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Relativistic Faddeev equations for three-body scattering at arbitrary energies are formulated in
momentum space and in first order in the two-body transition-operator directly solved in terms
of momentum vectors without employing a partial wave decomposition. Relativistic invariance is
incorporated within the framework of Poincaré invariant quantum mechanics, and presented in some
detail. Based on a Malfliet-Tjon type interaction, observables for elastic and break-up scattering are
calculated up to projectile energies of 1 GeV. The influence of kinematic and dynamic relativistic
effects on those observables is systematically studied. Approximations to the two-body interaction
embedded in the three-particle space are compared to the exact treatment.

PACS numbers: 21.45+v

I. INTRODUCTION

Light nuclei can be accurately modeled as systems of nucleons interacting via effective two and three-body forces
motivated e.g. by meson exchange. This picture is expected to break down at a higher energy scale where the physics
is more efficiently described in terms of sub-nuclear degrees of freedom. One important question in nuclear physics
is to understand the limitations of models of nuclei as systems of interacting nucleons. Few-body methods have been
an essential tool for determining model Hamiltonians that describe low-energy nuclear physics. Few-body methods
also provide a potentially useful framework for testing the limitations of models of nuclei as few nucleon systems,
however this requires extending the few-body models and calculations to higher energy scales. There are a number
of challenges that must be overcome to extend these calculations to higher energies. These include replacing the
non-relativistic theory by a relativistic theory, limitations imposed by interactions fit to elastic scattering data, new
degrees of freedom that appear above the pion production threshold, as well as numerical problems related to the
proliferation of partial wave at high energies. In this paper we address some of these questions. We demonstrate that
it is possible to now perform relativistic three-body scattering calculations at energies up to 1 GeV laboratory kinetic
energy. The key elements of our success is the use of direct integration methods that avoid the use of partial waves
and new techniques for treating functions of non-commuting operators that appear in the relativistic nucleon-nucleon
interactions.

During the last two decades calculations of nucleon-deuteron scattering based on momentum-space Faddeev equa-
tions [1] experienced large improvements and refinements. It is fair to state that below about 200 MeV projectile energy
the momentum-space Faddeev equations for three-nucleon (3N) scattering can now be solved with high accuracy for
realistic two- and three-nucleon interactions. A summary of these achievements can be found in Refs. [2–5]. The
approach described there is based on using angular momentum eigenstates for the two- and three-body systems. This
partial wave decomposition replaces the continuous angle variables by discrete orbital angular momentum quantum
numbers, and thus reduces the number of continuous variables to be discretized in a numerical treatment. For low pro-
jectile energies the procedure of considering orbital angular momentum components appears physically justified due
to arguments related to the centrifugal barrier and the short range of the nuclear force. If one considers three-nucleon
scattering at a few hundred MeV projectile kinetic energy, the number of partial waves needed to achieve convergence
proliferates, and limitations with respect to computational feasibility and accuracy are reached. It appears therefore
natural to avoid a partial wave representation completely and work directly with vector variables. This is common
practice in bound state calculations of few-nucleon systems based on variational [6] and Green’s function Monte Carlo
(GFMC) methods [7–10] and was for the first time applied in momentum space Faddeev calculations for bound states
in [11] and for scattering at intermediate energies in Ref. [12].

The key advantage of a formulation of the Faddeev equations in terms of vector variables lies in its applicability at
higher energies, where special relativity is expected to become relevant. Poincaré invariance is an exact symmetry that
should be satisfied by all calculations, however in practice consistent relativistic calculations are more numerically
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intensive, thus making their nonrelativistic counterpart a preferred choice. Furthermore, estimates of relativistic
effects have been quantitatively small for 3N scattering below 200 MeV [13–15] with the exception of some breakup
cross sections in certain phase space regions [16], indicating that at those energies non-relativistic calculations have
sufficient precision. This is in part because in either a relativistic or non-relativistic model the interactions are
designed to fit the same invariant differential cross section [17], which can be evaluated in any frame using standard
kinematic Lorentz transformations, so model calculations are designed so that there are no “relativistic corrections”
at the two-body level. Three-body interactions can even be chosen so the non-relativistic calculations fit both the
two- and three-body invariant cross sections. This can be done in one frame and the invariance of the cross section
fixes it in all other frames using standard relativistic kinematics. This, procedure has internal inconsistencies which
show up if these models are used as input in larger systems, but they clearly indicate that the problem of identifying
relativistic effects is more subtle than simply computing non-relativistic limits. In this paper we focus on differences
between relativistic and non-relativistic calculations with two-body input that have the same cross section and use
the same two-body wave functions [18–20].

There are two primary approaches for modeling relativistic few-body problems. One treats Poincaré invariance as a
symmetry of a quantum theory, the other is based on quasipotential reductions [21] of formal relations [22, 23] between
covariant amplitudes. One specific realization of this approach is the covariant spectator approach of Ref. [24]. In
this paper the relativistic three-body problem is formulated within the framework of Poincaré invariant quantum
mechanics. It has the advantage that the framework is valid for any number of particles and the dynamical equations
have the same number of variables as the corresponding non-relativistic equations. Poincaré invariance is an exact
symmetry that is realized by a unitary representation of the Poincaré group on a three-particle Hilbert space. The
dynamics is generated by a Hamiltonian. This feature is shared with the Galilean invariant formulation of non-
relativistic quantum mechanics. The Hamiltonian of the corresponding relativistic model differs in how the two-body
interactions are embedded in the three-body center of momentum Hamiltonian (mass operator). The equations we
use to describe the relativistic few-body problem have the same operator form as the nonrelativistic ones, however
the ingredients are different.

In this article we want to concentrate on the leading order term of the Faddeev multiple scattering series within
the framework of Poincaré invariant quantum mechanics. The first order term contains already most relativistic
ingredients which, together with the relativistic free three-body resolvent, gives the kernel of the integral equation.
We want to understand essential differences between a relativistic and nonrelativistic approach already on the basis of
the first order term. As simplification we consider three-body scattering with spin-independent interactions. This is
mathematically equivalent to three-boson scattering. The interactions employed are of Yukawa type, and no separable
expansions are employed. In order to obtain a valid estimate of the size of relativistic effects, it is important that the
interactions employed in the nonrelativistic and relativistic calculations are phase-shift equivalent. To achieve this
we employ here the approach suggested by Kamada-Glöckle [18], which uses a unitary rescaling of the momentum
variables to change the nonrelativistic kinetic energy into the relativistic kinetic energy.

This article is organized as follows. Section II discusses the formulation of Poincaré invariant quantum mechanics,
and section III discusses the structure of the dynamical two- and three-body mass operators. Scattering theory formu-
lated in terms of mass operators is discussed in section IV. The formulation of the Faddeev equations and techniques
for computing the Faddeev kernel are discussed in section V. Details on kinematical aspects of how to construct the
cross sections is given in section VI. In Sections VIII and IX we present calculations for elastic and breakup processes
in the intermediate energy regime from 0.2 to 1 GeV. Our focus here is to compare different approximations to the
embedded interaction with respect to the exact calculation. Our conclusions are in Section X. Two Appendices are
devoted to relating the transition matrix elements based on mass operators to the invariant amplitudes with the
conventions used in the particle data book and expressing the invariant cross section and differential cross sections
worked out directly in laboratory-frame variables.

II. POINCARÉ INVARIANT QUANTUM MECHANICS

Symmetry under change of inertial coordinate system is the fundamental symmetry of Poincaré invariant quan-
tum mechanics. In special relativity different inertial coordinate systems are related by the subgroup of Poincaré
transformations continuously connected to the identity. In this paper the Poincaré group refers to this subgroup,
which excludes the discrete transformations of space reflection and time reversal. Wigner [25] proved that a necessary
and sufficient condition for quantum probabilities to be invariant under change of inertial coordinate system is the
existence of a unitary representation, U(Λ, a), of the Poincaré group on the model Hilbert space. Equivalent vectors,
|ψ〉 and |ψ′〉, in different inertial coordinate systems are related by:

|ψ′〉 = U(Λ, a)|ψ〉. (2.1)
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In Poincaré invariant quantum mechanics the dynamics is generated by the time evolution subgroup of U(Λ, a).
The fundamental dynamical problem is to decompose U(Λ, a) into a direct integral of irreducible representations.
This is the analog of diagonalizing the Hamiltonian or time-evolution operator in non-relativistic quantum mechanics.
The problem of formulating the dynamics is to construct the dynamical representation U(Λ, a) of the Poincaré group
by introducing realistic interactions in the tensor products of single particle irreducible representations in a manner
that preserves the group representation property and essential aspects of cluster separability. The solution to this
non-linear problem is achieved by adding suitable interactions to the Casimir operators of non-interacting irreducible
representations of the Poincaré group.

Since irreducible representations of the Poincaré group play a central role in both the formulation and solution of
the dynamical model, we give a brief summary of the construction of the irreducible representations that we use in
this paper. The Poincaré group is a ten parameter group that is the semidirect product of the Lorentz group and
the group of spacetime translations. Spacetime translations are generated by the four momentum operator, Pµ, and
Lorentz transformations are generated by the antisymmetric angular momentum tensor, Jµν .

The Pauli Lubanski vector is the four vector operator defined by

Wµ =
1

2
ǫµαβγPαJβγ . (2.2)

The Casimir operators for the Poincaré group are

M2 = −ηµνP
µP ν = H2 − P · P (2.3)

and

W 2 = −ηµνW
µW ν = M2j2 (2.4)

where ηµν is the Minkowski metric, M is the mass operator, H is the Hamiltonian, P is the linear momentum, and
j2 is the spin.

Positive-mass positive-energy irreducible representations are labeled by eigenvalues of the mass M and spin j2.
Vectors in an irreducible subspace are square integrable functions of the eigenvalues of a complete set of commuting
Hermitian operator-valued functions of the generators Pµ and Jµν . In addition to the two invariant Casimir operators,
it is possible to find four additional commuting Hermitian functions of the generators. For each of these four commuting
observables it is possible to find conjugate operators. These conjugate operators, along with the eigenvalues of
the Casimir operators, fix the eigenvalue spectrum of the four commuting Hermitian operators. The irreducible
representation space is the space of square integrable functions of the eigenvalues of the four commuting operators.
The generators can be expressed as functions of these four operators, their conjugates, and the Casimir invariants
[26–28].

In this paper we choose the four commuting operators to be the three components of the linear momentum and
the z component of the canonical spin operator. In this representation the four conjugate operators are taken as the
partial derivatives of the momentum holding the canonical spin constant (Newton-Wigner position [29] operator) and
the x component of the canonical spin. While jx is not exactly conjugate to jz , the two operators generate the full
SU(2) spin algebra. The corresponding eigenstates have the form

|p, µ〉 := |(m, j)p, µ〉. (2.5)

The mass m spin j irreducible representation of the Poincaré group in this basis is determined from the group
representation property and the action of rotations, spacetime translations and canonical boosts on the zero momentum
eigenstates:

U(R, 0)|0, µ〉 = |0, µ′〉Dj
µ′µ(R) (2.6)

U(I, a)|0, µ〉 = e−ia0m|0, µ〉 (2.7)

U(B(pm), 0)|0, µ〉 = |p, µ〉
√
Epm

m
(2.8)
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where in these equations R is a rotation, Dj
µ′µ(R) is the standard 2j+1 dimensional unitary representation of SU(2),

a = (a0,a) is a displacement four vector, B(pm) is the rotationless Lorentz boost (canonical boost) that transforms
(m,0) to pm := (Epm

,p),

(B(pm))µ
ν :=

(
Epm

/m p/m
p/m I + p⊗p

m(m+Epm)

)
, (2.9)

and Epm
=
√
m2 + p2. That the magnetic quantum number remains invariant in (2.8) under the rotationless boost

(2.9) is the defining property of the canonical spin.
The multiplicative factor on the right side of (2.8) is fixed up to a phase by unitarity and the normalization

convention

〈p ′, µ′|p, µ〉 = δ(p ′ − p)δµ′µ. (2.10)

With these choices the action of an arbitrary Poincaré transformation on these states is given by

Umj(Λ, a)|p, µ〉 = |p ′, µ′〉
√
E′

pm

Epm

Dj
µ′µ (Rw(Λ, pm)) eip′

m·a, (2.11)

where Rw(Λ, pm) is the (standard) Wigner rotation,

Rw(Λ, pm) := B−1(Λpm)ΛB(pm), (2.12)

and p′m = Λpm. Since each of the elementary transformations (2.6,2.7,2.8) are unitary, it follows that (2.11) is unitary.
Since every basis vector can be generated from the µ = j and P = 0 basis vector using equations (2.6,2.7,2.8),
representation (2.11) is also irreducible.

The mass m spin j irreducible representations that are used in this paper have the form (2.11). The mass m spin
j irreducible representation space with basis (2.5) is denoted by Hmj .

The Hilbert space for the-three nucleon problem is the tensor product of three one-nucleon irreducible representation
spaces:

H = Hm 1
2
⊗Hm 1

2
⊗Hm 1

2
. (2.13)

In this paper all nucleons are assumed to have the same mass, m.
The non-interacting unitary representation of the Poincaré group on H is the tensor product of three one-nucleon

irreducible representations:

U0(Λ, a) = Um 1
2
(Λ, a) ⊗ Um 1

2
(Λ, a) ⊗ Um 1

2
(Λ, a). (2.14)

As in the case of rotations, the tensor product of irreducible representations of the Poincaré group is reducible.
The tensor product of three irreducible representations can be decomposed into a direct integral of irreducible repre-
sentation using Clebsch-Gordan coefficients for the Poincaré group. The Clebsch-Gordan coefficients for the Poincaré
group are known [28, 31, 32]. As in the case of rotations, the Poincaré Clebsch-Gordan coefficients are basis dependent
and the three-body irreducible representations can be generated by pairwise coupling. The Poincaré Clebsch-Gordan
coefficients can be computed by using SU(2) Clebsch-Gordan coefficients to decompose three-body zero momen-
tum eigenstates states into irreducible SU(2) representations. Three-body irreducible basis vectors are generated by
applying Eqs. (2.6,2.7,2.8) to the zero-momentum SU(2) irreducible representations.

The resulting irreducible three-body basis depends on the order of the coupling. In the basis of eigenstates of
the three-body linear momentum and canonical spin the irreducible eigenstates are labeled by eigenvalues W of the
three-body invariant mass, M0, the three-body canonical spin, j (for simplicity of notation we use the same label
j for the total canonical spin of the three-body system and the single particle canonical spin), the total three-body
momentum, P, the z component of the three-body canonical spin, µ, and invariant degeneracy quantum numbers, d,
that distinguish multiple copies of the same irreducible representation:

|(W, j),P, µ, d〉. (2.15)

For two-particle systems the degeneracy quantum numbers d are discrete (for example they may be taken to be
invariant spin and orbital angular momentum quantum numbers) while for more than two particles the degeneracy
quantum numbers will normally include invariant sub-energies, which have a continuous eigenvalue spectrum. In
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addition to the appearance of the degeneracy quantum numbers, the eigenvalue spectrum of the free invariant mass
operator, M0, is continuous.

These states transform as mass W spin j irreducible representations of the Poincaré group under U0(Λ, a):

U0(Λ, a)|(W, j),P, µ, d〉 = |(W, j),P ′, µ′, d〉
√
E′

PW

EPW

Dj
µ′µ (Rw(Λ, PW)) eiP ′

W
·a, (2.16)

where

P ′
W

= ΛPW PW := (
√

W2 + P2,P) = (EPW
,P). (2.17)

The quantities W, j, d are invariants of the representation (2.16) of U0(Λ, a).
Because the Poincaré group allows time evolution to be expressed in terms of spatial translations and Lorentz

boosts, when particles interact, consistency of the initial value problem requires that the unitary representation of
the Poincaré group depends non-trivially on the interactions. The construction of U(Λ, a) for dynamical models is
motivated by the example of Galilean invariant quantum mechanics. The non-relativistic three-body Hamiltonian has
the form

H =
P2

2Mg
+ h (2.18)

where the Casimir Hamiltonian, h, is the Galilean invariant part of the Hamiltonian and Mg is the Galilean mass. In
the non-relativistic case interactions are added to the non-interacting Casimir Hamiltonian h0 :

h = h0 + Vnr (2.19)

where the Galilean invariance of h requires that the interaction Vnr is rotationally invariant and commutes with and
is independent of the linear momentum P. This means that in the corresponding non-relativistic basis

〈h,P, j, µ, d|Vnr |h′,P ′, j′, µ′, d′〉 = δ(P − P ′)δjj′δµµ′〈h, d‖V j
nr‖h′, d′〉. (2.20)

where h is an eigenvalue of h0.
In the Poincaré invariant case Eq. (2.18) is replaced by

H =
√

P2 +M2 (2.21)

where M in Eq. (2.21) plays the same role as the Casimir Hamiltonian h in Eq. (2.18). The corresponding free

relativistic Hamiltonian is H0 =
√

P2 +M2
0 . In what follows λ denotes the eigenvalue of M to distinguish it from

the eigenvalue W of M0.
A Poincaré invariant dynamics can be constructed by adding an interaction to the non-interactingM0 that commutes

with and is independent of P and jz :

M = M0 + Vr. (2.22)

In the non-interacting irreducible basis (2.15) these conditions require interactions of the form

〈(W, j),P, µ, d|Vr |(W′, j′),P ′, µ′, d′〉 = δ(P − P ′)δjj′δµµ′〈W, d‖V j
r ‖W′, d′〉. (2.23)

The dynamical problem is to find simultaneous eigenstates of the commuting operators M , P, jz, and j2. This is
done by diagonalizing M in the irreducible basis (2.15). The eigenfunctions of M have the form

〈(W, j),P, µ, d|(λ, j′),P ′, µ′〉 = δ(P − P ′)δjj′δµµ′〈W, d, j|λ, j〉 (2.24)

where the eigenfunctions 〈W, d, j|λ, j〉 are solutions of

W〈W, j, d|λ, j〉 +

′∑∫ ′

〈W, d‖V j
r ‖W′, d′〉dW′dd′〈W′, j, d′|λ, j〉 = λ〈W, j, d|λ, j〉, (2.25)

with mass eigenvalue λ. For two-particle systems the degeneracy quantum numbers d are discrete (for example they
may taken to be invariant spin and orbital angular momentum quantum numbers) while for more than two particles



6

the degeneracy quantum numbers will normally include invariant sub-energies, which have a continuous eigenvalue
spectrum.

Because {M0, j
2, jz,P, jx,−i∇P } have the same commutations relations as {M, j2, jz,P, jx,−i∇P }, if the dynami-

cal Poincaré generators are defined as the same functions of these operators [27, 28] with M0 replaced by M , it follows
that the simultaneous eigenstates

|(λ, j),P, µ〉 (2.26)

of M, j2,P, jz transform as a mass λ spin j irreducible representation of the Poincaré group.
Since these eigenstates are complete, this defines the dynamical representation of the Poincaré group on a basis by

U(Λ, a)|(λ, j),P, µ〉 = |(λ, j),P ′, µ′〉
√
E′

Pλ

EPλ

Dj
µ′µ (Rw(Λ, Pλ)) eiP ′

λ·a, (2.27)

where

EPλ
=
√
λ2 + P2, Pλ := (EPλ

,P), P ′
λ = ΛPλ. (2.28)

This shows that the solution to the eigenvalue problem (2.25) provides the desired decomposition of the dynamical
unitary representation of the Poincaré group into a direct integral of irreducible representations.

The appearance of the mass eigenvalue λ on the right side of Eq. (2.27) indicates the interaction dependence of this
representation. It can happen, for a given choice of irreducible basis, that the coefficient on the right hand side of (2.27)
is independent of the mass eigenvalue for a subgroup of the Poincaré group. For the basis (2.15), of linear momentum
and canonical-spin eigenstates, both translations and rotations have this property. These transformations generate a
three-dimensional Euclidean subgroup of the Poincaré group that is independent of the interaction. An interaction-
independent subgroup is called a kinematic subgroup; the three-dimensional Euclidean group is the kinematic subgroup
is associated with an instant-form dynamics [30].

III. MASS OPERATORS

Next we discuss the structure of mass operators for the two and three-body problems. We pay particular attention
to issues related to representations of these operators that are suitable for computations without using partial waves.

The construction of the dynamics in (2.25) and (2.27) adds an interaction to the mass Casimir operator of a non-
interacting irreducible representation of the Poincaré group to construct an interacting irreducible representation. The
role of the spin in the structure of the irreducible representations suggests that this construction requires a partial
wave decomposition, however partial waves are not used in the calculations that follow.

The spin in the relativistic case is obtained by coupling the single particle spins and orbital angular momentum
vectors. While the form of the coupling is more complex than it is in the non-relativistic case, the final step involves
coupling redefined spins and orbital angular momenta with ordinary SU(2) Clebsch-Gordon coefficients. Undoing
this coupling leads to a representation of the dynamical operators that can be used in a calculation based on vector
variables.

The first step is to construct redefined vector variables that can be coupled to obtain the spin. To understand the
transformation properties of these operators note that the magnetic quantum number in equation (2.27) undergoes a
Wigner rotation when the system is Lorentz transformed. If the spin of the representation is obtained by coupling the
redefined particle spins and orbital angular momenta with SU(2) Clebsch-Gordan coefficients, then all of the spins
and relative angular momenta must also transform with the same Wigner rotation.

To illustrate how to construct momentum operators that Wigner rotate under kinematic Lorentz boosts consider a
pair of noninteracting spinless particles. The total four momentum PM0

of this system is the sum of the single particle
four momenta

PM0
= pm1

+ pm2
. (3.1)

Define the operator k by

k := B−1(PM0
)pm1

, (3.2)

where B−1(PM0
) is interpreted as a 4 × 4 matrix of operators. If both PM0

and pm1
are transformed with a Lorentz

transformation Λ, then k rotates with the same Wigner rotation that appears in Eq. (2.16)

k′ = B−1(P ′
M0

)p′1 = B−1(ΛPM0
) Λp1 = B−1(ΛPM0

)ΛB(PM0
)B−1(PM0

)p1 = Rw(Λ, PM0
) k. (3.3)
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It is due to the operator nature of B−1(PM0
) that k does not transform as a 4-vector.

The tensor product of single particle basis vectors |p1,p2〉 can be replaced by a basis |P,k〉 using a variable change.
In this basis Eq. (3.3) implies

U0(Λ, a)|P,k〉 = |P′, Rw(Λ, PW)k〉
√
E′

PW

EPW

eiP ′

W
·a P ′

W = ΛPW. (3.4)

where k is the eigenvector of the space components of the operator (3.2). This shows that k undergoes the same
Wigner-rotation as the two-body canonical spin.

If the two particles have spin, this single particle spins need to be Wigner rotated before they can be coupled [28].
The spins obtained this way are called constituent spins. The constituent spins undergo the same Winger rotations
as k but they are not 1-body operators and do not have natural couplings to the electromagnetic interaction. In this
paper we only consider spinless interactions. In this case the constituent spins can be ignored. Their only effect is
that they impact the permutation symmetry of orbital-isospin part of the wave functions.

The magnitude of k is an invariant that fixes the two-body invariant mass eigenvalue W:

W = 2
√

k2 +m2. (3.5)

If the vector part of k is expanded in partial waves

|P, |k|, j, µ〉 :=

∫
|P,k〉Y jµ(k̂) dk̂ (3.6)

then

U0(Λ, a)|P, |k|, j, µ〉 :=
∑

µ′

|P ′, |k|, j, µ′〉
√
E′

PW

EPW

Dj
µ′µ(Rw(Λ, PW))eiP ′

W
·a (3.7)

transforms like (2.11).
In the representation |P,k〉 Eq. (2.23) is satisfied for a spinless interaction of the form

〈P,k|Vr |P ′,k′〉 = δ(P − P ′)〈k‖Vr‖k′〉 (3.8)

with a rotationally invariant kernel

〈Rk‖Vr‖Rk′〉 = 〈k‖Vr‖k′〉. (3.9)

If the interaction includes nucleon spins, the rotational invariance must be generalized to include rotationally invariant
contributions involving the constituent spins.

Next we consider the three-body problem, where U0(Λ, a), M0 and W are now associated with the three nucleon
system. In the three-body system vector operators that Wigner rotate are the Poincaré-Jacobi momenta and three-
body constituent spins. The Jacobi momenta are obtained from the non-relativistic Jacobi momenta by replacing
Galilean boosts to the zero momentum frame of a system or subsystem by the corresponding non-interacting Lorentz
boosts. In these expression the boosts are considered to be matrices of operators. The replacements are

k̃ij ≡ B−1
g (P)(pi − pj) = pi − pj −

(pi + pj)

(mi +mj)
(mi −mj) −→ k̃ij ≡ B−1(Pm0,ij

)(pi − pj) (3.10)

qi ≡ B−1
g (P)pi = pi −

P

Mg
mi −→ qi ≡ B−1(PM0

)pi. (3.11)

where m0,ij is the invariant mass of the noninteracting two-particle (i, j) system.
The only complication in the three-body case is that when the single particle momenta undergo Lorentz transfor-

mations the variables k̃ij , qi experience different Wigner rotations

qi → Rw(Λ, PM0
)qi (3.12)

k̃ij → Rw(Λ, Pm0,ij
)k̃ij . (3.13)

Because of the different Wigner rotations, the angular momenta associated with qi and k̃ij cannot be consistently

coupled with SU(2) Clebsch-Gordon coefficients. To fix this redefine k̃ij → kij by replacing all of the pis in (3.10)



8

by the corresponding qis. Then when the single particle variables are Lorentz transformed, the qi all Wigner rotate
with a rotation R′. This means that the redefined kij transform as Rw(R′, qij), where qij = qi + qj . But the defining

property of the canonical boost (2.9) is Rw(R′, qij) = R′ which means that both qi and kij undergo the same Wigner
rotation, R′, when the single-particle variables are Lorentz transformed.

Only two of the six vector variables, qi and kij , are linearly independent. Any two of these variables along with
P can be used to label three-body basis vectors. Following non-relativistic usage, the single particle momenta are
replaced by the independent variables

{P,qk,kij} (3.14)

where k 6= i, j. The single particle basis vectors are replaced by

|P,qk,kij〉 = |p1,p2,p3〉|
∂(p1,p2,p3)

∂(P,qk,kij)
|1/2. (3.15)

The above definitions imply the desired transformation property

U0(Λ, a)|P,qk,kij〉 = |P′, Rw(Λ, PW)qk, Rw(Λ, PW)kij〉
√
E′

PW

EPW

eiP ′

W
·a (3.16)

where P ′ = ΛP .
The operators qk and kij are functions of the single particle momenta, and are thus defined on states with any total

momenta, not just on three-body rest states. This is similar to the mass operator, which is also defined on states of
any total momentum.

Next we discuss the structure of the mass operators that will be used in the two and three-body problems. The
mass operators m0,ij and M0 for the non-interacting two- and three-body systems can be expressed in terms of the

operators k̃ij , kij , and qk as

m0,ij =
√
m2

i + k̃2
ij +

√
m2

j + k̃2
ij (3.17)

and

M0 =
√
m2

0,ij + q2
k +

√
m2

k + q2
k (3.18)

where m0,ij in (3.18) replaces k̃ij by kij .
When two-body interactions are added to m0,ij the interacting two-body mass operator becomes:

mij = m0,ij + ṽij (3.19)

where in this basis (2.23) becomes

〈pij , k̃ij |ṽij |pij
′, k̃ij

′〉 = δ(pij − pij
′)〈k̃ij‖vij‖k̃ij

′〉. (3.20)

Cluster properties determine how the two-body interactions enter the three-body mass operator. In order to obtain
a three-body scattering operator that clusters properly, it is enough to replace k̃ij by kij in the two-body interaction
and include the modified two-body interaction in the three-body mass operator as follows:

Mij =
√

(m0,ij + vij)2 + q2
k +

√
m2

k + q2
k (3.21)

where

〈P,qk,kij |vij |P ′,qk
′,kij

′〉 = δ(P − P ′)δ(qk − qk
′)〈kij‖vij‖kij

′〉 (3.22)

and the functional form of the reduced kernel 〈kij‖vij‖kij
′〉 is identical in (3.20) and (3.22), and it must be a

rotationally invariant function of its arguments k̃ij and k̃ij
′ (resp. kij and kij

′) .
The interacting three-body mass operator is then defined by

M := M0 + V12 + V23 + V31 (3.23)
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where the two-body interactions embedded in the three-particle Hilbert space [32] are

Vij := Mij −M0 =
√

(m0,ij + vij)2 + q2
k −

√
m2

0,ij + q2
k. (3.24)

The sum of the interactions is consistent with the constraint (2.23) since each of the two-body interactions Vij in (3.23)
is consistent with (2.23). The dynamical problem is to find eigenstates ofM in the basis (3.15). The technical challenge
for the numerical solutions of the three body-problem is the computation of the embedded two-body interactions, Vij ,
which requires computing functions of the non-commuting operators m0,ij and vij .

While this dynamical model leads to a S-matrix that satisfies cluster properties, the constructed unitary repre-
sentation of the Poincaré group only clusters properly when P = 0. Since the S-matrix is Poincaré invariant, this
is sufficient for computing all bound state and three-body scattering observables, however additional corrections are
required if the three-body eigenstates are used to compute electromagnetic observables.

IV. RELATIVISTIC SCATTERING THEORY

Our interest in this paper is the computation of scattering cross sections for two-body elastic scattering and breakup
reactions in Poincaré invariant quantum mechanics. The formulation of the scattering theory using dynamical mass
operators for the Poincaré group is outlined below. For a more complete discussion see [28].

The multichannel scattering matrix is calculated using the standard formula

Sαβ = 〈Ψ+
α (0)|Ψ−

β (0)〉 (4.1)

where β is the initial deuteron-nucleon channel and α is either a deuteron-nucleon or three nucleon channel.
The scattering states that appear in Eq. (4.1) are defined to agree with states of non-interacting particles long

before or long after the collision

lim
t→±∞

‖e−iHt|Ψ±
α (0)〉 − e−iHαt|Φ±

α (0)〉‖ = 0. (4.2)

In this paper the ± on the scattering states and wave operators indicates the direction of the time limit
(− =past/+ =future), which is opposite to the sign of iǫ.

In the breakup channel |Φ+
α (0)〉 is a normalizable Hilbert space vector. In the nucleon-deuteron channels |Φ±

α (0)〉
has the form

〈P,qi,kjk|Φ±
α (0)〉 = φD(kjk)f(qi,P) (4.3)

where φD(kjk) is the deuteron wave function and f(qi,P) is a unit normalized wavepacket describing the state of a
free deuteron and nucleon at time zero.

The asymptotic and interacting scattering states are related by the multichannel wave operators

|Ψ±
α (0)〉 = Ωα±(H,Hα)|Φ±

α (0)〉 (4.4)

where the multichannel wave operators are defined by the strong limits

Ωα± = lim
t→±∞

eiHte−iHαt (4.5)

on channel states. The multichannel scattering operator can then be expressed in terms of the wave operators as

Ŝαβ = Ω†
α+(H,Hα)Ωβ−(H,Hβ). (4.6)

In the three-body breakup channel, α = 0,

Hα = H0 =
√
M2

0 + P2. (4.7)

In channels, α = (ij), with an incoming or outgoing deuteron,

Hα = Hij = H0 + VHα, (4.8)

where

VHα =
√
M2

ij + P2 −
√
M2

0 + P2 (4.9)
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is the interaction between the nucleons in the deuteron in the three-body Hamiltonian. We use the notation Mα

to denote M0 for the breakup channel or Mij for the nucleon-deuteron channel. In the non-relativistic case the
Hamiltonian, which generates time evolution in the asymptotic conditions, is normally replaced by the Casimir
Hamiltonian, h. This can be done because P2/2Mg appears linearly in both the interacting and non-interacting
Hamiltonians and commutes with the interactions. In the relativistic case the interaction in the Hamiltonian is
different from the interaction in the mass operator, and the kinetic energy enters the mass non-linearly. In the
relativistic case the wave operators can still be expressed directly in terms of the mass operators. The justification
is the Kato-Birman invariance principle [33, 34] which implies that H and Hα can be replaced by a large class of
admissible functions of H and Hα in the wave operators; specifically

M =
√
H2 − P2 (4.10)

is in the class of admissible functions. This gives

Ωα± = lim
t→±∞

eiMte−iMαt = lim
t→±∞

eiHte−iHαt (4.11)

which leads to an expression for the multichannel scattering operator [26] expressed directly in terms of the mass
operators:

Sαβ = lim
τ,τ ′→∞

eiMατe−iM(τ+τ ′)eiMβτ ′

. (4.12)

If these limits are computed in channel mass eigenstates |α〉 and |β〉 of Mα and Mβ the result is

〈α|S|β〉 = 〈α|β〉 − 2πiδ(Wα − Wβ)〈α|Tαβ(Wα + i0+)|β〉, (4.13)

where

Tαβ(z) = V β + V α(z −M)−1V β, (4.14)

and

V α = M −Mα = M −Mij (4.15)

for two cluster n− d channels and

V α = M −M0 (4.16)

for the breakup channel. Here Wα and Wβ are the eigenvalues of Mα and Mβ in the channel eigenstates |α〉 and |β〉.
The first term in Eq. (4.13) is identically zero if the states |α〉 and |β〉 correspond to different scattering channels.

Compared to the standard expression that is based on using the Hamiltonian, in Eq. (4.14) the interactions are
expressed as differences of mass operators rather than Hamiltonians, the resolvent of the Hamiltonian is replaced
by the resolvent of the mass operator and the energy conserving delta function is replaced with an invariant mass
conserving delta function.

The translational invariance of the interaction (4.15) requires that

〈P, · · · |Tαβ(z)| · · · ,P ′〉 = δ(P − P ′)〈· · · ‖Tαβ(z)‖ · · ·〉. (4.17)

Given the momentum conserving delta function, the product of the momentum and mass conserving delta functions
can be replaced by a four-momentum conserving delta function and a Jacobian:

δ(Wα − Wβ)δ(Pα − Pβ) = δ4(Pα − Pβ)

∣∣∣∣
dE

dM

∣∣∣∣ = δ4(Pα − Pβ)

∣∣∣∣
Wα

Eα

∣∣∣∣ (4.18)

where Eα =
√

W2
α + P2.

The representation (4.13) of the scattering matrix can be used to calculate the cross section. The relation between
the scattering matrix and the cross section is standard and can be derived using standard methods, such as the ones
used by Brenig and Haag in [35]. The only modification is that in the usual expression relating the cross section to
the transition operator, the transition operator is the coefficient of −(2π)iδ(Eα − Eβ). Thus to compute the cross
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section it is enough to use the standard relation between T and S with the channel transition operator being replaced
by

∣∣∣∣
Wα

Eα

∣∣∣∣× 〈· · · ‖Tαβ(z)‖ · · ·〉 (4.19)

The resulting expression for the differential cross section for elastic scattering is given by :

dσ =
(2π)4

v′nd

∣∣〈pd,pn‖Tαβ‖p′
d,p

′
n〉
∣∣2 W

2
α

E2
α

δ4 (pd + pn − p′d − p′n) dpndpd. (4.20)

and for breakup reactions the formula is replaced by

dσ =
(2π)4

v′nd3!

∣∣〈p1,p2,p3‖Tαβ‖p′
d,p

′
n〉
∣∣2 W

2
α

E2
α

δ4 (p1 + p2 + p3 − p′d − p′n) dp1dp2dp3. (4.21)

These relations are normally given in terms of single particle momenta while the transition matrix elements are
evaluated in terms of the Poincaré-Jacobi momenta. The transformation relating these representations involves some
Jacobians. These are discussed in the sections on calculations.

Except for the factor W
2
α/E

2
α, Eq. (4.20) is identical to the corresponding non-relativistic expression. The additional

factor of W
2
α/E

2
α arises because we have chosen to calculate the transition operator using the mass operator instead

of the Hamiltonian. The differences in these formulas with standard formulas are (1) that the transition operator is
constructed from the difference of the mass operators with and without interactions and (2) the appearance of the
additional factor of W

2
α/E

2
α which corrects for the modified transition operator. This factor becomes 1 when P = 0.

The differential cross section dσ is invariant. Equations (4.20) and (4.21) can be expressed in a manifestly invariant
form. The relation to the standard expression of the invariant cross section using conventions of the particle data
book [36] is derived in the appendix where we also outline the proof of Eq. (4.13).

V. INTEGRAL EQUATIONS

The dynamical problem is to compute the three-body transition operators Tαβ(z) that appear in Eqs. (4.20) and
(4.21) and use these to calculate the cross sections. It is useful to replace the transition operators (4.14) by the
on-shell equivalent AGS [38] transition operators:

Uαβ(z) := δ̄αβ(z −Mα) + Tαβ(z). (5.1)

When z is put on the energy shell and evaluated on the channel eigenstate for the channel α the first term of (5.1)
vanishes. The AGS operators are solutions of the integral equation

Uαβ(z) := δ̄αβ(z −M0) +
∑

γ

δ̄αγVγ(z −Mγ)−1Uγβ(z), (5.2)

where Vγ := Mγ −M0 = Vij are the embedded two-body interactions given in (3.24), and the sum is over the three
two cluster configurations, 1 = (1; 23), 2 = (2; 31), 3 = (3; 12), with each cluster labeled by the index γ.

When the particles are identical this coupled system can be replaced by an equation for a single amplitude,

U(z) = P (z −M0) + PV1(z −M1)
−1U(z), (5.3)

where we chose without loss of generality to single out the configuration (1;23). In this case the permutation operator
P is given by P = P12P23 + P13P23. This solution can be used to generate the breakup amplitude

U0 = (I + P )V1(z −M1)
−1U(z). (5.4)

The AGS operators U(z) and U0(z) can be expressed in terms of the solution T (z) of the symmetrized Faddeev
equations

U(z) = P (z −M0) + PT (z)

U0(z) = (1 + P )T (z), (5.5)



12

where T (z) is the solution to

T (z) = T1(z)P + T1(z)P (z −M0)
−1T (z). (5.6)

where the operator T1(z) is the two-body transition operator embedded in the three-particle Hilbert space defined as
the solution to

T1(z) = V1 + V1(z −M0)
−1T1(z), (5.7)

where V1 = V23 = M23 −M0.
The first order calculation that we perform in this paper is defined by keeping the first term of the multiple scattering

series generated by (5.6):

T (z) → T1(z)P (5.8)

U(z) → P (z −M0) + PT1(z)P U0(z) → (1 + P )T1(z)P, (5.9)

Because the embedded interactions Vγ (3.24) in the AGS equations are operator valued functions of the non-
commuting operatorsm0,ij and vij , their computation, given vij as input, presents additional computational challenges

To compute the kernel note that it can be expressed as

Vγ(z −Mγ)−1 = Tγ(z)(z −M0)
−1 (5.10)

where

Tγ(z) = Vγ + Vγ(z −Mγ)−1Vγ (5.11)

In this article we compute this kernel using a method that exploits the relation between the two-body transition
operator and the operator (5.11). Because Mij and mij have the same eigenvectors it follows that [20]

〈P′,q′,k′|Tγ(z′)(z′ −M0)
−1|P,q,k〉 = δ(P ′ − P)δ(q ′ − q)

(
m0,ij(k

′) +m0,ij(k)

M0(q,k′) +M0(q,k)

) 〈k′|tij(z̃′)|k〉
z′ −M0(q,k)

(5.12)

where

z′ = M0(q,k
′) + i0+ z̃′ = m0,ij(k

′) + i0+. (5.13)

In the AGS equation, this kernel is needed for all values of z, while equation (5.12) only holds for z = z′. The kernel
for an arbitrary z can be computed by using the first resolvent equation which leads to integral equation

Tγ(z) = Tγ(z′) + Tγ(z)G0(z)(z
′ − z)G0(z

′)Tγ(z′) (5.14)

where G0(z) = (z −M0)
−1 which can be used to calculate Tγ(z) from Tγ(z′) for all z 6= z′.

VI. RELATIVISTIC FORMULATION OF THREE-BODY SCATTERING

In the scattering of three particles interacting with spin independent interactions, there are two global observables,
the total cross section for elastic scattering, σel, and the total cross section for breakup, σbr. These can be computed
using (4.20) and (4.21). In this section we discuss the kinematic relations needed to compute these quantities in more
detail.

If we replace the transition operators by the corresponding symmetrized AGS operators, use the identities

Πd =

∫
|P,q, ϕd〉dPdq〈P,q, ϕd| =

∫
|pd,pn, ϕd〉dpddpn〈pd,pn, ϕd| (6.1)

and

I =

∫
|P,k,q〉dPdkdq〈P,k,q| =

∫
|p1,p2,p3〉dp1dp2dp3〈p1,p2,p3|, (6.2)
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and evaluate the initial state and vbt in the center of momentum frame, (4.20) becomes

σel =
(2π)4

vbt

∫
dq δ(Wf − Wi)|〈ϕd,q‖U‖ϕd,q0〉|2 (6.3)

for elastic scattering and

σbr =
1

3

(2π)4

vbt

∫
dq dkδ(Wf − Wi)|〈k,q‖U0‖ϕd,q0〉|2. (6.4)

for breakup.
Here Wi(Wf ) are the invariant masses eigenvalues of the initial (final) state, q0 is the Poincaré-Jacobi momentum

between the projectile and the target, and k and q the Poincaré-Jacobi momenta for a given pair and spectator defined
in the previous section. The permutation operator in (5.3) only includes three of the six permutations of the three
particles; the other three independent permutations are related by an additional transposition that interchanges the
constituents of the deuteron, which is already symmetrized. This accounts for replacement of the statistical factor
1/3! in (4.20) by the factor of 1/3 in (6.4).

Using relativistic kinematical relations the integral over |q| in Eq (6.3) can be done using the invariant mass
conserving delta function with the result

σel = (2π)4
∫
dΩ

E2
n(q0)E

2
d(q0)

W2
|〈ϕd, q̂q0|U |ϕd,q0〉|2. (6.5)

The quantities W and q0 are determined by the laboratory kinetic energy Elab of the incident nucleon. First note

W
2 = (m+md)

2 + 2mdElab. (6.6)

The nucleon rest mass is given by m, the rest mass of the deuteron is md = 2m− εd, where εd is the deuteron binding
energy. The Poincaré Jacobi momentum between projectile and target, q0, is related to Elab by

q2
0 =

m2
dElab

W2
(Elab + 2m) (6.7)

In the nonrelativistic case the phase space factor under the integral of Eq. (6.5) reduces to (2m/3)2.
It is also necessary to compute the transition matrix elements that appear in (6.3) and (6.4). The momenta of

the three particles can be labeled either by single-particle momenta p1, p2, and p3, or the total momentum P and
the relativistic Poincaré-Jacobi momenta of Eqs. (3.10) and (3.11) with the pi replaced by qi. The explicit relations
between the three-body Poincaré Jacobi momenta are

q ≡ qi = −(qj + qk)

k ≡ ki = kjk =
1

2
(qj − qk) − 1

2
(qj + qk)

(
Ej − Ek

Ej + Ek +
√

(Ej + Ek)2 − (qj + qk)2

)
, (6.8)

where Ei ≡ E(qi) =
√
m2 + qi

2. For nonrelativistic kinematics the second term in k, being proportional to the total
momentum of the pair (j, k), vanishes. In addition, the transformation from the single particle momenta pi to the
Poincaré-Jacobi momenta has a Jacobian given by

|p1,p2,p3〉 =

∣∣∣∣
∂(P,k,q)

∂(p1,p2,p3)

∣∣∣∣
1/2

|P,k,q〉 (6.9)

where for P = 0 the Jacobian becomes

∣∣∣∣
∂(P,k,q)

∂(p1,p2,p3)

∣∣∣∣
1/2

|P=0

=

(√
(E(q2) + E(q3))2 − q2 (E(q2) + E(q3))

4E(q2)E(q3)

)1/2

≡ n̂ (q;q2q3) . (6.10)

In the above expression we chose without loss of generality particle 1 as spectator. The difference between the
relativistic and non-relativistic Jacobi momenta in Eqs. (3.10) and (3.11) are relevant for the calculation of the
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permutation operator P in Eqs. (5.5) and (5.6). The matrix elements of the permutation operator are then explicitly
calculated as

〈k′,q′|P |k,q〉 = N(q′,q)

[
δ(k′ − q − 1

2
q′ C(q,q′))δ(k + q′ +

1

2
q C((q′,q))

+ δ(k′ + q +
1

2
q′ C(q,q′))δ(p − q′ − 1

2
q C((q′,q))

]
, (6.11)

where the function N(q′,q) contains the product of two Jacobians and reads

N(q,q′) =

√
E(q) + E(q + q′)

√
E(q′) + E(q + q′)

4E(q + q′)

×
4
√

(E(q) + E(q + q′))2 − q′2 4
√

(E(q′) + E(q + q′))2 − q2

√
E(q)E(q′)

. (6.12)

and the function C(q,q′) is calculated as

C(q′,q) = 1 +
E(q′) − E(q′ + q)

E(q′) + E(q′ + q) +
√

(E(q′) + E(q′ + q))2 − q2
. (6.13)

These permutation operators, which change the order of coupling, are essentially Racah coefficients for the Poincaré
group. In the nonrelativistic case the functions N(q′,q) and C(q′,q) both reduce to the constant 1 and have
the relatively compact form of the matrix elements of P given in e.g. [11, 12]. Since both functions depend on
magnitudes as well as angles between the momentum vectors, the 3D formulation is very appropriate for our relativistic
calculations. In order to illustrate the momentum and angle dependence we display in Fig. 1 the function C(q′,q)
for a given value of |q′| = 0.65 GeV as function of |q| and several values of the angle y = q̂′ · q̂. In general the values
of C drop below 1 as q increases. The angle dependence is strongest for small q, where for q̂′ · q̂ = −1 the function is
larger than 1. For the same fixed value of |q′| we display the function N(q′,q) in Fig. 2. Here we see a slowly varying
dependence on the momentum |q| and a strong angle dependence. For small angles (y = 1) the function N(q′,q) is
larger than 1, whereas for large angles (y = −1) it is reduced from 1 by as much as 20%.

In matrix form the Faddeev equation, Eq. (5.6), has the form

〈k,q‖T ‖ϕd,q0〉 = 〈k,q‖T1P‖ϕd,q0〉 + 〈k,q‖T1P (z −M0)
−1T ‖ϕd,q0〉. (6.14)

Since at this stage we are only carrying out first order calculations, we only need to consider the first term. Explicitly
this is given as

〈k,q‖T (W)‖ϕd,q0〉 = 〈k,q‖T1(q, ε)P‖ϕd,q0〉

=

∫
dk′dq′dk′′dq′′〈k,q‖T1(q, ε)‖k′,q′〉〈k′,q′‖P‖k′′,q′′〉〈k′′,q′′|ϕd,q0〉

=

∫
dk′dq′dk′′dq′′ T1(k,k

′,q; ε)δ(q′ − q)ϕd(k′′)δ(q′′ − q0)

×N(q′,q′′)[δ(k′ − k(q′′,−q′ − q′′))δ(k′′ + k(q′,−q′ − q′′))

+δ(k′ + k(q′′,−q′ − q′′))δ(p′′ − p(q′,−q′ − q′′))]

= N(q,q0) Ts

(
p,q0 +

1

2
qC(q0,q),q; ε

)
ϕd

(
q +

1

2
q0 C(q,q0)

)
. (6.15)

Here the invariant parametric energy ε which enters the two-body t-matrix is given by ε = W −
√
m2 + q2. Since we

consider bosons, the symmetrized two-body transition matrix Ts is given by

Ts(k,k
′,q; ε) = T1(k,k

′,q; ε) + T1(−k,k′,q; ε)

= T1(k,k
′,q; ε) + T1(k,−k′,q; ε). (6.16)

This expression is the starting point for our numerical calculations of the transition amplitude in first order. The first
step for an explicit calculation is the selection of independent variables. Since we ignore spin and iso-spin dependencies,
the matrix element 〈k,q‖T ‖ϕd,q0〉 is a scalar function of the variables k and q for a given projectile momentum q0.
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Thus one needs 5 variables to uniquely specify the geometry of the three vectors k, q and q0. We follow here the
procedure from Ref. [12] and choose as variables

k = |k|, q = |q|, xk = k̂ · q̂0, xq = q̂ · q̂0, x
q0

kq = ̂(q0 × q) · ̂(q0 × k). (6.17)

The last variable, xq0

kq , is the angle between the two normal vectors of the k-q0-plane and the q-q0-plane, which are
explicitly given by

̂(q0 × k) =
q̂0 × k̂√

1 − (q̂0 · k̂)2
,

̂(q0 × q) =
q̂0 × q̂√

1 − (q̂0 · q̂)2
. (6.18)

With these definitions of variables the expression for the transition amplitude as function of the 5 variables from
Eq. (6.17) has the same form as its nonrelativistic counterpart, and we can apply the algorithm developed in Ref. [12]
for solving it without partial wave decomposition. The only additional effort is the evaluation of the functions
C(q0, q, xq) and N(q0, q, xq). However, this is conceptually and numerically quite straightforward, since both functions
depend only one angle, xq.

VII. TWO-BODY TRANSITION OPERATOR AND RELATIVISTIC DYNAMICS

The kinematic effects related to the use of the relativistic Racah coefficients have been described in the previous
Section. It is left now, to obtain the transition amplitude of the 2N subsystem embedded in the three-particle
Hilbert space , Ts(k,k

′,q; ε), entering Eq. (6.15). This is a fully off-shell amplitude depending in addition on the
Poincaré-Jacobi momentum q of the pair. The embedded 2N transition amplitude satisfies the Lippmann-Schwinger
equation

T1(k,k
′;q) = V1(k,k

′;q) +

∫
dk′′ V1(k,k

′′;q) T1(k
′′,k′;q)√

[2
√
m2 + k′2]2 + q2 −

√
[2
√
m2 + k′′2]2 + q2 + iǫ

. (7.1)

where the interaction (3.24) can be expressed in the relativistic Jacobi momenta as Ref. [32]

V (q) =

√[
2
√
m2 + k2 + v

]2
+ q2 −

√[
2
√
m2 + k2

]2
+ q2. (7.2)

For q = 0 this expression reduces to the interaction v(k,k′)δ(q−q ′), which is the interaction in the two-nucleon mass
operator. In the same limit, Eq. (7.1) reduces to the familiar Lippmann-Schwinger equation with relativistic kinetic
energies.

This matrix element is constructed using the methods outlined in equations (5.12) and (5.14). First the matrix
element of the right half-shell embedded t-operator is evaluated using the two-body half shell transition amplitude
where the convention of [35] is employed

〈k|T1(q; z′)|k′〉 = 〈k|V (q)|k′(−)〉

=
2(Ek′ + Ek)√

4E2
k′ + q2 +

√
4E2

k + q2
t(k,k′; 2Ek′), (7.3)

where the 2N transition amplitude t(k,k′; 2Ek′) is the solution of the half-shell Lippmann-Schwinger equation

t(k,k′; 2Ek′) = v(k,k′) +

∫
dk′′ v(k,k

′′)t(k′′,k′; 2Ek′)

Ek′ − 2
√
m2 + k′′2 + iǫ

. (7.4)

This solution is used as input to equation (5.14) which has the form

〈k|T1(q; z)|k′〉 = 〈k|T1(q; z′|k′〉 −∫
dk′′ 〈k|T1(q; z)|k′′〉

( 1

z −
√

4(m2 + k′′2) + q2
− 1

z′ −
√

4(m2 + k′′2) + q2

)
〈k′′|T1(q; z′)|k′〉, (7.5)
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where T1(z
′) is taken to be right half-shell with z′ =

√
4(m2 + k′2) + q2 + iǫ. Note that in this equation the unknown

matrix element is to the left of the kernel.
We refer to T1(k,k

′;q) := 〈k|T1(q; z)|k′〉 as the embedded 2N t-matrix and to V (k,k ′;q) as the embedded inter-
action. Matrix elements of T1(z) can be alternatively calculated by inserting a complete set of eigenstates of the 2N

mass operator m12 = 2
√

k2 +m2 + v, as has been carried out in Ref. [39] for a relativistic calculation of the triton
binding energy using two-body s-waves. Similarly, this method of spectral decomposition can be used to directly
calculate the matrix elements of the embedded two-body t-matrix, as has been done in another relativistic calculation
of the triton binding energy [40]. The general difficulty with this method of spectral decomposition is that it requires
an integration over the c.m. half-shell matrix elements t(k,k′;Ek′ ) in k′, requiring the knowledge of those matrix
elements for large values of k′, which can pose a challenge with respect to numerical accuracy. To our knowledge, this
method has not yet led to a successful relativistic calculation of scattering observables.

We use Eq.(7.5) to explicitly construct the elements of the fully off-shell t-matrix, which enters the calculation of the
three-body transition amplitude given in Eq. (6.15). For every off-shell momentum k′ the integral equation, Eq.(7.5),
must be solved for each z. It is worthwhile to note that the k′′ integration in Eq.(7.5) only involves momenta of the
half-shell t-matrices, but no energies. The momenta k and k′ are fixed by requirements of the three-body calculation,
and typically are not higher than 7 GeV. We tested that for converged results the k′′ integration has to go up to
about 12 GeV. The singularities in the two denominators of Eq.(7.5) do not pose any problems and are handled with
standard subtraction techniques.

In order to obtain insight into the impact of the embedding for different values of q, we introduce approximations
to the embedded interaction. First, we completely neglect q in the embedded interaction, which leads to

V (k,k′;q) → V0(k,k
′;q) = v(k,k′). (7.6)

Furthermore, we want to test the leading order terms in a q/m and v/m expansion as suggested in Ref. [13]

V (k,k′;q) → V1(k,k
′;q) = v(k,k′)

(
1 − q2

8m2

)
(7.7)

and

V (k,k′;q) → V2(k,k
′;q) = v(k,k)

(
1 − q2

8
√
m2 + k2

√
m2 + k′2

)
(7.8)

and explore their validity as function of projectile energy.

VIII. CROSS SECTIONS FOR ELASTIC SCATTERING

The calculation of the cross section for elastic scattering, Eq. (6.5), requires the knowledge of the matrix element
〈ϕd, q̂, q0|U |ϕd,q0〉. Using the definition of the operator U , Eq. (5.5), inserting a complete set of states and using for
the matrix elements of the permutation operator the expression from Eq. (6.11), we obtain

〈ϕd,q‖U‖ϕd,q0〉 = 〈ϕd,q‖P (z −M0) + PT ‖ϕd,q0〉

=

∫
dk′dq′dk′′dq′′〈ϕd,q|k′,q′〉〈k′,q′‖P‖k′′,q′′〉〈k′′,q′′‖(z −M) + T ‖ϕd,q0〉

=

(
W −

√
m2 + q2

0 −
√

4(m2 + (q +
1

2
q0 C(q,q0))2) + q2

0

)

×2N(q,q0)ϕd

(∣∣∣∣q0 +
1

2
qC(q0,q)

∣∣∣∣
)
ϕd

(∣∣∣∣q +
1

2
q0 C(q,q0)

∣∣∣∣
)

+2

∫
d3q′′ N(q,q′′)ϕd

(∣∣∣∣q′′ +
1

2
q C(q′′,q)

∣∣∣∣
)

× 〈q +
1

2
q′′ C(q,q′′),q′′‖T ‖ϕd,q0〉. (8.1)

In first order the transition amplitudes reads T = tP , thus the final expression for the transition amplitude for elastic
scattering becomes

〈ϕd,q‖U‖ϕd,q0〉 =

(
W −

√
m2 + q2

0 −
√

4[m2 + (q +
1

2
q0 C(q,q0))2] + q2

0

)
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×2N(q,q0)ϕd

(∣∣∣∣q0 +
1

2
q C(q0,q)

∣∣∣∣
)
ϕd

(∣∣∣∣q +
1

2
q0 C(q,q0)

∣∣∣∣
)

+2

∫
dq′′ N(q,q′′)ϕd

(∣∣∣∣q′′ +
1

2
qC(q′′,q)

∣∣∣∣
)
ϕd

(∣∣∣∣q′′ +
1

2
q C(q′′,q0)

∣∣∣∣
)

×Ts

(
(q +

1

2
q′′ C(q,q′′)), (q0 +

1

2
q C(q0,q)); ε

)
, (8.2)

where ε = W −
√
m2 − q′′2.

In the following we want to compare a non-relativistic first order calculation to a corresponding relativistic one.
What is common in both calculations is the input two-body interaction. In the relativistic case it is transformed to
be two-body scattering equivalent to the non-relativistic two-body calculation. Though we consider only spin-isospin
independent interactions, we nevertheless can provide qualitative insights for various cross sections in three-body
scattering in the intermediate energy regime, which we define as ranging from 200 MeV to 1 GeV projectile energy.
The focus of our investigation will be how kinematic and dynamic relativistic effects manifest themselves at different
energies and for different scattering observables.

As model interaction we choose a superposition of two Yukawa interactions of Malfliet-Tjon type [41] with pa-
rameters chosen such that the potential supports a bound-state, the ‘deuteron’, at -2.23 MeV. The parameters are
given in Ref. [12]. With this interaction we solve the non-relativistic Faddeev equation in first order as a basis for all
comparisons. Then we need to construct a phase equivalent relativistic two-body interaction. We use the procedure
suggested by Kamada-Glöckle [18], and obtain a two-body interaction v(k,k′) as Born term of a relativistic two-body
Lippmann-Schwinger equation. This two-body t-matrix, t(k,k′; ε) is the starting point for all calculations which will
be presented in the following. In principle there are other methods to obtain a phase-shift equivalent relativistic poten-
tial [20], however in this work we want to focus on the relativistic effects visible in three-body scattering observables,
and thus use only one fixed scheme.

Following Ref. [13], as first assessment of the quality of different approximations for the embedded interaction we
solve the relativistic 2N Schrödinger equation for the deuteron as function of the momentum |q|, which takes the form

Φd(k) =
1

√
m2

d + q2 −
√

2E2
km

+ q2

∫
dk′ V (k,k′;q)Φd(k

′). (8.3)

Here md is the rest mass of the deuteron. In Fig. 3 we show the deuteron binding energy εd calculated using the
approximations of the embedded interaction given in Eqs. (7.6), (7.7), and (7.8). A correctly embedded interaction
should of course not change εd at all. We see that εd based on the calculation using V0 starts to deviate already
for very small q. The approximation V1 gives reasonable results up to q ≈ 0.3 GeV, whereas V2 is good to about
0.6 GeV. In the following we will see how far these simple estimates are reflected in the calculation of various scattering
observables.

As a first observable we consider the total cross section for elastic scattering, σel, which is given in Table I for
projectile kinetic energies from 10 MeV up to 1 GeV. Starting from the non-relativistic cross section, we successively
implement different relativistic features to study them in detail. First we only change the phase space factor in the
calculation (psf) together with the relativistic transformation from laboratory to c.m. frame, and only then implement
the relativistic kinematics due to the Poincaré-Jacobi coordinates (R-kin). The relativistic phase space factor alone
has a large effect on the size of the total cross section, as was already observed in [42]. The kinematic effects of the
Poincaré-Jacobi coordinates have the opposite effect and lower the cross section. However, all kinematic effects taken
together increase the total cross section by about 6% at 0.2 GeV and about 40% at 1 GeV. Introducing relativistic
dynamic effects into the calculation changes this considerably . The full relativistic calculation (R) lowers the total
cross section by about 2% at 0.2 GeV and about 6% at 1 GeV, so that in total the relativistic cross section is smaller
than the nonrelativistic one. The approximation V2 of Eq. (7.8) is very good in the energy regime considered, even
at 1 GeV its result only deviates by about 2% from the full one. As suggested by the calculations of the deuteron
binding energy, the approximation V1 of Eq. (7.7) is still reasonable at 0.2 GeV, but after that starts to become worse.

Next we consider the differential cross section for elastic scattering. In Fig. 4 we show the calculation for 0.2 GeV
projectile kinetic energy. Since differences between the calculations disappear on a logarithmic scale, we also show
the quantity

∆ =

(
dσ
dΩ

)
R
−
(

dσ
dΩ

)
NR(

dσ
dΩ

)
NR

(8.4)
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expressed in percentage for the different approximations in the lower panel of Fig. 4. For the backward angles,
θ ≥ 135o, which correspond to higher momentum transfer, all relativistic effects increase the cross section. Here it
can be clearly seen that indeed V0 is a bad approximation, whereas V1 and V2 are of about the same quality. We
also see that there is a small difference between the calculation based on V2 and the full result. Similar findings,
however without the full calculation, were presented in Ref. [13]. When going to higher projectile kinetic energies,
we expect that the effects increase. This is indeed so, as shown in Fig. 5 for the differential cross section at 0.5 GeV
projectile kinetic energy. Here the second minimum in the cross section around 90o shows a shift towards larger
angles once relativistic dynamics is included. This phenomenon has been seen and studied in some electron-deuteron
scattering [43] calculations. To study this shift in more detail we show in the lower panel of Fig. 5 a restricted angular
range. Here we can see that the relativistic kinematics produces a shift of the minimum by a few degrees. The
magnification shows that the approximations of the embedded interaction oscillate by a few degrees around the full
solution. At the extreme backward angles, the relativistic cross section is larger than the non-relativistic one, as was
the case at 0.2 GeV. In order to illuminate the details of the two minima of the cross section at 0.5 GeV even further,
we show in Fig. 6 the two terms contributing to the operator U for elastic scattering separately. The curves labeled
‘1st-U’ correspond to the first term in Eq. (8.2) or the operator P (z −M0) in Eq. (5.5), which contributes to the
structure of the cross section at backward angles and depends only on the product of two deuteron wave functions
evaluated at shifted momenta. Here the relativistic calculation is pushed slightly towards smaller angles indicating the
effect of the functions C(q,q0). The second term in Eq. (8.2), represented by the curves labeled ‘int-U’, contains in
integral over the two-body t-matrix and a product of deuteron wave functions, and basically determines the structure
of the cross section for angles up to about 100o. Here we see the shift of the minimum towards higher angles for the
relativistic calculation. The interference of both terms in the calculation gives the final pattern as seen in Fig. 5.

IX. CROSS SECTIONS FOR BREAKUP PROCESSES

The calculation of the breakup cross section, Eq. (6.4), requires the knowledge of the matrix element

〈k,q‖U0‖φd,q0〉. Energy conservation requires that in Eq. (6.4) Wf = Wi ≡ W =
√

4(m2 + k2) + q2 +
√
m2 + q2.

This gives a relation between the momenta k and q. In fact, for each given q the magnitude of k is fixed as

ka ≡ |ka| = 1
2

√
W2 − 3m2 − 2W

√
m2 + q2. This leads to

σcm
br =

(2π)4

3

E(q0)Ed(q0)

q0W

∫
dΩpdΩqdq q

2 ka

4

√
4(m2 + k2

a) + q2 |〈p,q‖U0‖ϕd,q0〉|2 (9.1)

We will consider here the cross sections for two different breakup processes, the inclusive breakup, where only one
of the outgoing particles is detected, and the full or exclusive breakup. In order to obtain the differential cross section
for inclusive breakup, one still needs to integrate over the solid angle of the undetected particle to arrive at invariant
cross section:

d3σcm
br

dΩqdEq
=

(2π)4

3

E(q0)Ed(q0)E(q)q

q0W

∫
dΩk

ka

4

√
4(m2 + k2

a) + q2 |〈k,q‖U0‖ϕd,q0〉|2 . (9.2)

Here we changed from the variable dq to the more utilized dEq. The five-fold differential cross section for exclusive
scattering, where both particles are detected, is given by

d5σcm
br

dΩkdΩqdEq
=

(2π)4

3

E(q0)Ed(q0)E(q) q

q0W

pa

4

√
4(m2 + k2

a) + q2 |〈k,q‖U0‖ϕd,q0〉|2 . (9.3)

Next we need to explicitly evaluate the matrix element for breakup scattering, 〈k,q‖U0‖ϕd,q0〉, with U0 given in
Eq. (5.5)

〈k,q‖U0‖ϕd,q0〉 = 〈k,q‖T ‖ϕd,q0〉 + 〈k,q‖P12P23T ‖ϕd,q0〉 + 〈k,q‖P13P23T ‖ϕd,q0〉. (9.4)

The two terms containing the permutations can be calculated analytically, as we show explicitly for the second term
using the expressions of Eqs. (6.8) and (6.10) for the Poincaré-Jacobi coordinates

〈k,q‖P12P23T ‖ϕd,q0〉

=

∫
dq1dq2dq3

∫
dk′dq′〈k,q|q1,q2,q3〉〈q1,q2,q3‖P12P23‖k′,q′〉〈k′,q′‖T ‖ϕd,q0〉
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=

∫
dq1dq2dq3

∫
dk′dq′δ(q1 + q2 + q3 − P) n̂(q1;q2,q3) n̂(q2;q3,q1)

×δ(q − q1) δ(k − k23) δ(q
′ − q2) δ(k

′ − k31)〈k′,q′‖T ‖ϕd,q0〉. (9.5)

Taking particle 1 as spectator we can evaluate the momenta qi explicitly as

q1 = q

q2 = k − q

2E(k)

(
−k · q√

(2E(k))2 + q2 + 2E(k)
+ E(k)

)

q3 = −k − q

2E(k)

(
k · q√

(2E(k))2 + q2 + 2E(k)
+ E(k)

)
. (9.6)

From this q′ and k′ can be obtained as q′ = q3 and k′ = k31 by inserting the expressions of Eq. (9.6) into Eq. (6.8)
leading to

〈k,q‖P12P23T ‖ϕd,q0〉 = n̂(q1;q2q3) n̂(q2;q3q1)〈k31,q2‖T ‖ϕd,q0〉. (9.7)

In first order we have T = tP , and an explicit evaluation leads to

〈k,q‖ P12P23T ‖ϕd,q0〉 =

n̂(q1;q2q3) n̂(q2;q3q1) N(q2,q0) Ts

(
k31,q0 +

C(q0,q2)

2
q2; ε

)
ϕd

(
q2 +

C(q2,q0)

2
q0

)
.(9.8)

The functions N(q2,q0) and C(q0,q2) are defined in Eqs. (6.12) and (6.13). The last term in Eq. (9.4),
〈k,q‖P13P23T ‖ϕd,q0〉, is calculated analogously. Having calculated the matrix element of U0, Eq. (9.4), we can
obtain the differential cross section for inclusive as well as exclusive breakup scattering. The expressions for the
invariant cross sections in the laboratory variables are derived in Appendix B.

First, we consider inclusive breakup scattering and compare the cross sections for a non-relativistic first-order
calculation in the two-body t-operator with the corresponding relativistic one. One can expect that the evaluation of
the delta function in the cross section, Eq. (4.20) will have a substantial effect on breakup cross sections, since it fixes
the relation between the magnitudes of the vectors k and q. This in turn determines the maximum allowed kinetic
energy the ejected particle is allowed to have as function of the emission angle. To get a global impression of those
differences Fig. 7 shows a contour plot of the differential cross section for inclusive breakup scattering as function
of the kinetic energy and the emission angle of the ejected particle for the non-relativistic and the fully relativistic
calculation. The figure shows that for each angle the maximum allowed kinetic energy of the ejectile is shifted in
the relativistic calculation towards smaller values compared to the non-relativistic calculation. Specifically, one can
expect a shift of the quasi-free scattering (QFS) peak usually studied in inclusive breakup scattering experiments. In
Figs. 8 and 9 we present specific cuts at different constant angles to study details of the calculation. The upper panel
of Fig. 8 shows the entire energy range of the ejectile at emission angle θ1 = 24o in a logarithmic scale, while the lower
two panels give a close-up of both peaks on a linear scale. The QFS peak at the large ejectile energy exhibits clearly
a shift towards a slightly lower energy compared with the peak position calculated non-relativistically. At this angle,
relativistic kinematics given by the phase-space factor and the Poincaré-Jacobi coordinates and indicated by the line
labeled ‘R-kin’ results in a peak height, which is almost double that of the full relativistic calculation shown as solid
line labeled ‘R’. For breakup scattering we also study the different approximations to the full calculation as introduced
in Section IV. In the QFS peak, which is defined by the condition that one of the particles is at rest, even the crudest
approximation V0, Eq. (7.6), is very close to the full calculation, the approximations V1 and V2 are indistinguishable.
This is not surprising, since having one particle at rest means that the remaining two are almost in their own c.m.
frame, thus ‘boost’ effects should be extremely small. Note that we work here in the total c.m. frame. It is quite
illuminating to consider the second peak at very small ejectile kinetic energies. Since the energy of the particle is
very small, it should become essentially non-relativistic. This is indeed the case, and the full relativistic calculations
almost coincides with the non-relativistic one. It is worthwhile to note that neither relativistic kinematics alone nor
the approximation V0, which neglects the dependence of the embedded interaction on the pair-momentum is close to
the non-relativistic and full relativistic calculations. However, an approximate consideration of this dependence as
given by V1 or V2 seems to suffice. We found that this behavior is similar for low energy ejectiles, independent if the
energy of the projectile is 0.5 GeV or 1 GeV. In Fig. 9 we show the QFS peak for two different angles in order to
convey that the increase or decrease of the height of the peak depends on the emission angle under consideration. In
Fig. 10 we show the QFS peak calculated for a projectile energy of 0.495 GeV and emission angles of 18o and 24o, since
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there is experimental information available for one of the angles. Here we see that the relativistic calculation puts the
peak at a position consistent with the data. Since we only carry out a first order calculation with a model potential,
we are not surprised that the height of the peak is not described. A similar observation concerning the peak position
was already made in Ref. [44], where a first order calculation with two realistic NN interactions was carried out. To
give an indication how the position of the QFS peak shifts with increasing projectile energy, we show in Fig. 11 the
inclusive cross section for an emission angle of 24o for projectile energies 0.8 GeV and 1.0 GeV. We see again that in
the QFS regime the approximations V1 and V2 are essentially indistinguishable from the full calculation. Considering
only effects of relativistic kinematics results in a peak height double as large as the full calculation, indicating that
dynamic effects are very important at those high projectile energies.

When considering exclusive breakup one faces many possible configurations that could be considered. Since we are
carrying out a model study, we only want to show three specific configurations at two selected energies, 0.5 GeV and
1 GeV in Figs. 12 and 13. In all three configurations the angle φkq between the projections of the vectors q and k

into the plane perpendicular to the beam direction q0 is zero. Naive expectation is that when considering scattering
in first order in the t-operator the probability that one of the particles is scattered along the beam is large. That
is indeed the case as shown in the upper panels of Figs. 12 and 13, depicting a so called collinear configuration in
which the angle between the vector q and the beam direction q0 is zero (q̂ · q̂0 ≡ xq = 1) and the angle between

the vector p and the beam direction is 90o (k̂ · q̂0 ≡ xk = 0). Once the collinear condition is no longer fulfilled,
the cross section becomes considerably smaller, as can be seen in the middle and lower panels of Figs. 12 and 13.
For the middle panels the angles are given by xq =

√
3/2 and xp = −0.5, for the lower panels they are xq = −0.25

and xk = −0.9. All configurations in Figs. 12 and 13 show considerable difference between the nonrelativistic and
relativistic calculations. At 1 GeV we were specifically looking for possible configurations where the approximations
V1 and V2 of Eqs. (7.7) and (7.8) are not close to the full relativistic calculation any longer. Considering the two-body
binding energy displayed in Fig. 3, on should expect that the approximation V2 can exhibit deviations from the full
result at 1 GeV. One such configuration is shown in the lower panel of Fig. 13, where there is a big difference between
the calculation with V1 and the full result and a discernible difference between the calculation based on V2 and the
full result. However, we note, that in the majority of configurations where the cross section is still relatively large,
V2 is still a very good approximation at 1 GeV. Looking at the same configuration at 0.5 GeV, V2, and even V1 are
extremely good approximations to the full result.

X. SUMMARY AND CONCLUSIONS

We investigated relativistic three-nucleon scattering with spinless interactions in the framework of Poincaré invariant
quantum mechanics. Since that framework is not widely used in the nuclear physics few-body community we thought
it adequate to discuss the formulation of that scheme in some detail, as well as the formulation of scattering theory
in this framework. The main points are the construction of unitary irreducible representations of the Poincaré group,
both for noninteracting particles as well as for interacting ones. The Poincaré interacting dynamics is constructed
by adding an interaction to the noninteracting mass operator which commutes with and is independent of the total
linear momentum and the z-component of the total spin.

In this work we do not use partial waves but rather internal vector variables. This leads to what we call Poincaré-
Jacobi momenta. They Wigner rotate under kinematic Lorentz transformations of the underlying single particle
momenta. In the interacting three-body mass operator the two-body interactions are embedded in the three-particle
Hilbert space and are given as [32]

Vij := Mij −M0 =
√

(m0,ij + vij)2 + q2
k −

√
m2

0,ij + q2
k. (10.1)

This expression shows explicitly the dependence on the total momentum of the two-body system. For the sake of
completeness we also discuss the multichannel scattering theory in that relativistic framework and established the
manifestly invariant form of the differential cross section.

The application to three-body scattering is based on the Faddeev scheme, which is reformulated relativistically
working with various types of mass operators. The usage of the Poincaré-Jacobi momenta leads to algebraic modifica-
tions of corresponding standard nonrelativistic expressions, like e.g. the momentum representation of the permutation
operator, Jacobians for the transitions between individual Jacobi momenta. Due to the dependence on the total mo-
mentum of the two-body interaction embedded in the three-body system, the two-body off-shell t-operator entering
the Faddeev equation acquires additional momentum dependence beyond the usual energy shift which is characteristic
in nonrelativistic calculations. This two-body t-operator is then evaluated by expressing it exactly in terms of the
solution of half-shell Lippmann-Schwinger equations for a given two-body force in its c.m. frame. We also solve
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the relativistic Lippmann-Schwinger equation for three different momentum dependent two-body forces, which are
approximations to the relativistic embedded interaction.

In order to compare a nonrelativistic calculation to a relativistic one, scattering equivalent two-body forces in the
relativistic and nonrelativistic formulations have to be used. In this work we follow the KG prescription to arrive
at scattering equivalent two-body forces. There are different schemes, and a detailed study on differences between
those schemes will be subject of a forthcoming work. We also restrict ourselves to a first order calculation in the
two-body t-operator, which however, already exhibits most of the new relativistic ingredients , both kinematically
and dynamically. The two-body force was chosen as a superposition of two Yukawas of Malfliet-Tjon type supporting
a bound state, the deuteron, at -2.23 MeV. We calculate three-body scattering observables in the intermediate energy
regime, which we take to range from 0.2 GeV to 1 GeV. Those observables are cross sections for elastic as well as
breakup scattering, namely inclusive and exclusive scattering. Not surprisingly we find that the difference between
nonrelativistic and relativistic calculations increase with increasing energy. This is specifically apparent when looking
at the positions of minima in the differential cross section as well positions of QFS peaks in inclusive scattering. When
studying various approximations to the relativistic embedded interaction, we find that if the approximations contain
terms proportional to the first order in a p/m and q/m expansion, the approximation captures the features of the exact
relativistic calculation very well. Only at 1 GeV we start to find discernible deviations in selected configurations for
exclusive scattering. Our results clearly indicate an interesting interplay of kinematically and dynamically relativistic
effects, which as expected, increase with energy. For example, the total cross section is increased by kinematical
effects, whereas the dynamical effects resulting from the q-dependence of the embedded two-body force decrease it.
This tendency is also seen in the height of the QFS peak where in most cases the full calculation is lower than the one
allowing only for relativistic kinematic effects. Thus, considering only relativistic kinematic effects leads in general to
an over prediction of cross sections, which becomes more dramatic the higher the projectile energy is.

The Poincaré invariant relativistic framework is formally close to the nonrelativistic one and therefore standard
nonrelativistic formulations, in our case the Faddeev scheme, can be used with proper modifications. The present
restriction to a first order calculation in the t-operator will soon be replaced by a complete solution of the corresponding
relativistic Faddeev equation following [12], where the nonrelativistic Faddeev equation has been successfully solved
employing vector variables. The application to the realistic world of proton-deuteron (pd) scattering at the energies
up to 1 GeV considered in this study requires of course two-and three-nucleon forces high above the pion production
threshold. Though these forces are not yet available, they can also be included in the framework of Poincaré invariant
quantum mechanics.
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APPENDIX A: INVARIANCE OF S AND RELATION TO T

The expression (4.20) and (4.21) for the differential cross section can be rewritten in a manifestly invariant form.
We write them as a product of an invariant phase space factor, an invariant factor that includes the relative speed,
and an invariant scattering amplitude.

To identify and establish the invariance of the invariant scattering amplitude note that the scattering operator S is
Poincaré invariant:

U0(Λ, a)Ŝ = U0(Λ, a)Ω
†
+(H,H0)Ω−(H,H0) = Ω†

+(H,H0)U(Λ, a)Ω−(H,H0)

= Ω†
+(H,H0)Ω−(H,H0)U0(Λ, a) = ŜU0(Λ, a). (A1)

The Poincaré invariance of the S operator above is a consequence of the intertwining relations for the wave operators

U(Λ, a)Ω±(H,H0) = Ω±(H,H0)U0(Λ, a) (A2)

To show the intertwining property of the wave operators first note that the invariance principle gives the identity

Ω±(H,H0) = Ω±(M,M0). (A3)

The mass operator intertwines by the standard intertwining properties of wave operators. For our choice of irreducible
basis the intertwining of the full Poincaré group follows because all of the generators can be expressed as functions
of the mass operator and a common set of kinematic operators, {K, jz, jx, j2,−i∇K}, that commute with the wave
operators.

The covariance of the S matrix elements follows from the Poincaré invariance of the S operator if the matrix
elements of S are computed in a basis with a covariant normalization.

The S-matrix elements can be evaluated in the channel mass eigenstates. After some algebra one obtains:

〈β|Sba|α〉 = lim
τ→∞

〈β|eiMβτe−2iMτeiMατ |α〉

= 〈β|α〉 + lim
τ→∞

∫ τ

0

dτ ′
d

dτ ′
〈β|ei(Wβ+Wα−2M)τ ′ |α〉

= 〈β|α〉 lim
ǫ→0+

[
2iǫ

Wβ − Wα + 2iǫ

]

+ lim
ǫ→0+

[ −4iǫ

(Wβ − Wα)2 + 4ǫ2

]
〈β|
(
V α + V βG(W̄ + iǫ)V α

)
|α〉. (A4)

where Mα|α〉 = Wα|α〉 and Mβ|β〉 = Wβ |α〉 and W̄ := 1
2 (Wα + Mβ) is the average invariant mass eigenvalue of the

initial and final asymptotic states. In deriving (A4) the two strong limits in (4.6) are replaced a single weak limit.
Equation (A4) is interpreted as the kernel of an integral operator. S-matrix elements are obtained by integrating the
sharp eigenstates in Eq. (A4) over normalizable functions of the energy and other continuous variables. To simply
this expression define the residual interactions V α and V β by:

V α := M −Mα; V β = M −Mβ, (A5)

where

V α|α〉 = (M − Wα)|α〉; V β |β〉 = (M − Wβ)|β〉. (A6)

The resolvent operators of the mass operator and the channel mass operator,

G(z) :=
1

z −M
Gα(z) :=

1

z −Mα
, (A7)

are related by the second resolvent relations [37]:

G(z) −Gα(z) = Gα(z)V αG(z) = G(z)V αGα(z). (A8)

It is now possible to evaluate the limit as ǫ → 0. It is important to remember that this is the kernel of an integral
operator.
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The first term in square brackets is unity when the initial and final mass eigenvalues are identical, and zero otherwise;
however, the limit in the bracket is a Kronecker delta and not a Dirac delta function. For α 6= β, 〈β(W′)|α(W)〉 are
Lebesgue measurable in W

′ for fixed W, so there is no contribution from the first term in Eq. (A4). For the case that
Wα = Wβ , we have 〈β(W′)|α(W)〉 ∝ δ(W′ −W). The matrix element vanishes by orthogonality unless Wβ = Wα, but
then the coefficient is unity. Thus, the first term in (A4) is 〈β|α〉 if the initial and final channels are the same, but
zero otherwise. The matrix elements also vanish by orthogonality for two different channels governed by the same
asymptotic mass operator with the same invariant mass. The first term in (A4) therefore includes a channel delta
function.

For the second term, the quantity in square brackets becomes −2πiδ(Wβ − Wα), which leads to the relation

〈β|S|α〉 = 〈α|β〉 − 2πiδ(Wβ − Wα)〈β|T βα(Wα + i0+)|α〉, (A9)

where

T βα(z) = V α + V βG(z)V β . (A10)

and 〈α|β〉 is zero if the initial and final channels are different and is the overlap of the initial and final states if the
initial and final channels are the same. Equation (A9) is exactly eq. (4.13).

With our choice of irreducible basis the residual interactions and the resolvent commute with the total linear
momentum operator, and if the sharp channel states |α〉 and |β〉 are simultaneous eigenstates of the appropriate
partition mass operator and the linear momentum, then a three-momentum conserving delta function can be factored
out of the T -matrix element:

〈β|T βα(Wα + i0+)|α〉 = δ3(Pβ − Pα)〈β‖T βα(Wα + i0+)‖α〉. (A11)

When combined with the three-momentum conserving delta function the invariant mass delta function can be replaced
an energy conserving delta function

δ(Wβ − Wα) =

∣∣∣∣
dW

dE

∣∣∣∣ δ(Eβ − Eα)

∣∣∣∣
dW

dE

∣∣∣∣ =
W

E
. (A12)

The S-matrix elements can be expressed in terms of the reduced channel transition operators as follows:

〈β|S|α〉 = 〈α|β〉δβα − i(2π)δ4(Pβ − Pα)
Wα

Eα
〈β‖T βα(Wα + i0+)‖α〉 (A13)

In this expression the S operator is invariant while the single particle asymptotic states have a non-covariant normal-
ization.

To extract the standard expression for the invariant amplitude the single particle states are replaced by states with
the covariant normalization used in the particle data book [36]:

|p, µ〉 −→ |p, µ〉cov = |p, µ〉
√

2Epm
(2π)3/2. (A14)

The resulting expression

−i(2π)δ4(Pβ − Pα)
Wα

Eα
cov〈β‖T βα(Wα + i0+)‖α〉cov (A15)

is invariant (up to spin transformation properties). Since the four dimensional delta function is invariant, the factor
multiplying the delta function is also invariant (up to spin transformation properties). This means that

cov〈α‖Mαβ‖β〉cov :=
1

(2π)3
Wα

Eα
cov〈β‖T βα(Wα + i0+)‖α〉cov (A16)

is a Lorentz covariant amplitude. The factor of 1/(2π)3 is chosen to agree with the normalization convention used in
the particle data book [36].

The differential cross section becomes

dσ =
(2π)4

4Emt
(pt)Emb

(pb)vbt

∣∣
cov〈p1, · · · , pn, ‖Mαβ‖p̄b, p̄t〉cov

∣∣2

× δ4

(∑

i

pi − p̄b − p̄t

)
dp1

2Em1
(2π)3

· · · dpn

2Emn
(2π)3

. (A17)
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The identity

vbt =

√
(pt · pb)2 −m2

bm
2
t

Emb
Emt

(A18)

can be used to get an invariant expression for the relative speed between the projectile and target and

dΦn(pb + kt;p1, · · · ,pn) = δ4

(∑

i

pi − p̄b − p̄t

)
dk1

2Em1
(2π)3

· · · dkn

2Emn
(2π)3

(A19)

is the standard Lorentz invariant phase space factor. Inserting these covariant expressions in the definition of the
differential cross section gives the standard formula for the invariant cross section

dσ =
(2π)4

4
√

(pt · pb)2 −m2
bm

2
t

∣∣
cov〈p1, · · · , pn, ‖Mαβ‖p̄b, p̄t〉cov

∣∣2 dΦn(pb + pt;p1, · · · ,pn). (A20)

Because of the unitarity of the Wigner rotations and the covariance of
∣∣
cov〈p1, · · · , pn, ‖Mαβ‖p̄b, p̄t〉cov

∣∣2 this becomes
an invariant if the initial spins are averaged and the final spins are summed.

This manifestly invariant formula for the cross section is identical to (4.20) and (4.21); in this form the invariant
cross section can be evaluated in any frame. The index t refers to the target, which is in our case the deuteron.

APPENDIX B: BREAKUP CROSS SECTION IN THE LABORATORY FRAME VARIABLES

The total breakup cross section is Lorentz invariant. The expression for the differential cross sections (4.20) is given
in terms of single particle variables, while the solutions of the Faddeev equations give transition matrix elements as
functions of the Poincaré-Jacobi momenta defined in Section II. To compute the total cross section it is useful to
work in a single representation. Since the single particle momenta are directly related to measured parameters of
the differential cross section, we change variable in the transition amplitudes from Poincaré Jacobi moment to single
particle momenta. In this section the single particle variables are computed in the laboratory frame.

The relation between the product of single particle basis states and states expressed in terms of the Poincaré-Jacobi
momenta are given by

|pn,pd〉 =

∣∣∣∣
∂(q0,Pi)

∂(pn,pd)

∣∣∣∣
1/2

|q0,Pi〉

|p1,p2,p3〉 =

∣∣∣∣
∂(k,p2 + p3)

∂(p2,p3)

∣∣∣∣
1/2 ∣∣∣∣

∂(q,Pf )

∂(p1,p2 + p3)

∣∣∣∣
1/2

|Pf ,k,q〉 (B1)

The Jacobians in these transformations are
∣∣∣∣
∂(q0,Pi)

∂(pn,pd)

∣∣∣∣ =
E(q0)Ed(q0)Ei

E(pn)Ed(pd)W∣∣∣∣
∂(k,p2 + p3)

∂(p2,p3)

∣∣∣∣ =

√
(E(k2) + E(p3))2 − (p2 + p3)2 (E(p2) + E(p3))

4E(p2)E(p3)∣∣∣∣
∂(q,Pf )

∂(p1,p2 + p3)

∣∣∣∣ =

√
(E(p2) + E(p3))2 − (p2 + p3)2 + q2 E(q)Ef

E(p1) (E(p2) + E(p3)) W
(B2)

Defining

Γ(W,k,q) =
W 2

E2
i

∣∣∣∣
∂(q0,Pi)

∂(pn,pd)

∣∣∣∣
∣∣∣∣
∂(k,p2 + p3)

∂(p2,p3)

∣∣∣∣
∣∣∣∣

∂(q,Pf )

∂(p1,p2 + p3)

∣∣∣∣ , (B3)

the total cross section for breakup scattering becomes

σlab
br =

1

3

(2π)4

vbt

∫
dp1dp2dp3 δ(Ef − Ei) δ

3(Pf − Pi)Γ(W,p,q) |〈p,q‖U0‖ϕd,q0〉|2

=
1

3

(2π)4

vbt

∫
dp1dp2 δ(Ef − Ei)Γ(W,p,q) |〈p,q‖U0‖ϕd,q0〉|2 , (B4)
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where we used P = Pi = Pf . The δ function in the energy can be eliminated by a variable change. The total energy

of the system is E = Ei = Ef =
√
m2 + p2

1 +
√
m2 + p2

2 +
√
m2 + (P − p1 − p2)2. With p1 ≡ |p1| and p̂2 ≡ p2/|p2|

this gives

dE

dp2
=

p2

E(p2)
+
p2 − (P − p1) · p̂2

E − E(p1) − E(p2)
=
p2(E − E(p1)) − E(p2)(P − p1) · p̂2

E(p2)E(p3)
. (B5)

Since dp1 = E(p1)/p1dE1, and vbt = pn/E(pn), Eq. (B4) becomes

σlab
br =

(2π)4

3

E(pn)

pn

∫
dΩ1dΩ2dE1

p1p
2
2E(p1)E(p2)E(p3)

p2(E − E(p1)) − E(p2)(P − p1) · p̂2
Γ(W,k,q) |〈k,q‖U0‖ϕd,q0〉|2 (B6)

Inserting the explicit expression of Eqs. (B2) and (B3) we obtain

σlab
br =

(2π)4

3

E(q0)Ed(q0)

2pnmd

∫
dΩ1dΩ2dE1E(q)

√
m2 + k2

√
4(m2 + k2) + q2

× p1p
2
2

p2(E − E(p1)) − E(p2)(P − p1) · p̂2
Γ(W,k,q) |〈k,q‖U0‖ϕd,q0〉|2 , (B7)

This gives the total invariant cross section as a five dimensional integral. We have expressed it as a function of the
incident laboratory momenta.

It follows that the five-fold differential cross section for exclusive breakup scattering

d5σlab
br

dΩ1dΩ2dE1
=

(2π)4

3

E(q0)Ed(q0)

2pnmd
E(q)

√
m2 + k2

√
4(m2 + k2) + q2

× p1p
2
2

p2(E − E(p1)) − E(p2)(P − p1) · p̂2
Γ(W,k,q) |〈k,q‖U0‖ϕd,q0〉|2 . (B8)

In inclusive breakup scattering only one of the outgoing particles is detected. Thus the cross section still contains
an integration over the coordinates of the undetected particle. In order to calculate this cross section, it is convenient
to start again from Eq. (B4). However, since we need to integrate over the coordinates of one of the particles, we pick
without loss of generality particle 1 as spectator and use as coordinates

σlab
br =

1

3

(2π)4

vbt

∫
dp1dkdp23

∣∣∣∣
∂(p2,p3)

∂(k,p2 + p3)

∣∣∣∣ δ(Ef − Ei)δ
3(Pf − Pi)Γ(W,k,q) |〈k,q‖U0‖ϕd,q0〉|2

=
1

3

(2π)4

vbt

∫
dp1dkδ(Ef − Ei)Γ

′(W,k,q)|〈k,q‖U0‖ϕd,q0〉|2, (B9)

where we define

Γ′(W,k,q) =

∣∣∣∣
∂(p2,p3)

∂(k,p2 + p3)

∣∣∣∣Γ(W,k,q). (B10)

Since δ(Ef − Ei) = E

W δ(Wf − Wi) and dW/dk = 4k/
√

4(m2 + k2) + q2, the integration over k is eliminated leading
to

σlab
br =

1

3

(2π)4

vbt

∫
dΩ1dE1 k1E(k1)Γ

′(W,k,q)

∫
dΩk |〈k,q‖U0‖ϕd,q0〉|2 . (B11)

Insert Eq. (B10) gives the explicit expression for the inclusive breakup scattering cross section

σlab
br =

(2π)4

3

E(q0)Ed(q0)

4pnmd

∫
dΩ1dE1

p1kE(q)(4(m2 + k2) + q2)√
4(m2 + k2) + (P − p1)2

∫
dΩk |〈k,q‖U0‖ϕd,q0〉|2 , (B12)

and the differential cross section

d3σlab
br

dΩ1dE1
=

(2π)4

3

E(q0)Ed(q0)

4pnmd

p1pE(q)(4(m2 + k2) + q2)√
4(m2 + k2) + (P − p1)2

∫
dΩk |〈k,q‖U0‖ϕd,q0〉|2 . (B13)
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Elab [GeV] NR [mb] psf [mb] R-kin [mb] V0 [mb] V1 [mb] V2 [mb] R [mb]

0.01 100027.1 100766.0 100605.6 100363.2 99288.5 99394.2 99276.9

0.1 398.5 445.0 443.9 418.9 397.5 400.1 399.2

0.2 167.5 185.7 184.5 173.4 163.2 164.5 164.1

0.5 67.6 83.2 81.8 73.5 63.9 65.4 65.4

0.8 42.9 58.6 57.1 48.3 38.7 40.4 40.8

1.0 34.2 49.7 48.1 39.6 29.7 31.5 32.3

TABLE I: The total c.m. cross section σ for elastic scattering calculated from a Malfliet-Tjon type potential. The nonrelativistic
total cross section is given in the 2nd column, labeled NR, the relativistic one is given in the last column, labeled R. The other
columns give the total cross section for elastic scattering when different relativistic features are successively implemented: psf
shows the effect of the relativistic phase space factor, R-kin adds the relativistic kinematic effects resulting from the permutation
operator, for V0 the relativistic two-body LS equation is solved with a c.m. interaction, and Vi (i=1,2) denote the approximations
of the embedded interaction given in Eqs. (7.7) and (7.8).
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FIG. 1: (Color online) The momentum and angle dependence of the function C(q′, q) from Eq. (6.13) at fixed momentum
q′ = 0.65 GeV.
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FIG. 2: (Color online) The momentum and angle dependence of the function N(q′,q) from Eq. (6.12) at fixed momentum
q′ = 0.65 GeV.
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FIG. 3: (Color online) The deuteron binding in energy calculated with the embedded interaction V (k,p;q) as function of
q. The solid line labeled ‘R’ represents the binding energy of -2.23 MeV which is independent of q, when the full embedded
interaction is employed. The dotted line is obtained if q is set to zero in the embedded interaction. The dotted, dash-dotted
and dashed lines show the approximations to the embedded interaction V0, V1, and V2 as given in Eqs. (7.6), (7.7), and (7.8).
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FIG. 4: (Color online) The differential cross section for elastic scattering at 0.2 GeV projectile kinetic energy as function of the
laboratory scattering angle (upper panel). The solid line represents the fully relativistic calculation. The lower panel shows
the relative deviation ∆ with respect to the corresponding non-relativistic calculation. The long-dashed curve labeled ‘R-kin’
represents a calculation in which only relativistic kinematic effects are incorporated. The dotted, dash-dotted, and dashed
curves show the approximations to the embedded interaction V0, V1, and V2 as given in Eqs. (7.6), (7.7), and (7.8).
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the laboratory scattering angle. The double-dotted curve labeled ‘NR’ represents the non-relativistic calculation, and the solid
curve labeled ‘R’ the corresponding fully relativistic one. The long-dashed curve labeled ‘R-kin’ represents a calculation in
which only relativistic kinematic effects are incorporated. The dotted, dash-dotted, and dashed curves show the approximations
to the embedded interaction V0, V1, and V2 as given in Eqs. (7.6), (7.7), and (7.8).
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the laboratory scattering angle. The double-dotted curve labeled ‘NR’ represents the non-relativistic calculation, and the solid
curve labeled ‘R’ the corresponding fully relativistic one. The two other sets of curves show the contributions from the two
different terms contributing to the transition operator U in the non-relativistic (NR) and relativistic (R) calculation. See text
for further discussion.
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represent the corresponding contours of the relativistic calculation.
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FIG. 8: (Color online) The inclusive cross section at 0.5 GeV laboratory projectile kinetic energy as function of the energy E of
the emitted particle and a 24o emission angle. The upper panel displays the entire energy range of the emitted particle, whereas
the two lower panels show only the low and the high energies in a linear scale. The solid line represents the fully relativistic
calculation, the double-dotted line the corresponding non-relativistic one. The long-dashed curve labeled ‘R-kin’ represents a
calculation in which only relativistic kinematic effects are incorporated. The dotted, dash-dotted, and dashed curves show the
approximations to the embedded interaction V0, V1, and V2 as given in Eqs. (7.6), (7.7), and (7.8).
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FIG. 9: (Color online) Same as Fig. 8 but for different fixed angles of the emitted particle.



34

 0

 0.15

 0.3

 0.45

 380  410  440  470  500

Elab = 0.495 GeV

 θ = 18 deg
NR

R-kin
R

exp

 0

 0.05

 0.1

 0.15

 330  360  390  420  450

d
2
σ b

r/
d
E

d
θ 

[m
b
/(

M
eV

 d
eg

)]

E [MeV]

 θ = 24 deg

FIG. 10: (Color online) The inclusive cross section at 0.495 GeV laboratory projectile kinetic energy as function of the energy
E of the emitted particle and fixed emission angles of 18o and 24o degrees. The solid line represents the fully relativistic
calculation and the double-dotted line the non-relativistic one. The long-dashed curve labeled ‘R-kin’ represents a calculation
in which only relativistic kinematic effects are incorporated. The data are from Ref. [45].
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FIG. 11: (Color online) The inclusive cross section at 0.8 GeV (upper panel) and 1 GeV (lower panel) laboratory projectile
kinetic energy as function of the energy E of the emitted particle and the fixed emission angle of 24o degrees. The notation of
the curves is the same as in Fig. 9.
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FIG. 12: (Color online) The exclusive breakup cross section at 0.5 GeV projectile kinetic energy as function of the ejected
particle kinetic energy for three different configurations defined in the three-body c.m. frame. For all configurations the angle
φpq is 0o. For the upper panel the cos of the angle between q and the beam q0 is xq = 1, i.e. the scattering occurs along the
beam line, in the middle panel xq =

√
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FIG. 13: (Color online) Same as Fig.12 but for projectile energy 1.0 GeV.


