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A relativistic formulation of reaction theory for nuclei with a dynamics given by a unitary repre-
sentations of the Poincaré group is developed. Relativistic dynamics is introduced by starting from
a relativistic theory of free particles to which rotationally invariant interactions are added to the
invariant mass operator. Poincaré invariance is realized by requiring that simultaneous eigenstates
of the mass and spin transform as irreducible representations of the Poincaré group. A relativistic
formulation of scattering theory is presented and approximations emphasizing dominant degrees of
freedom that preserve unitarity, exact Poincaré invariance and exchange symmetry are discussed.
A Poincaré invariant formulation of a (d,p) reaction as a three-body problem is given as an explicit
example.
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I. INTRODUCTION

The physics of exotic nuclei has become a major subject within nuclear physics. A new generation of radioactive
beam facilties such as RIBF at RIKEN in Japan, FAIR at GSI in Germany, SPIRAL2 at GANIL in France, and FRIB
at MSU in the USA have been or will be soon in operation. With the access to exotic nuclei at the very limits of
nuclear stability, the physics of neutron and proton driplines has become a focus of interest. Nuclei close to these
driplines exhibit phenomena different from the known stable ones, like the normal shell closures may disappear and
be replaced by new magic numbers, or threshold phenomena like nuclear halo states may occur (for reviews see e.g.
[1, 2]).
Ongoing and planned technical developments in beam production as well as in detection systems allow not only

experiments with a larger variety of nuclei, but more importantly allow measurements of reactions which were tra-
ditionally carried out with stable beams like knock-out or transfer reactions at a variety of energies. Even first
polarization experiments with radioactive beams are now possible [3].
Theoretical developments have been moving at a somewhat slower pace. Here one should note, that at first the

light exotic nuclei received most of the theoretical attention, and approaches describing their reactions were developed
for a higher energy regime, where it was believed only a few degrees of freedom determine the reaction and thus
approximations are justified. These include the eikonal approximation, or the adiabatic approximation in which
degrees of freedom are frozen. Many theoretical advances made over the last decade however concentrate on the
lower energy regime (lower than roughly 50 MeV per nucleon) to energies relevant for astrophysical processes. This
energy regime is the realm of non-relativistic quantum mechanics, in which e.g. coupled discretized continuum channel
(CDCC) methods are applied to direct reactions. A review of selected methods is given in Ref. [4]. Direct reactions
also lend themselves to adoptions of few-body techniques, which are well established in the non-relativistic regime.
Well-defined examples here are the (d,p) reaction on light nuclei, which can be successfully described within a modified
Faddeev approach [5].
One essential goal in the study of rare isotopes is to obtain information about their specific structure from their

reactions with either light or heavy targets. Therefore, if one wants to concentrate on extracting structure information,
the description of reaction mechanism needs to be understood. Within the non-relativistic framework, the formulation
of multiple scattering theories [6, 7] has a long tradition, and over the years, efforts have been made in practical
implementations.
As the practical implementation of nuclear reaction theory in the lower energy regime becomes more sophisticated, it

is worthwhile and necessary to re-examine approaches that were and still are used in the higher energy regime. Though
fewer degrees of freedom of the nucleus may be sufficient to describe the reaction, sub-nuclear degrees of freedom may
become relevant. For example proton-deuteron elastic scattering at 250 MeV underpredicts the experimental cross
section at back angles even after enhancements due to both three-body forces and relativistic effects are included [8, 9].
Given that back angles are more sensitive to short distance physics, this suggests additional degrees of freedom may
be relevant[10]. Relativistic reaction theory models are also important for determining observables that are sensitive
to relativistic effects [11]. In addition it becomes relevant to investigate if a Galilei invariant reaction theory needs to
be replaced by a Poincaré invariant one.
Relativistic invariance of a quantum theory requires the invariance of quantum probabilities with respect to changes

in the inertial coordinate system. This requires that the dynamics is given by a unitary representation of the Poincaré
group [12]. Here the Poincaré group refers to the transformations continuously connected to the identity; invariance
with respect to space reflections and time reversal is not required and is not satisfied by the weak interaction. Ap-
proximations that emphasize dominant degrees of freedom that preserve both unitarity and exact Poincaré invariance
are discussed below.
The simplest way to construct a relativistic dynamics is to start with a relativistic theory of free particles. Inter-

actions can be added in a manner that preserves the overall Poincaré invariance. We do this in three steps. First we
boost the non-interacting N-body system to the N-body rest frame. Second, we add rotationally invariant interactions
to the non-interacting rest Hamiltonian, which in the relativistic case is the N-particle invariant mass operator. Third,
we solve for simultaneous eigenstates of the interacting mass and spin, which can be done because of the rotational
invariance of the interaction. The mass and spin are the invariant labels for irreducible representations of the Poincaré
group. The relativistic dynamics is defined by requiring that in all other frames these mass-spin eigenstate transform
irreducibly with respect to the Poincaré group. Once we have these operators the treatment of the reaction theory is
similar to the non-relativistic treatment.
In the first section we derive the transformation properties for a single relativistic particle, then we consider the case

of N non-interacting relativistic particles. We discuss how to decompose products of irreducible representation of the
Poincaré group into direct integrals of irreducible representations. In the third section we add interactions to the mass
Casimir operator of the non-interacting irreducible representations to construct dynamical unitary representations of
the Poincaré group. Then we focus on reaction theory models and relativistic scattering theory. After addressing the
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treatment of identical particles, we explicitly consider (d,p) reactions as illustration of the general formulation.

II. RELATIVISTIC KINEMATICS

In this section we discuss the first step, which is the relativistic description of a single particle. The state of a
single particle of mass m and spin j is characterized by its momentum and the projection of its spin on a given axis.
These are a complete set of commuting observables for a structureless particle. Simultaneous eigenstates of these
observables, denoted by |(m, j)p, µ〉, are a basis for a single-particle Hilbert space, Hmj .
A unitary representation of the Poincaré group on Hmj can be constructed by considering the transformation

properties of rotations, translations, and Lorentz boosts on rest (0-momentum) eigenstates.
A particle at rest remains at rest under rotations. On the other hand the spins undergo rotations. If the particle

has spin j then the rest eigenstates transform under a 2j+1 dimensional unitary representation of the rotation group.
These elementary transformations are

U(R)|(m, j)0, µ〉 =
j∑

ν=−j

|(m, j)0, ν〉Dj
νµ(R) (1)

where Dj
νµ(R) is an ordinary Wigner D-function, which is a 2j+1 dimensional unitary representation of the rotation

group.
Since these states are rest eigenstates of the 4 momentum, it also follows that under translations

T (a)|(m, j)0, µ〉 = e−ima0

|(m, j)0, µ〉. (2)

Because sequences of Lorentz boosts can generate rotations, we need an unambiguous definition of a spin observable
in frames moving with momentum p relative to the rest frame. There are many possible definitions.
We define the spin observable in a general frame by the requirement that it does not Wigner rotate when it is

transformed to the particle’s rest frame by a rotationless Lorentz transformation

U(B(p/m))|(m, j)0, µ〉 := |(m, j)p, µ〉
√
ωm(p)

m
. (3)

This is normally referred to as the canonical spin.
The rotationless Lorentz boost B(p/m) is the usual textbook Lorentz boost that is normally expressed in terms of

hyperbolic sines and cosines of a rapidity. The rotationless boost from the particle’s rest frame to a frame where it
has momentum p is

B(p/m) :=

(
ωm(p)/m p/m

p/m I +
pipj

m(m+ωm(p)

)
. (4)

In (3) and (4) ωm(p) =
√
m2 + p2 is the energy of a particle of mass m and momentum p.

The energy factors make (3) unitary if the states, |(m, j)p, µ〉, are given a delta function normalization,

〈(m, j)p′, µ′|(m, j)p, µ〉 = δµ′µδ(p
′ − p). (5)

From (4) it follows that

p = B(p/m)(m, 0, 0, 0) = (ωm(p),p). (6)

A general Poincaré transformation on a single-particle state, |(m, j)p, µ〉, can be decomposed into a product of the
three elementary unitary transformations (1),(2) and (3) using the group representation property

U(Λ, a) = U(B(ΛΛΛp/m) T (B−1(ΛΛΛp/m)a) U(Rw(Λ,p/m)) U(B−1(p/m)) (7)

where

Rw(Λ,p/m) := B−1(ΛΛΛp/m)ΛB(p/m) (8)

is a Wigner rotation.
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The decomposition (7) is an inverse boost from a state with momentum p to the rest state, followed by a rotation
of the rest state, followed by a translation of the rest state, and finishing with a boost from the rest state to a state
with the Lorentz transformed momentum.
When the sequence of transformations (7) is applied to |(m, j)p, µ〉 the result is

Umj(Λ, a)|(m, j)p, µ〉 :=
j∑

ν=−j

|(m, j)ΛΛΛp, ν〉eiΛp·a

√
ωm(ΛΛΛp)

ωm(p)
Dj

νµ [Rw(Λ,p/m)] (9)

where the subscript mj indicates that this is the a unitary representation of the Poincaré group for a particle of mass
m and spin j. Eq. (9) defines mass m spin j unitary irreducible representation of the Poincaré group.
It acts irreducibly on the Hilbert space Hmj spanned by the single particle states |(m, j)p, µ〉. The irreducibility

means that Hmj can be generated from any fixed vector in Hmj by Poincaré transformations.
The construction used above to construct single-particle irreducible representations will be used to construct N -

particle irreducible representations, which will be used in the construction of dynamical irreducible representations.

III. N NON-INTERACTING PARTICLES

The Hilbert space for a system of N non-interacting particles is the N -fold tensor product of the single-particle
Hilbert spaces

H := ⊗N
i=1Hmi,ji . (10)

For identical particles the physical Hilbert space is the projection on the appropriately symmetrized or antisymmetrized
subspace of H.
The non-interacting (kinematic) unitary representation of the Poincaré group on H is the tensor product of the

single-particle unitary representations of the Poincaré group

U0(Λ, a) = ⊗N
i=1Umiji(Λ, a). (11)

A basis for the N -particle system is the direct product of the N one-particle basis vectors

|p1, µ1, · · · ,pN , µN 〉 :=
∏
l

|(ml, jl)pl, µl〉, (12)

where we have suppressed all of the single-particle mass and spin quantum numbers on the left.
Following what we did in the single-particle case, we consider a basis for the N -particle system in the rest frame of

the N -particle system. We let qi denote the momentum of the ith particle in the N -body rest frame. The variables
qi are constrained so ∑

qi = 0. (13)

We write the rest eigenstates as

|q1, µ1, · · · ,qN , µN 〉 (14)

where it is understood that qN = −
∑

i 6=N qi. Following what we did for the single-particle states we examine the
rotational properties the rest eigenstates.
Using the transformation properties of the single-particle states (9) and the expression for N-particle Poincaré

transformations in terms of the single-particle transformations (11) give the following transformation properties for
the N -particle rest eigenstates under rotations:

U0(R, 0)|q1, µ1, · · · ,qN , µN 〉 =
∑

|Rq1, ν1, · · · , RqN , νN 〉
∏
l

Djl
νlµl

(
B−1(Rql/ml)RB(ql/ml)

)
. (15)

The rotationless boosts have the distinguishing property that

B−1(Rq/m)RB(q/m) = R (16)

for any q. This implies that “the Wigner rotation of a rotation is the rotation”. It is a special property that is not
shared by other types of boosts.
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As a consequence of this property (15) becomes

U0(R, 0)|q1, µ1, · · · ,qN , µN 〉 =
∑

|Rq1, ν1, · · · , RqN , νN 〉
∏
l

Djl
νlµl

(R). (17)

This is exactly how a non-relativistic N -particle state transforms under rotations. It follows that all of the spins and
orbital angular momenta can be added with ordinary SU(2) Clebsch-Gordan coefficients and spherical harmonics. The
primary difference with the single-particle case is that there can be many orthogonal rotationally invariant subspaces
with the same j. They are distinguished by internal spins, orbital angular momenta and sub-energies.
The result is that the rest state can be decomposed into an orthogonal direct sum of states with different total spin.

Since there are many possible orders of coupling we denote these states by

|(M0, j)0, µ;d〉, (18)

where

M0 =
∑
l

√
q2
l +m2

l (19)

is the invariant mass (rest energy) of this system and d are invariant degeneracy quantum numbers that distinguish
different subspaces with the same value of j.
For a two-body system with spin j typical degeneracy parameters would be d = {l, s}. For a three-particle system

we could have lij , sij , jij , kij for the ij pair, where kij is the magnitude of the rest momentum of the ij pair, and
Lij,k, Sij,k representing the orbital and spin quantum numbers associated with the pair and third particle. In this
case d = {lij , sij , jij , kij , Lij,k, Sij,k}.
The choice of degeneracy parameters is normally made for convenience; for example the three-body choice above

would be useful for constructing matrix elements of an interaction between particles i and j. The important observation
is that they are all rotationally invariant quantum numbers. In general d includes both discrete quantum numbers like
lij , sij , Lij,k, Sij,k and continuous ones like kij . Different choices of d are related by unitary transformations whose
coefficients are Racah coefficients for the Poincaré group.
The result of coupling the spins means that in this basis (17) has the same form as (1):

U0(R, 0)|0,M0, j, µ;d〉 =
j∑

ν=−j

|0,M0, j, ν;d〉Dj
νµ(R). (20)

The differences are the presence of the invariant degeneracy parameters d and the fact that the invariant mass M0

has a continuous spectrum that runs from the sum of the individual masses to infinity.
The states (18) are rest states. We can define states with a non-zero total momentum and the same spin by analogy

with (3)

|(M0, j)P, µ,d〉 := U0(B(P/M0))|(M0, j)0, µ;d〉

√
M0

ωM0(P)
. (21)

The difference between this equation and (3) is that (3) was used to define the unitary representation of the rotationless
boost, while in this case the representation of the rotationless boost is given by (11) so (21) defines the momentum-spin
eigenstate. This definition implies a delta function normalization in P. It redefines the magnetic quantum numbers
so they agree with the single-particle magnetic quantum numbers when boosted to the rest frame of the N -particle
system with a rotationless boost.
Unitarity gives the normalization

〈(M ′
0, j

′)P′, µ′;d′|(M0, j)P, µ;d〉 = δ(M ′
0 −M0) δ(P−P′) δj′jδµ′µδd′:d (22)

where δd′:d is a product of Dirac delta functions in the continuous degeneracy quantum numbers and Kronecker delta
functions in the discrete degeneracy quantum numbers.
It is not hard to show that (21) is an eigenstate of the total momentum. The same steps used in (9) lead to the

following unitary representation of the Poincaré group for the non-interacting system,

U0(Λ, a)|(M0, j)P, µ;d〉 =
j∑

ν=−j

|(M0, j)ΛΛΛP, ν;d〉eiΛP ·a

√
ωM0(ΛΛΛP )

ωM0
(P)

Dj
νµ [Rw(Λ,P/M0)] . (23)
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In constructing this basis we have decomposed products of irreducible representations of the Poincaré group into
orthogonal direct integrals of irreducible representations. The coefficients of this transformation are the Clebsch-
Gordan coefficients for the Poincaré group.
It is instructive to see the form of these coefficients in a specific example. We consider the case of coupling two

particles. In that case the two-body rest state (14) is

|q1, µ1,−q1, µ2〉 (24)

where we have used the constraint q1 + q2 = 0. The decomposition of (18) into irreducible representations of the
rotation group is

|(M0, j)0, µ; l.s〉 :=
∑∫

dq̂1|q1, µ1,−q1, µ2〉 Ylm(q̂1)〈j1, µ1, j2, µ2, |s, µs〉〈s, µ2, l,m|j, µ〉, (25)

where

M0 =
√
q2
1 +m2

1 +
√
q2
1 +m2

2. (26)

The Ylm(q̂1) are spherical harmonics and 〈j1, µ1, j2, µ2|j3, µ3〉 are SU(2) Clebsch-Gordan coefficients. Applying a
rotationless boost to both side of equation (25), using (9) and (11) on the right and (21) on the left gives

|(M0, j)P, µ; l.s〉 :=∑∫
q̂1|p1, ν1,p2, ν2〉

√
ωm1

(p1)

ωm1(q1)

√
ωm2

(p2)

ωm2(q1)
Dj1

ν1µ1
[B−1(p1/m1)B(P/M0)B(q1/m1)]×

Dj2
ν2µ2

[
B−1(p2/m2)B(P/M0)B(−q1/m2)

]
Ylm(q̂1) 〈j1, µ1, j2, µ2, |s, µs〉〈s, µ2, l,m|j, µ〉

√
M0

ωM0
(P)

(27)

where qi and pi are related by

qi = B−1(P/M0)pi (28)

which can be expressed in terms of the three-vector components using (4) as

qi = pi +
P

M0

(
P · pi

M0 + ωM0(P)
− ωmi

(pi)

)
. (29)

The Poincaré group Clebsch-Gordan coefficients are the coefficients of the unitary transformation (27).
Returning to the N -particle case, note that the boost acts on the left side of equation (21) while the transformation

between {M0, j, µ,d} and {q1, µ1, · · · ,qN , µN} acts on the right. The result of transforming the variables on right
side of (21) leads to

|P;q1, µ1, · · · ,qN , µN 〉 := U(B(P/M0)|q1, µ1, · · · ,qN , µN 〉

√
M0

ωM0
(P)

. (30)

The relation of these states to the original single-particle states follows from (9),(11) and (30):

|P;q1, µ1, · · · ,qN , µN 〉 :=∑
|p1, ν1, · · · ,pN , νN 〉

√
M0

ωM0
(P)

∏
k

Djk
νkµk

[B−1(pk/mk)B(P/M0)B(qk/mk)]

√
ωmk

(pk)

ωmk
(qk)

(31)

where the pi are related to the qi by (29). There is a corresponding relation between the spins implied by (31). We
refer to the spins on the left side of (31) as constituent single-particle spins and the spins on the right as single-particle
spins. The corresponding spin operators are related by Wigner rotations

(0, jic) = B−1(qi/mi)B
−1(P/M0)B(pi/mi)(0, ji). (32)

These spins become identical in the N -particle rest frame. The advantage of using a basis with constituent spins is
that they can be added like non-relativistic spins.
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IV. N INTERACTING PARTICLES

In this section we construct a dynamical unitary representation of the Poincaré group. We use two equivalent
constructions - one is designed to provide an explicit representation of the dynamical unitary representation while the
other is more appropriate for N-particle applications. We start with the construction of the explicit representation of
the dynamical unitary representation.
The simplest way to construct a relativistic N -particle dynamics is to start with the non-interacting N -particle

irreducible basis (23) constructed in the previous section

|(M0, j)P, µ,d〉. (33)

In order to construct an interacting unitary irreducible representation of the Poincaré group we add an interaction V
to M0 that commutes with the non-interacting constituent spin, jc,

M =M0 + V. (34)

We also assume that V is translationally invariant and is independent of the total momentum.
A general interaction of this form has matrix elements in the N free-particle irreducible basis (23) of the form

〈(M ′
0, j

′)P′, µ′;d′|V |(M0, j)P, µ;d〉 =

δ(P′ −P)δj′jδµ′µ〈M ′
0,d

′‖V j‖M0,d〉. (35)

For two particles M0 =
√
q2 +m2

1+
√
q2 +m2

2 where q is the rest-frame momentum of particle 1 and the degeneracy
parameters, l2 and s2, are orbital and spin angular momenta, so with a suitable change of variables (35) looks like a
standard two-body interaction in a partial-wave representation.
Simultaneous eigenstates of M , P, j2 and ẑ · j can be constructed by diagonalizing M in the basis of eigenstates of

M0, P, j2 and ẑ · j.
The symmetry properties of the interaction (35) imply that eigenfunctions have the form

〈(M0, j)P, µ;d|(λ, j′),P′, µ′〉 = δ(P−P′)δjj′δµµ′ψλ,j(d,M0), (36)

where the wave functions, ψλ,j(d,M0), are solutions to the relativistic mass eigenvalue problem

(λ−M0)ψλ,j(d,M0) =

′∑∫
dM ′

0dd
′〈M0,d|V j |M ′

0,d
′〉ψλ,j(d

′,M ′
0) (37)

and λ is the mass eigenvalue. This equation replaces the many-body Schrödinger equation for the center of mass
Hamiltonian in non-relativistic quantum mechanics. The eigenstates

|(λ, j),P, µ〉 (38)

transform like (23) with the mass eigenvalue λ replacing M0 in (23):

U(Λ, a)|(λ, j)P, µ〉 =

j∑
ν=−j

|(λ, j)ΛΛΛP, ν〉eiΛP ·a

√
ωλ(ΛΛΛP0)

ωλ(P0)
Dj

νµ[Rw(Λ,P/λ)], (39)

where in this case the Wigner rotation depends on the mass eigenvalue,

Rw(Λ,P/λ) = B−1(ΛΛΛP/λ).ΛB(P/λ) P 0 =
√
λ2 +P2. (40)

A complete set of irreducible eigenstates will have multiple copies of states with the same mass and spin that are
distinguish by invariant degeneracy quantum numbers. Since the eigenstates (38) are complete, (39) defines the
dynamical unitary representation of the Poincaré group on H.
This shows that the construction of the dynamical representation of the Poincaré group can be reduced to solving the

mass eigenvalue problem (37). This is analogous to constructing the unitary time evolution operator by diagonalizing
the center of mass Hamiltonian in non-relativistic quantum mechanics.
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This construction was first performed by Bakamjian and Thomas [13] for the two-particle system. For systems of
more than two particles this construction fails to satisfy cluster properties [14, 15], which means that

U(Λ, a) 6→ UI(Λ, a)⊗ UII(Λ, a) (41)

on states corresponding to asymptotically separated subsystems, I and II.
This deficiency can be systematically corrected[16]: the corrections appear in the form of additional many-body

interactions that are functions of the input interactions. The interactions that restore cluster properties fall-off
like powers of (V/M)N−1 [14], where V is the two-body interaction. They appear to be small in nuclear physics
applications [15]. Thus in the following these corrections will be ignored.
While the N free-particle irreducible basis is the most convenient for illustrating the construction of a dynamical

unitary representation of the Poincaré group, like a partial-wave basis it is not an ideal basis for many-body problems.
In addition, for relativistic problems partial-wave expansions can lead to numerical challenges [17].
Note that the rest states (14) and (18) only differ by an ordinary partial-wave expansion that acts on the right side

of the these states, and states with arbitrary momentum are constructed by applying a unitary boost on the left, that
leaves all of the quantum numbers on the right unchanged except the total momentum.
The implies that the N-body basis

|P;q1, µ1, · · ·qN , µN 〉 := U0(B(P/M0))|q1, µ1, · · ·qn, µn〉

√
M0

ωM0
(P)

(42)

is related to (21) by SU(2) Clebsch-Gordan coefficients and spherical harmonics.
In the basis (42) the interaction can be expressed as

〈P,q1, µ1, · · · ,qN , µN |V |P′,q′
1, µ

′
1, · · · ,q′

N , µ
′
N 〉 = δ(P−P′)〈q1, µ1, · · · ,qN , µN‖V ‖q′

1, µ
′
1, · · · ,q′

N , µ
′
N 〉, (43)

where rotational invariance means that the reduced kernel satisfies

〈q1, µ1, · · · ,qN , µN‖V ‖q′
1, µ

′
1, · · · ,q′

N , µ
′
N 〉 =∑∏

Dji
µiνi

[R−1]〈Rq1, ν1, · · · , RqN , νN‖V ‖Rq′
1, ν

′
1, · · · , Rq′

N , ν
′
N 〉
∏

Djl
ν′
lµ

′
l
[R] (44)

for any rotation R. The only other requirements on V are V = V † and M0 + V > 0.
In this representation a general interaction is a sum of 2, 3, 4 · · · -body interactions. The mass eigenfunctions (36)

have the form

〈P,q1, µ1, · · · ,qN , µN |(λ, j)P′, µ′〉 = δ(P−P′), 〈q1, µ1, · · · ,qN , µN |(λ, j)µ′〉, (45)

and the mass eigenvalue problem (37) has the form(
λ−

∑
i

√
q2
i +m2

i

)
〈q1, µ1, · · · ,qN , µN |(λ, j)µ′〉 =∑∫

〈q1, µ1, · · · ,qN , µN‖V ‖q′
1, µ

′
1, · · · ,q′

N , µ
′
N 〉 dq′

1 · · ·q′
N δ

(∑
q′
i

)
〈q′

1, µ
′
1, · · · ,q′

N , µ
′
N |(λ, j)µ′〉. (46)

The relativistic transformation properties can be easily determined once M is diagonalized. These eigenstates trans-
form like mass λ spin j irreducible representations (39).

V. REACTION THEORY MODELS

For most nuclear systems a direct solution of the quantum mechanical scattering problem is not feasible. Approx-
imations that are dominated by a more limited number of degrees of freedom are often amenable to a numerical
solution. Success depends on identifying the most important degrees of freedom. In addition the effective interac-
tions need to be modeled. Nevertheless it is useful to have a formalism where this is the first step in a well-defined
systematic approximation to the exact solution.
To formulate a relativistic reaction model the steps are (1) start with an exact relativistic quantum mechanical

model, (2) identify the most important degrees of freedom and then (3) construct an approximate relativistic quantum
mechanical model with those degrees of freedom. To do this we project the exact mass operator on a relativistically
invariant coupled-channel subspace of the full Hilbert space that allows scattering in all of the chosen important
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reaction channels. The relativistic invariance is preserved by choosing the projection to have the same symmetries
as the interaction. The relation to the full theory provides a means to systematically include additional degrees of
freedom.
The starting point is a relativistic mass operator (34) (or rest energy operator) which in the basis (30) has the form

M =
∑
i

√
q2
i +m2

i +
∑

Vij +
∑

Vijk + · · · (47)

where the sum of the qi add to zero and the interactions are rotationally invariant operators that depend on the qi

and the constituent spins (31-32).
For any partition a of the N -particle system into disjoint subsystems we construct the partition mass operator Ma

by eliminating interactions that involve particles in different clusters of the partition a. We also define the residual
interactions

V a :=M −Ma. (48)

The operator Ma is a sum of operators Mak
for each disjoint non-empty cluster, ak of a:

Ma =
∑
k

Mak
(49)

given by

Mak
=
∑
i∈ak

√
q2
i +m2

i +
∑
ij∈ak

Vij +
∑

ijl∈ak

Vijl + · · · . (50)

In these expressions the qi are not constrained in the various subsystems, however the total momentum of the
subsystems is constrained to add up to zero only in the N -body system. This means that the operatorsMak

represent
the energy of the moving clusters.
Mak

has the same form as (47) except the sum is only over the particles in the kth cluster of a. The natural variables
for the for solving the subsystem problem are the subsystem constituent spins and the subsystem rest momenta ki.
These are related to the system constituent spins and rest momenta by a relation like (31)

|qak1, µak1, · · · ,qakl, µakl〉 =
∑

|qak
,k1, ν1, · · · ,kl, νl〉×√∑

i∈ak
ωmaki

(qi)∑
i∈ak

ωmaki
(ki)

∏
Dνiµaki

[(B−1(ki/maki)B
−1(qa/M0a)B(qaki/maki)]

√
ωmaki

(ki)

ωmaki
(qi)

(51)

where

qak
=
∑
i∈ak

qi, ki := B−1(qak
/Mak0)qi,

∑
i∈ak

ki = 0 (52)

and Mak0 is the invariant mass of the non-interacting subsystem. When these are embedded in the full system the
sum of the cluster momenta,

∑
k qak

= 0, are constrained to add to zero.
Each of the MaK

will have simultaneous eigenstates of qak
and subsystem mass λak

. For the purpose of reaction
theory we are interested only in the case that λak

are point-spectrum eigenvalues corresponding to bound clusters. In
the N -free particle basis these states have the form

〈qk1, µk1, · · · ,qknk
, µknk

|λak
, jak

;qa;µak
〉 =

δ
(∑

qki − qak

)
〈qk1, µk1, · · · ,qknk

, µknk
|λak

, jak
;qa, µak

〉 (53)

where we have removed an overall momentum-conserving delta function. In this expression (51) is used to relate the
subsystem variables to the variables of the basis (31).
Channel projection operators can be defined in terms of products of these eigenstates:

Πα =
∏
j

∫ ∑
µaj

|(λaj , jaj )qaj , µaj 〉dqaj δ

∑
j

qaj

 〈(λaj , jaj )qaj , µaj | |p〉dp〈p| (54)
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where the product is over all subsystems aj in a given partition a of the N -particle system and the additional index
α indicates both the partition into bound subsystems as well as the specific collection of bound states associated with
each subsystem.
These channel projectors are used to build a projection on the model space.
To construct a relativistic reaction theory we project the mass operator on a subspace of the Hilbert space using

projection operators Π that commute with P, are independent of P and commute with j,

Mπ := ΠMΠ. (55)

Simultaneous eigenstates of the projected mass operator, Mπ, and P, j and ẑ · j transform like (39) with respect to
the Poincaré group. This defines the relativistic model in terms of a unitary representation of the Poincaré group on
the model space.
The projection operator is a relativistic version of the projection operators that appear in coupled-channel approx-

imations. It is constructed from elementary projection operators that project on subspaces generated by disjoint
subsystems, where particles in the same subsystem are bound and the bound subsystems are free to move like free
particles. The subsystem bound states are solutions to relativistic eigenvalue problems of the form (37) with λ being
a point-spectrum eigenvalue of the subsystem mass operator.
The first step in making a reaction model is usually to construct the projection operator Π = ΠC corresponding

to a chosen set of dominant reaction channels, C. Typically, if α ∈ C then it is normal to also include all channels
generated from the channel α by exchange of identical particles.
The sum ΣC of the channel projectors over the subset C of scattering channels is the positive self-adjoint operator

ΣC :=
∑
α∈C

Πα. (56)

The main ideas that underly the formalism below were developed in a series of papers by Chandler and Gibson

[18]. Let Σ#
C be the Moore-Penrose generalized inverse of ΣC . It is the unique solution to the Penrose equations [19]:

(Σ#
C ΣC) = (Σ#

C ΣC)
†

(ΣCΣ
#
C ) = (ΣCΣ

#
C )

†

ΣCΣ
#
C ΣC = ΣC

Σ#
C ΣCΣ

#
C = Σ#

C . (57)

Because ΣC = Σ†
C it follows that

[ΣC ,Σ
#
C ] = 0 (58)

and

ΠC = ΣCΣ
#
C = Σ#

C ΣC (59)

is an orthogonal projector on the subspace of the Hilbert space satisfying

ΠαΠC = ΠCΠα = Πα (60)

and

Πα|x〉 = 0 (61)

for all α ∈ C then

ΠC |x〉 = 0. (62)

The results above follow because the range of ΣC contains the range of Πα. To show this assume that |x〉 is in the
range of Πα but |x〉 is not in the range of X. It follows that

0 = 〈x|ΣC |x〉 = 〈x|x〉+
∑
α′ 6=α

〈x|Πα′ |x〉 ≥ ‖|x〉‖2 > 0 (63)

which is a contradiction. This shows that ΠC is an orthogonal projector on the smallest subspace containing all of the
channel subspaces in C. Some methods to compute the Moore-Penrose generalized inverse are discussed in Appendix A
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VI. RELATIVISTIC SCATTERING THEORY

This section derives the symmetrized S matrix for a relativistic mass operator projected on a subspace that allows
scattering in a limited number of channels. Rather than working on the model Hilbert space defined on by range
of ΠC , it is useful to work on the asymptotic channel spaces. This has the advantage that the dynamical equations
only involve transition matrix elements projected on the appropriate asymptotic states and interactions smeared with
subsystem bound state wave functions. This leads to a slightly different type of coupled integral equations, where only
the projected part to the transition operators appear in the equations. This is an important simplification for reaction
models because the projection of the transition operator on unphysical subspaces do not appear in the equations.
The relativistic reaction theory is the approximate theory defined by replacing the exact mass operator by the

projected mass operator

M →MΠ = ΠCMΠC . (64)

The set of retained channels C is assumed to be invariant with respect to permutations. For this choiceMΠ commutes
with the symmetrizer (antisymmetrizer) A,

[MΠ, A] = 0. (65)

In order to formulate scattering asymptotic conditions for each channel α ∈ C there is a natural asymptotic Hilbert
space defined as the tensor product of irreducible representation spaces associated with the mass and spin of each
bound cluster in the channel α;

Hα := ⊗j∈αHλjjj . (66)

The product of the irreducible state vectors in the channel α defines a mapping from Hα to the model Hilbert space
HΠ (the range of ΠC) by:

Φα : Hα → HΠ (67)

given by

Φα|f1 · · · fm〉 =
∫ ∏

j

∑
µaj

|(λaj , jaj )qaj , µaj 〉 δ
(∑

qal

)
dqajfj(qaj , µaj ) (68)

where we have removed the total momentum conserving delta function. In this notation the channel projectors (54)
can be expressed as

Πα = ΦαΦ
†
α. (69)

The asymptotic Hilbert space for the reaction model is defined by

Has,C := ⊕α∈CHα. (70)

The sum of the Φα defines a mapping from the asymptotic Hilbert space to the model Hilbert space by

ΦC :=
∑
α∈C

Φα, (71)

were each Φα is understood to act on the corresponding channel subspace Hα. Note that because of (60) and (69)
the range of ΦC and ΠC coincide.
Symmetrized scattering channel wave functions are defined by the strong limits

|Ψ±
α 〉 = lim

t→±∞
AeiMπtΦαe

−iMαt|fα〉 = lim
t→±∞

eiMπtAΦαe
−iMαt|fα〉, (72)

where Mα is the invariant mass of the asymptotic initial or final state

Mα =
∑
j∈α

ωλaj

(
qaj

2
)
=
∑√

λ2aj
+ q2

aj
, (73)
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and the normalization of |fα〉 is chosen so 〈Ψ±
α |Ψ±

α 〉 = 1. The replacement of the Hamiltonian by the mass operator
in (72) is justified [14, 20] by the invariance principle [21, 22]. Formally it corresponds to calculating the Poincaré
invariant S matrix in the zero-momentum frame.
The relativistic S matrix is defined for each initial and final channel β, α ∈ C by

Sαβ := 〈Ψ+
α |Ψ−

β 〉 = lim
t→∞

〈fα|eiMαtΦ†
αAe

−2iMπtAΦβe
iMβt|fβ〉. (74)

Since [Mπ, A] = 0 and A2 = A one symmetrizer can be eliminated. It is convenient to replace the initial and final
states |fα/β〉 by channel mass eigenstates with sharp momenta |α/β〉 and insert an e−εt factor to control the integral

〈Ψ+
α |Ψ−

β 〉 = 〈α|Φ†
αAΦβ |β〉+ lim

ε→0+

∫ ∞

0

d

dt
〈α|eiMαtΦ†

αAe
−2iMπtAΦβe

iMβt|β〉e−εt

= 〈α|Φ†
αAΦβ |β〉 − i lim

ε→0+

∫ ∞

0

〈α|eimαt(Φ†
αMπ −mαΦ

†
α)e

−2iMπtAΦβe
imβt|β〉e−εt

−i lim
ε→0+

∫ ∞

0

〈α|eimαtΦ†
αAe

−2iMπt(MπΦβ − Φβmβ)e
imβt|β〉e−εt, (75)

where it is understood that the limit is to be taken after smearing with wave packets. The same result would be
obtained without introducing the ε factor if the wave packets were retained.
The quantity mα is the sharp momentum eigenvalue of Mα given by (73), similarly for mβ . It is useful to introduce

the average of the initial and final invariant mass, defined by

m̄ =
1

2
(mα +mβ) (76)

and note that ∫ ∞

0

e−2i(Mπ−m̄−iε) =
i

2

1

m̄−Mπ + iε
. (77)

Using (77) in (75) gives

〈α|Φ†
αAΦβ |β〉+

1

2
〈α|(Φ†

αMπ −mαΦ
†
α)

1

m̄−Mπ + iε+
AΦβ |β〉

+
1

2
〈α|Φ†

αA
1

m̄−Mπ + iε+
(MπΦβ − Φβmβ)|β〉. (78)

Applying the second resolvent identities as outlined in Appendix B, the resulting expression for the approximate S
matrix element is:

〈Ψ+
α |Ψ−

β 〉 = 〈αr|Φ†
αAΦβ |β〉δαβ − 2πiδ(mα −mβ)

[
〈α|Φ†

αA(MπΦβ −mβΦβ)|β〉

+ 〈α|
(
Φ†

αMπ −mαΦ
†
α

) 1

mβ −Mπ + i0+
S(MπΦβ −mβΦβ)

]
β〉. (79)

Note that

(Mπ −Mbπ)Φβ = (Mπ −mβ)Φβ (80)

because Φβ is an eigenstate of Mbπ with eigenvalue mβ (here MbπΦβ :=MbΦβ). Defining

M b
π :=Mπ −Mbπ (81)

leads to the expression for the S-matrix elements in this approximation

〈Ψ+
α |Ψ−

β 〉 = 〈α|Φ†
αAΦβ |β〉δαβ

− 2πiδ(mα −mβ)
[
〈α|Φ†

αAM
b
πΦβ |β〉+ 〈α|Φ†

αM
a
π

1

mβ −Mπ + i0+
AM b

πΦβ |β〉
]
. (82)

The symmetrized approximate transition operator that acts on the open channel spaces is

Tαβ := Φ†
αA M b

πΦβ +Φ†
αM

a
π

1

mβ −Mπ + i0+
AM b

πΦβ . (83)
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Note that in this form all of the internal degrees of freedom do not appear in the transition matrix. This is because
the operators Φβ and Φ†

α project the standard form of the transition operators on the asymptotic channels subspaces.
The result is that the internal degrees of freedom associated with the bound clusters do not appear in Tαβ .
Both equation (82) and (83) contain an overall momentum-conserving delta function that can be factored out of

both equations.
One would like to get integral equations directly for Tαβ , which avoid having to treat all of the unphysical degrees

of freedom in the unprojected transition operators. In order to construct such equations use (59) and (69 ) to get the
following identity

ΠC =
∑
γ∈C

Σ#ΦγΦ
†
γ . (84)

Inserting (84) in the expression (83) for T gives the equations

Tαβ := Φ†
αAM

b
πΦβ +

∑
γ

Φ†
αM

a
πAΣ

#ΦγΦ
†
γ

1

mβ −Mπ + i0+
AM b

πΦβ . (85)

Using the second resolvent identity from (B7) in in (85) gives

Tαβ = Φ†
αAM

b
πΦβ

+
∑
γ

Φ†
αM

a
πΣ

#AΦγ
1

mβ −mγ + i0+

[
Φ†

γAM
b
πΦβ +Φ†

γM
c
π

1

mβ −Mπ + i0+
AM b

πΦβ

]
(86)

or

Tαβ = Φ†
αAM

b
πΦβ +

∑
γ∈C

Φ†
αM

a
πΣ

#AΦγ
1

mβ −mγ + i0+
Tγβ . (87)

Here the sum is over all retained channels.
In general equation (87) does not have a compact iterated kernel which allows one to compute uniformly convergent

approximations. It can be recast into such a form where the iterated kernel is compact. The basic idea is simple in
principle, but the operators are can be complicated depending on the reaction mechanism.
Abstractly equation (87) has the form

Tαβ = Dαβ +
∑
γ

KαγTγβ (88)

The kernel Kαγ has a cluster expansion. For each partition a of the N particle system into subsystems it can be
expressed as

Kαγ = Kaαγ +Ka
αγ (89)

where

Kaαγ (90)

is the part of Kaαγ that commutes with the qak and Ka
αγ is the remainder.

For each partition a we can construct

(I −Ka)
−1
αβ . (91)

With this, for each a the system of equations has the form

Tαβ = (I −Ka)
−1
αδDδβ +

∑
γ

(I −Ka)
−1
αδK

a
δγTγβ . (92)

The following equation

Tαβ =
∑
na≥2

(−)na(na − 1)!(I −Ka)
−1
αδDδβ +

∑
γ

∑
na≥2

(−)na(na − 1)!(I −Ka)
−1
αδK

a
δγTγβ (93)

where na is the number of disjoint clusters in the partition a, has a connected iterated kernel [23]. All of the terms
in these equations only involve degrees of freedom in the model Hilbert space.
In general the individual terms (I −Ka)

−1
αδ have to be constructed recursively from subsystem equations, however

for reaction theories these operators are generally modeled. Iterating these equations gives a generalization of the
usual multiple scattering series [6, 7].
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VII. IDENTICAL PARTICLES

For systems of identical particles the number of channel in the scattering equations can be significantly reduced.
For identical particles note that for each channel a permutation operator either leaves the channel unchanged or
transforms it to an equivalent channel. The permutations that leave the channel unchanged involve permutation of
particles in each asymptotic bound state, or exchanges of identical asymptotic bound states. There are na1

! · · ·nam
!

permutations that leave each cluster of an m cluster channel γ unchanged. There are also s! exchanges for s identical
clusters with identical bound states.
Two channels that are related by permutation are called permutation equivalent. Those that are not are called

permutation inequivalent. Let [γ] be the equivalence class of channels equivalent to γ. Let n[γ] be the number of
channels in [γ],

n[γ] =
N !

na1
! · · ·nam

!s1! · sk!
. (94)

For each channel γ the symmetrizer can be decomposed as follows

A =
1

N !

∑
Pσ =

1

n[γ]

∑
δ∈[γ]

PδγAγ =
1

n[δ]

∑
δ∈[γ]

AγPγδ (95)

where the permutation operator Pσ is defined to include a factor of (−)|σ| for identical fermions. The channel sum in
the T -matrix equation can be decomposed into a sum over equivalence classes of channels and a sum over elements
in each equivalence class ∑

γ∈C
=
∑
[γ]∈C

∑
γ∈[γ]

(96)

Using this in the integral equation (87) gives

Tαβ = Φ†
α

1

n[α]

∑
δ∈[α]

PαδM
b
πΦβ +

∑
[γ]∈C

∑
γ∈[γ]

Φ†
αM

a
πΣ

# 1

n[γ]

∑
δ∈[γ]

PδγΦγ
1

mβ −mγ + i0+
Tγβ (97)

We note that ∑
γ∈[γ]

1

n[γ]

∑
δ∈[γ]

PδγΦγ
1

mβ −mγ + i0+
Tγβ =

∑
δ∈[γ]

PδγΦγ
1

mβ −mγ + i0+
Tγβ (98)

which when used in (97) gives the symmetrized equation

Tαβ = Φ†
α

1

n[α]

∑
δ∈[α]

PαδM
b
πΦβ +

∑
[γ]∈C

∑
δ∈[γ]

Φ†
αM

a
πΣ

#PδγΦγ
1

mβ −mγ + i0+
Tγβ . (99)

In this equation γ, α and β are arbitrary but fixed elements of the classes [γ], [α] and [β].
The effective interactions for this symmetrized equation are∑

δ∈[γ]

Φ†
αM

a
πΣ

#PδγΦγ . (100)

The kernel of this equation is only compact for models with only two cluster channels. When the reaction mechanism
includes channels with three or more clusters then it is necessary to construct an equivalent compact kernel equation
or to establish that there are no-non-trivial solutions to the homogeneous equations.
These equations give the approximate transition operator derived in section 6 however they do not include the

effects of the eliminated channels. We could have replaced MΠ by

MΠ →MΠ +ΠMΠ′(λ−Π′MΠ′ + i0)−1Π′MΠ (101)

with I = Π+ Π′, which would lead to equations of the same form with the interaction terms replaced by energy de-
pendent optical potentials. Since this decomposition still preserves the rotational invariance, it will lead to irreducible
representations of the Poincaré group.
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VIII. (D,P) REACTIONS

To illustrate the formalism we consider the case of a (d,p) reaction. We choose the dominant reaction channels C to
include the deuteron and an A-particle target nucleus, two nucleons and the target nucleus, a nucleon an A+1 particle
nucleus, the deuteron and an A-particle excited nucleus, and all channels generated by exchange of identical nucleons.
Here we treat the proton and neutrons as different isospin states of a system of A+ 2 identical nucleons. This leads
to an effective three-body problem. For low energy (d,p) reactions this approach was pioneered in Ref. [5, 24–26]
in the framework of the Faddeev AGS equations. Within a Poincaré invariant formulation the dynamical equations
governing this system are formally given by (99). The channel injection operators are

Φ1 := |P; (md, 1)qd, µd, (mA, jA)− qd, µA〉 (102)

Φ2 := |P; (md, 1)qd, µd, (mB , jB)− qd, µB〉 (103)

Φ3 := |P; (mn,
1

2
)qn, µn, (mn,

1

2
)q′

n, µ
′
n(mA, jA)− qn − q′

n, µA−1〉 (104)

Φ4 := |P; (mn,
1

2
)qn, µn, (mA+1, jA+1)− qN , µA+1〉. (105)

The full set of channels C is generated by applying permutations to these channels.
The operator Σ is given by

Σ :=
∑
γ∈[1]

Pγ1Φ1Φ
†
1P

†
1γ +

∑
γ∈[2]

Pγ2Φ2Φ
†
2P

†
2γ +

∑
γ∈[3]

Pγ3Φ3Φ
†
3P

†
3γ +

∑
γ∈[4]

Pγ4Φ4Φ4P
†
4γ (106)

and

ΠC := Σ#Σ. (107)

The model mass operator is

MΠ = ΠCMΠC . (108)

The individual channel masses are

m1 =
√
m2

d + q2
d +

√
m2

A + q2
d

m2 =
√
m2

d + q2
d +

√
m2

B + q2
d

m3 =
√
m2

n + q2
n1 +

√
m2

n + q2
n2 +

√
m2

A + (qn1 + qn2)2

m4 =
√
m2

n + q2
n +

√
m2

A+1 + q2
n (109)

and

MΠi := ΦimiΦ
†
i

M i
Π :=MΠ −MΠi. (110)

The projected transition matrix elements are

T11 = 〈P(md, 1)qd, µd, (mA, jA)− qn, µA|T 11(z)|P′(md, 1)q
′
d, µ

′
d, (mA, jA)− q′

d, µ
′
A〉

= δ(P−P′)t11(qd, µd, µA;q
′
d, µ

′
d, µ

′
A, z) (111)

T21 = 〈P(md, 1)qd, µd, (mB , jB)− qd, µB |T 21(z)|P′(md, 1)q
′
d, µ

′
d, (mA, jA)− q′

d, µ
′
A〉

= δ(P−P′)t21(qd, µd, µB ;q
′
d, µ

′
d, µ

′
A, z) (112)

T31 = 〈P(mn,
1

2
)qn1, µn1, (mn,

1

2
)qn2, µn2(mA, jA)− (qn1 + qn2), µA|T 31(z)

×|P′(md, 1)q
′
d, µ

′
d, (mA, jA)− q′

d, µ
′
A〉

= δ(P−P′)t31(qn1, µn1,qn2, µn2, µA;q
′
d, µ

′
d, µ

′
A, z) (113)

T41 = 〈P(mn,
1

2
)qn, µn, (mA+1, jA+1)− qn, µA+1|T 41(z)|P′(md, 1)q

′
d, µ

′
d, (mA, jA)− q′

d, µ
′
A〉 (114)

= δ(P−P′)t41(qn, µn, µA+1;q
′
d, µ

′
d, µ

′
A, z). (115)



16

For a reasonable sized target nucleus the input to the equations, while well defined, must ultimately be treated
phenomenologically. These elements are interactions and kernel terms. The 11 driving term is

V11 =
1

n[1]

∑
γ∈[1]

〈P(md, 1)qd, µd, (mA, jA)− qd, µA|P1γM
1
Π|P′(md, 1)q

′
d, µ

′
d, (mA, jA)− q′

d, µ
′
A〉

= δ(P−P′)v11(qd, µd, µA;q
′
d, µ

′
n, µ

′
A) (116)

where

v11(qd, µd, µA;q
′
d, µ

′
d, µ

′
A) (117)

which is a rotationally invariant functions of the qi and constituent spins. There are three other driving terms, V21,
V31, V41 associated with the three other final channels.
The interaction part of the kernel has 16 terms of the form Kij . They have a form similar to K11

K11 =
∑
γ∈[1]

〈P (mn, 1)qd, µd, (mA, jA)− qd, µA|M1
ΠΣ

#Pγ1|P′ (md, 1)q
′
d, µ

′
d, (mA, jA)− q′

d, µ
′
A〉

δ(P−P′)k11(qd, µd, µA;q
′
d, µ

′
d, µ

′
A) (118)

where

k11(qd, µd, µA;q
′
d, µ

′
d, µ

′
A) (119)

is a rotationally invariant kernel.
The integral equation is a four by four matrix of equations involving all four amplitudes. After factoring out the

overall momentum conserving delta function we get

t11(qd, µd, µA;q
′
d, µ

′
d, µ

′
A,mA′)

= v11(qd, µd, µA;q
′
d, µ

′
d, µ

′
A)

+
∑∫

k11(qd, µd, µA;q
′′
d , µ

′′
d , µ

′′
A)dq

′′
dt11(q

′′
d , µ

′′
d , µ

′′
A;q

′
d, µ

′
d, µ

′
A,mA′)

m1′ −m′′
1 + i0+

+
∑∫

k12(qd, µd, µA;q
′′
d , µ

′′
d , µ

′′
B)dq

′′
dt21(q

′′
d , µ

′′
d , µ

′′
B ;q

′
d, µ

′
d, µ

′
A,mA′)

m1′ −m′′
2 + i0+

+
∑∫

k13(qd, µd, µA;q
′′
n1, µ

′′
n1,q

′′
n2, µ

′′
n2, µ

′′
A)dq

′′
n1
dq′′

n1
t31(q

′′
n1, µ

′′
n1,q

′′
n2, µ

′′
n2, µ

′′
A;q

′
d, µ

′
d, µ

′
A,mA′)

m1′ −m′′
3 + i0+

+
∑∫

k14(qd, µd, µA;q
′′
n, µ

′′
n, µ

′′
A+1)dq

′′
nt41(q

′′
n, µ

′′
n, µ

′′
A+1;q

′
d, µ

′
d, µ

′
A,mA′)

m1′ −m′′
4 + i0+

. (120)

This is the first of four coupled equations, the other are for t21, t31, t41. These equations have the same general
structure.
These are a set of four coupled channel equations for the four symmetrized transition matrix elements. The kernel

has disconnected terms which remain disconnected upon iteration. These can be replaced by equivalent connected
kernel equations using the methods discussed at the end of section 6.
In this case a direct solution is easier. The starting point is equations (120) which have the abstract form:

ti1 = vi1 +

4∑
j=1

Kijtj1 (121)

The first step is to eliminate breakup amplitude (j = 3) using

t31 = (1−K)−1
33 v31 + (1−K)−1

33 K31t11 + (1−K)−1
33 K32t21 + (1−K)−1

33 K34t41. (122)

The second step is to insert this into the remaining three equations

tk1 = vk1 +Kk3(1−K)−1
33 v31

+ (Kk1 +Kk3(1−K)−1
33 K31)t11 + (Kk2 +Kk3(1−K)−1

33 K32)t21
+ (Kk4 +Kk3(1−K)−1

33 K34)t41. (123)

The last step is to make the kernels connected upon iteration which gives the following three coupled equations for
the two-cluster amplitudes:

tk1 = (I −Kkk +Kk3(1−K)−1
33 K3k)

−1vk1Kk3(1−K)−1
33 v31
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+
∑
l 6=k,3

(I −Kkk +Kk3(1−K)−1
33 K3k)

−1(Kkl +Kk3(1−K)−1
33 K3l)

−1tl1. (124)

These equations can be solved using Faddeev methods. The breakup amplitude can be calculated these solutions
using (122). The effective interactions are complicated many-body operators that, while precisely defined, have to
be modeled in practice. The interactions include both effective two and three-body interactions. In this model the
“three-body forces” will be important because they include effects from the exchange channels. If one wants to
include corrections from some of the eliminated channels, then the interactions are replaced by energy dependent
optical potentials.
The number of continuous variables is the same as one would get on a three-body Faddeev equation. Unlike the

relativistic few-body problem, depending on the charge of the core, Coulomb effects may have to be included. This
requires an additional analysis due to the long-range nature of the Coulomb interaction.

IX. DISCUSSION AND OUTLOOK

In the preceeding sections a formulation of a theory for nuclear reactions is given in a representation of Poincaré
invariant quantum mechanics where the interactions are invariant with respect to kinematic translations and rotations.
Though a practical implementation is not yet in sight, it is important to lay out the necessary ingredients for such a
theory. Specifically, as experimental capabilities in investigating reaction with rare isotopes are continuously refined,
assumptions and approximations applied to study reactions at higher energies may need to be re-examined.
One of the experimentally as well as theoretically most carefully studied system is the three-nucleon system. The

Faddeev equations with two and three-nucleon forces can be exactly solved [27, 28] for neutron and proton-deuteron
scattering. A Poincaré invariant formulation of the Faddeev equations was pioneered in model calculations up to 1 GeV
for spin-independent forces [11, 17, 29] and then employed for realistic two and three-nucleon forces [8] for projectile
energies up to 250 MeV. Both, the realistic as well as the model calculation indicate that differential cross sections
exhibit some differences between a non-relativistic an relativistic treatment at large momentum transfer already as
low as 250 MeV. However, those calculations clearly indicate, that breakup reactions are considerably more sensitive
to a correct treatment of Poincaré invariance than elastic scattering. The model calculation in Refs. [11] indicate that
the correct Poincaré invariant treatment of relativistic kinematics and dynamics in exclusive breakup reaction cross
sections can differ up to an order of magnitude from the Galilei invariant calculation already at projectile energies
around 500 MeV, while at the same energy elastic scattering cross sections only differ by about 15%. The calculations
with realistic forces [8] obtained similar conclusions when considering projectile energies of 250 MeV.
These findings may have consequences for reactions with unstable ions at higher energies. Light probes e.g. allow to

explore shell evolution. Among the light probes, deuteron induced reactions are attractive from an experimental point
of view, since deuterated targets are readily available. From a theoretical perspective they are attractive, because the
scattering problem can be reduced to an effective three-body problem. At higher energies, target excitations may be
less important than at lower energies. However, since (d,p) reactions are breakup reactions, it will need to be explored
if they are as sensitive to a consistent Poincaré invariant treatment as proton-deuteron breakup reactions.
As mentioned in the introduction, an often and successfully employed approximation to study states at higher

energies is the eikonal approximations. One- and two-nucleon removal reactions at higher energies as well as pickup
reactions are used in an eikonal formulation to study the structure of exotic nuclei [30] by calculating e.g. inclusive
one- and two-nucleon removal. The emphasis here is the description of the structure entering the reaction calculation.
In this way data have been described quite successfully [31].
Efforts to compare a reaction calculation carried out in the eikonal approximation with a corresponding exact

calculation have up now only been possible in the three-nucleon problem. The most comprehensive study of the
quality of a refined eikonal model is carried out for proton-deuteron (pd) elastic scattering at 250 MeV and 1 GeV [10].
Here the Glauber model was refined to take into account the full spin structure of the proton-neutron and proton-
proton interactions in the single and double scattering term of the Glauber diffraction model. At 250 MeV different
cross sections and polarization are compared to non-relativistic Faddeev calculations [32] for all possible values of
the momentum transfer. This comparison reveals that in the pd system the re-scattering term in the Glauber model
is essential to be close to the Faddeev calculation (and the experiment) for up to about half of the total allowed
momentum transfer. In contrast the first order Glauber term is only valid for very small momentum transfers. This
finding holds even at 1 GeV. Calculations in similar spirit comparing a Glauber ansatz including the rescattering term
with a Poincaré invariant Faddeev calculation, but based a simple spin-independent model for the nucleon-nucleon
interaction were carried out up to 2 GeV projectile energy [33]. Here the main finding was that a Glauber type
calculation can describe cross section relatively well in the GeV regime, differential cross sections were not as well
captured for large momentum transfers. Thus, when studying nuclear reactions at higher energies, it will be necessary
to develop a reaction theory based on relativistic quantum mechanics.
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Appendix A: Moore-Penrose generalized inverse

In this appendix we discuss methods for computing the Moore Penrose generalized inverse. The definition

Σ#
α := ΠαΣ

#
C (A1)

implies

ΠC =
∑
α∈C

Σ#
α . (A2)

Multiplying both sides of (A1) by Πα and rearranging terms gives

Σ#
α = Πα −

∑
β 6=α∈C

ΠαΣ
#
β . (A3)

For two cluster channels this set of equations, after factoring our the total momentum conserving delta functions, has
a non-singular compact iterated kernel, which can be uniformly approximated by a finite-dimensional matrix. This
gives a straightforward means to construct the solution to these equations using uniform approximations.
The solution of (A3) can be used to calculate

ΠC =
∑
α∈C

Σ#
α . (A4)

When the projectors in ΣC include more than two clusters channels the series and the non-zero eigenvalues of ΣC are
bounded above zero then

ΠC =

∞∑
n=0

(1− γΣC)
nγΣC = γΣC

∞∑
n=0

(1− γΣC)
n (A5)

will converge uniformly for γ less that 1/(number of channels). The relevant iteration is

Π(0) := γΣC (A6)

Π(n+ 1) = Π(n)(1− γΣC) (A7)

ΠC = lim
n→∞

Π(n). (A8)

The rate of convergence depends on both the choice of γ and the size of the smallest non-zero eigenvalue of ΣC . There
is also a similar series for

Σ#
α = γΠα

∞∑
n=0

(1− γΣC)
n. (A9)

Cluster expansions for Σ#
α can be developed from this representation.

An alternative way to calculate Σ#Φα, which uses connected kernel equations, is based on the observation that the
resolvent of X satisfies the Weinberg-Van Winter equations[23]

1

z − Σ
=

∑
a,na≥2

Ca
1

z − Σa
+

∑
a,na≥2

Ca(Σ− Σa)
1

z − Σ

where Σa is the sum of all projectors that commute with translations of the cluster of the partition a. The coefficients
Ca are

Ca = (−)na(na − 1)! (A10)

where na is the number of non-empty clusters in the partition a. These equations always have compact kernels. They
can be solved recursively (n the number of particles) to build up the 1

z−Σa
that are the input to these equations. The

starting point corresponds to the finest partitions where the resolvents have the trivial form

1

z −Πα
= Πα

1

z − 1
+ Π

1

z
(A11)
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This gives a Faddeev type of construction to find Π. It requires that the Moore-Penrose generalized inverse is bounded
or equivalently that the spectrum of Σ has a gap between 0 and its first non-zero eigenvalue.
The operator Σ#Φα which appears in the integral equation can be calculated using

Σ#Φα = lim
z→0

1

X − z
Φα

This limit makes sense because the range of Φα is in the range of Σ. The Weinberg-Van Winter equation can be
replaced by

1

z − Σ
Φα =

∑
a,na≥2

Ca
1

z − Σa
Φα +

∑
a,na≥2

Ca(Σ− Σa)
1

z − Σ
Φα (A12)

Appendix B: Formulations with Resolvent Identities

The second resolvent identities are used in (78) to obtain

〈α|Φ†
αAΦβ |β〉

+
1

2
〈α|(Φ†

αMπ −mαΦ
†
α) A(Φβ +

1

m̄−Mπ + iε+
(MπΦβ − Φβmβ))

1

m̄−mβ + iε+
|β〉

+
1

2
〈α| 1

m̄−mα + iε+
(Φ†

α + (Φ†
αMπ −mαΦ

†
α)

1

m̄−Mπ + iε+
)A(MπΦβ − Φβmβ)|β〉. (B1)

Separating the kinematical and dynamical terms gives

〈α|Φ†
αAΦβ |β〉

+
1

mα −mβ + iε
〈αr|(Φ†

αMπ − (mα −mβ +mβ)Φ
†
α)AΦβ |β〉

− 1

mα −mβ − iε
〈αr|Φ†

αA(MπΦβ −mβΦβ)|β〉

+ 〈α|(Φ†
αMπ −mαΦ

†
α)A

1

m̄−Mπ + i0+
(MπΦβ −mβΦβ)|β〉 ×

[
1

mα −mβ + iε
− 1

mα −mβ − iε

]
. (B2)

This becomes

〈α|Φ†
αAΦβ |βr〉

+ 〈α|Φ†
αA(MπΦβ − Φβmβ)|β〉

[
1

mα −mβ + iε
− 1

mα −mβ − iε

]
+ 〈α|Φ†

αAΦβ |β〉
mβ −mα

mα −mβ + iε
×

〈α|(Φ†
αMπ −mαΦ

†
α)A

1

m̄−Mπ + i0+
(MπΦβ −mβΦβ)|β〉 ×

[
1

mα −mβ + iε
− 1

mα −mβ − iε

]
(B3)

which is equal to

〈α|Φ†
αAΦβ |β〉

iε

mα −mβ + iε+

+ 〈α|Φ†
αA(MπΦβ − Φβmβ)|β〉

[
1

mα −mβ + iε
− 1

mα −mβ − iε

]
+ 〈α|(Φ†

αMπ −mαΦ
†
α)A

1

m̄−Mπ + i0+
(MπΦβ −mβΦβ)|β〉

[
1

mα −mβ + iε
− 1

mα −mβ − iε

]
. (B4)

The ε factors become

iε

mα −mβ + iε
= δαβ (B5)

and [
1

mα −mβ + iε
− 1

mα −mβ − iε

]
=

−2iε

(mα −mβ)2 + ε2
→ −2πiδ(mα −mβ). (B6)
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The first term vanishes if mα 6= mβ as ε→ 0; it becomes 1 when the channels are the same - as a Kronecker delta.
In order to obtain (86) we note that A2 = A has been used to put A in two places separated by operators that

commute with A. Next the second resolvent equations are used to arrive at

1

mβ −Mπ + i0+
=

1

mβ −Mcπ + i0+
+

1

mβ −Mcπ + i0+
M c

π

1

mβ −Mπ + i0+

1

mβ −Mcπ + i0+
(1 +M c

π

1

mβ −Mπ + i0+
). (B7)
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