dyadic points.

The truncated Hamiltonian in this case is

H =
1

2

1∑
n=0

ΠnΠn +
m2

2

1∑
n=0

ΦnΦn +
∑
mn

DmnΦmΦn + λ
1∑

klmn=0

ΓklmnΦkΦlΦmΦn (142)
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where Γ0000 = Γ1111, Γ0001 = Γ0010 = Γ0100 = Γ1000, etc. . The path integral treatment of

the field theory in the discrete representation is a multi-dimensional generalization of the

treatment for one degree of freedom where each field mode represents an independent degree

of freedom.

A general numerical treatment involves a truncation and renormalization followed by two

approximations. The truncation discards all but a finite number, F , of discrete degrees of

freedom.

H → HF (143)

Ideally physics at a given energy scale and in a given volume should be dominated by a finite

number of accessible degrees of freedom. The remaining degrees of freedom that are not

expected to impact calculation at that given scale and volume are discarded. The truncated

theory is renormalized by adjusting the parameters of the theory so a set of observables agree

with experiment. This gives the parameters a dependence on the choice of retained degrees

of freedom. This is a truncation rather than an approximation. It assumes that no additional

parameters need to be introduced beyond what appears in the truncated Hamiltonian and

that there is a limit as the volume becomes infinite and resolution becomes arbitrarily small.

This is followed by two approximations. The first approximation is to approximate the

unitary time evolution operator for the truncated theory using the Trotter product formula

with N time slices.

UF (τ) = e−iHF τ = lim
N→∞

(e−iHF (Π)∆te−iHF (Φ)∆t)N (144)

where ∆t = τ/N and

HF = HF (Π) +HF (Φ) (145)

with

HF (Π) :=
1

2

∑
n

ΠnΠn (146)

and

2HF (Φ) :=
m2

2

∑
n

ΦnΦn +
∑
mn

DmnΦmΦn + λ
∑
klmn

ΓklmnΦkΦlΦmΦn (147)

which expresses HF as the sum of a part with only the Πn fields and another part with only

the Φn fields. Since the discrete canonical pairs of field operators Φn and Πn satisfy canonical

commutation relations they have a continuous spectrum on the real line. This is because
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each one of these complementary operators generates translations in the other operator. The

last step is to approximate the continuous spectrum of the discrete field operators Φn and Πn

by a collection of M = 2K + 1 closely spaced eigenvalues φn, πn = nε where −K ≤ n ≤ K

and ε2 = 2π/M . This is exactly what was done in the one-dimensional case, except in this

case there are F degrees of freedom where F is the number of retained discrete field modes.

Unlike the truncation, both of these steps are mathematical approximations.

Let 〈φφφ|χ〉 = χ(n1ε, · · · , nF ε) be a localized function of the amplitudes of the F discrete

field modes that represent an initial free wave packet.

The goal is to use path integrals to calculate the time evolution of these coupled modes.

For the field theory, before truncation, in the discrete representation there are integrals over

an infinite number of modes. For the discarded modes the volume being integrated over

for each mode is infinite, resulting in an infinite product of an infinite number of infinite

irrelevant constants. The advantage of discretizing the integrals is that the volume for each

mode is finite:

Volume =
√

2Mπ −
√

2π/M.

The discarded modes can be eliminated by summing and dividing by this finite volume,

mode by mode, before taking the continuum limit. In this way the integrals over discarded

degrees of freedom are replaced by a product of 1’s. This results in a path integral that only

involves the retained degrees of freedom. The discrete approximation results in a sample

space with a finite number of discrete paths.

The Trotter approximation is

〈n1, n2, · · ·nF |UF (τ)|χ(0)〉 =

lim
N→∞

〈n1, n2, · · ·nF |(e−iHf (Π)∆te−iHF (Φ)∆t)N |χ(0)〉. (148)

This can be evaluated by inserting complete sets of eigenstates of the complementary fields

between each of the operators. The following abbreviations are used for sums over interme-

diate states: ∫
dφφφ = εF

K∑
n1=−K

· · ·
K∑

nF=−K

, (149)

for vectors representing a value of the eigenvalues of each of the F independent φ fields,

φφφ = (n1ε, · · · , nF ε) −K ≤ ni ≤ K, (150)
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for vectors representing the value of the eigenvalues of each of the F independent π fields

πππ = (n1ε, · · · , nF ε) −K ≤ ni ≤ K (151)

and

γ = (φφφ0,φφφ1, · · · ,φφφN) (152)

for a “path” that ends at φφφ0 where φφφj (j > 0) represents values of each of the φn fields at

each of N time steps.

The following definitions are generalizations of the definitions in section VII:

K(φφφ′,φφφ,∆t) :=
∑
n′′

〈φφφ′|πππ〉∆t〈πππ|φφφ〉. (153)

It follows from (68) that K(φφφ′,φφφ,∆t) has the property∑
n

K(φφφ′,φφφ,∆t)εF = 1 (154)

and

P (φφφf ,φφφN , · · ·φφφ1) :=

K(φφφf ,φφφN ,∆t)ε
FK(φφφN ,φφφN−1,∆t)ε

F · · ·K(φφφ3,φφφ2,∆t)ε
FK(φφφ2,φφφ1,∆t)ε

F (155)

also satisfies ∑
γ∈Γ

P (φφφf ,φφφN , · · · ,φφφ1) = 1. (156)

Equation (155) represents the complex probability of a given path, where at each time slice

each of the F φ’s has one of M allowed values between −Kε and Kε. Removing the last

factor of εF and only summing over φφφN · · ·φφφ2 gives the evolution due to free propagation

〈φφφf |e−
i
2
ΠΠΠ·ΠΠΠτ |φφφ1〉 =

∑
nnnn···nnn1

P (φφφf ,φφφN , · · · ,φφφ1)ε−F . (157)

The full path integral including the effects of the interaction can be expressed as the ex-

pectation of the following potential functional of the path γ with respect to the complex

probability distribution (85):

W [γ] := ei
∑
nHF (φφφn)∆t (158)

where HF (φφφn) represents the value of the φ-dependent part of the Hamiltonian evaluated at

the value of the path γ at the n-th time slice.
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This gives the path integral approximation

〈n1f , n2f , · · ·nFf |UF (τ)|χ(0)〉 =∑
γ

P (φφφf ,φφφN , · · ·φφφ1)W [γ]χ(φφφ1) (159)

which again represents the path integral for fields as the expectation value of a potential

functional with respect to a complex probability distribution. As in the one degree of freedom

case this can be exactly factored into a product of one-time step operators

P (φφφf ,φφφN , · · ·φφφ1)W [γ] =

K(φφφf ,φφφN ,∆t)e
iHF (φφφN )∆tεFK(φφφN ,φφφN−1,∆t)e

iHF (φφφN−1)∆tεF · · ·

K(φφφ3,φφφ2,∆t)e
iHF (φφφ2)∆tεFK(φφφ2,φφφ1,∆t)e

iHF (φφφ1)∆tεF . (160)

This can be used to represent time evolution as the product of large approximate transfer

matrices.

At each stage these calculations use finite mathematics. The use of the finite Weyl

representation exactly preserves unitary at each level of approximation. Both the φφφ and πππ

transfer matrices are unitary and can be expressed exactly in the truncated model. This

means that the discrete Trotter approximation to time evolution is exactly unitary.

The calculation shown in figures nine and ten show the initial real and imaginary parts

of the two field modes. In this case the initial modes are real and taken to be Gaussians of

the form

〈φ1, φ2|ψ〉 = Ne−
∑1
i=0(φi−〈φi〉)2/(4δφ2

i ) (161)

Figures 11 and 12 show the real and imaginary parts of the time t = .5 evolved amplitudes

of these two discrete modes with M = 41 values using N = 20 Trotter steps.

Figures 13 and 14 show plots of the real and imaginary parts of φ0 when φ1 = 0 at T = 0

and T = .5.

In the initial calculations the initial mean displacement and uncertainty of each mode

was taken to be .5. The initial state has no imaginary part but one develops due to the

non-zero displacement of the initial state. This truncation is too crude to contain any real

physics, however it illustrates the application of the discrete path integral to fields.

A more drastic truncation of the discretization of the continuum could be used to explore

the dynamics of fields with a larger number of modes.
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Field modes at T=0.0
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FIG. 9: Two modes (real) at T=0

Field modes after T=0.0
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FIG. 10: Two modes (imaginary) at

T=0

Field modes after T=.5
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FIG. 11: Two modes (real) after T=.5

Field modes after T=.5
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FIG. 12: Two modes (imaginary) after

T=.5
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FIG. 13: One mode (real) after T=0.,.5
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FIG. 14: One mode (imaginary) after

T=0.,.5
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X. SUMMARY AND CONCLUSION

This paper discusses a path integral treatment of discrete representations of quantum

theory. The treatment is motivated by a textbook treatment [1] of measurement theory of

quantum systems on finite dimensional Hilbert spaces. The discrete representation provides

a natural connection to a q-bit representation in terms of an irreducible set of quantum

gates. It was also shown to formally provide a discrete path integral treatment of problems

in potential scattering and quantum field theory. The discrete Weyl representation is closely

related to the quantum Fourier transform while the equivalent decomposition into irreducible

sub algebras is more directly related to quantum circuits.

The treatment starts by considering a general quantum observable with a finite number

of outcomes. It is used to construct a pair of unitary operators, one that commutes with

the original observable and a second complementary unitary operator. The two unitary

operators are a finite dimensional version of the irreducible Weyl algebra on the Hilbert

space spanned by the eigenvectors of the original operator. When the dimension of the

Hilbert space gets large this algebra approximates the Weyl algebra of a continuum theory.

When the large number is a power of 2 the algebra can be decomposed into a product of

irreducible sub-algebras where the complementary unitary operators are elementary qbit

gates, which are the building blocks of quantum circuits.

In the limit of large dimensions discrete operators that behave like canonical coordinates

and momenta can be constructed from this algebra. In this approximation the “coordinates”

and “momenta” take on a finite number of discrete values that get closer together and cover

more of the real line as the number of degrees of freedom increases.

Hamiltonians that are sums of an operator that is quadratic in the “momentum” variables

and an operator that is a multiplication operator in the “coordinate” variables are considered.

Time evolution is represented by a product of transfer matrices for a large number of small

steps. For small time steps the transfer matrix can be approximately factored into a product

of a transfer matrix involving the “momentum” part of the Hamiltonian and another transfer

matrix involving the “coordinate” part of the Hamiltonian. Both of these transfer matrices

are represented in the discrete “coordinate” representation. A path is defined to go through

one of the discrete coordinates at each time step. In the discrete representation the number

of possible paths is MN where N is the number of time steps and M is the number of discrete
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coordinates at each time slice.

The transfer matrices involving the momentum part of the Hamiltonian have the property

that summing over either the initial or final coordinates gives 1, independent of the other

coordinate. In this work the momentum transfer matrix is interpreted as the complex

probability for a transformation from one of the allowed coordinates to another one in time

step ∆t. The product of N of these operators, where the final coordinate of one is the initial

coordinate of the next one is interpreted as a complex probability for a given “path” on the

finite sample set of discrete paths. This probability has the property that summing over

all paths with a given starting point or a given end point is 1. The interaction (coordinate

dependence) is included by multiplying this probability by the product of the coordinate

transfer matrices evaluated at each point on the path. In this interpretation the coordinate

contribution is represented by a functional on the space of paths. Taking the expectation

value of this functional with respect to the complex probability distribution gives the usual

Trotter product representation of finite time evolution of the discrete system.

In the discrete representation all of the operators are exactly unitary and the mathemat-

ics is finite. The sample space of paths for the complex probabilities is finite. The general

structure of the Hamiltonian as the sum of a quadratic form in the momentum variables

and an interaction term is realized in non-relativistic quantum mechanics and relativistic

quantum field theory. The application to potential scattering was discussed using the ex-

ample of a particle scattering from a smooth short range interaction in one dimension. In

the case of field theories an exact multi-resolution representation of the field in terms of an

infinite number of discrete modes was used. When truncated to a finite number of modes

the resulting discrete system has the structure of system of coupled particles.

The long term interest is in quantum computing. The examples were computed by

applying products of the one step transfer matrices to an initial vector. By computing

the transfer matrix elements on the fly, is was not necessary to store the transfer matrix.

However as the number of degrees of freedom is increased, the size of the vector representing

the state of the quantum system is the major limitation.

The author would like to thank William Hester for pointing out some errors in the original
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