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Abstract

Wavelets are a useful basis for constructing solutions of the inte-

gral and differential equations of scattering theory. Wavelet bases effi-

ciently represent functions with smooth structures on different scales,

and the matrix representation of operators in a wavelet basis are well-

approximated by sparse matrices. The basis functions are related to

solutions of a linear renormalization group equation, and the basis

functions have structure on all scales. Numerical methods based on

this renormalization group equation are discussed. These methods

lead to accurate and efficient numerical approximations to the scat-

tering equations. These notes provide a detailed introduction to the

subject that focuses on numerical methods. We plan to provide peri-

odic updates to these notes.
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1 Introduction

Wavelets are versatile functions with a wide range of applications includ-
ing time-frequency analysis, data compression, and numerical analysis. The
objective of these notes is to provide an introduction to the properties of
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wavelets which are useful for solving integral and differential equations by
using the wavelets to represent the solution of the equations.

While there are many types of wavelets, we concentrate primarily on
orthogonal wavelets of compact support, with particular emphasis on the
wavelets introduced by Daubechies. The Daubechies wavelets have the ad-
ditional property that finite linear combinations of the Daubechies wavelets
provide local pointwise representations of low-degree polynomials. We also
have a short discussion of continuous wavelets in the Appendix I and spline
wavelets in Appendix II.

There notes are not intended to provide a complete discussion of the sub-
ject which can be found in the references given at the end of this section.
Rather, we concentrate on the specific properties which are useful for nu-
merical solutions of integral and differential equations. Our approach is to
develop the wavelets as orthonormal basis functions rather than in terms of
low- and high-pass filters, which is more common for time-frequency analysis
applications.

The Daubechies wavelets have some properties that make them natural
candidates for basis functions to represent solutions of integral equations.
Like splines, they are functions of compact support that can locally point-
wise represent low degree polynomials. Unlike splines, they are orthonormal.
More significantly, only a relatively small number of wavelets are needed to
represent smooth functions.

One of the interesting features of wavelets is that they can be generated
from a single scaling function, which is the solution of a liner renormalization-
group equation, by combinations of translations and scaling. This equation,
called the scaling equation, expresses the scaling function on one scale as a
finite linear combination of discrete translations of the same function on a
smaller scale. The resulting scaling functions and wavelets have a fractal-like
structure. This means that they have structure on all scales. This requires a
different approach to the numerical analysis, which is provided by the scaling
equation. These notes make extensive use of the scaling function.

Some of the references that we have found useful are:
[1] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm.
Pure Appl. Math. 41(1988)909.
[2] G. Strang, ”Wavelets and Dilation Equations: A Brief Introduction,”
SIAM Review, 31:4, pp. 614–627, (Dec 1989).
[3] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[4] C. K. Chui Wavelets - A tutorial in Theory and Applications, Academic
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Press, 1992.
[5] W.-C. Shann, ”Quadrature rules needed in Galerkin-wavelets methods”,
Proceedings for the 1993 annual meeting of Chinese Mathematics Associa-
tion, Chiao-Tung Univ, (Dec 1993).
[6] W.-C. Shann and J.-C. Yan, ”Quadratures involving polynomials and
Daubechies’ wavelets”, Technical Report 9301, Department of Mathematics,
National Central University, (1993).
[7] G. Kaiser, A Friendly Guide to Wavelets, Birkhauser 1994.
[8] W. Sweldens and R. Piessens, ”Quadrature Formulae and Asymptotic
Error Expansions for wavelet approximations of smooth functions”, SIAM J.
Numer. Anal., 31, pp. 1240–1264, (1994).
[9] H. L. Resnikoff and R. O. Wells, Wavelet Analysis, The Scalable Structure

of Information, Springer Verlag, NY.
[10] O. Bratelli and P. Jorgensen, Wavelets through a Looking Glass, Birkhauser,
2002.

In addition, some of the material in these notes is in our paper

[11] B. M. Kessler, G. L. Payne, and W. N. Polyzou, Scattering Calculations
With Wavelets, Few Body Systems, 33,1-26(2003).

2 Haar Scaling Functions and Wavelets

Scaling functions play a central role in the construction of orthonormal bases
of compactly supported wavelets. The scaling functions and wavelets are
distinct bases related by an orthogonal transformation called the wavelet
transform.

The concept of scaling functions is most easily understood using Haar
wavelets (these are made out of simple box functions). The Haar functions
are the simplest compactly supported scaling functions and wavelets.

The Haar scaling function is defined by

φ(x) :=







0 x ≤ 0
1 0 < x ≤ 1
0 x > 1

. (1)

It satisfies the normalization conditions:

(φ, φ) :=

∫ ∞

−∞
φ∗(x)φ(x)dx =

∫ 1

0

φ(x)dx = 1. (2)
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The operations of discrete translation and dilatation are used extensively
in the study of compactly supported wavelets. The unit translation oper-
ator T is defined by

(Tχ)(x) = χ(x− 1). (3)

This operator translates the function χ(x) to the right by one unit. The unit
translation operator has the property:

(Tψ, Tχ) =

∫ ∞

−∞
ψ∗(x− 1)χ(x− 1)dx = (4)

∫ ∞

−∞
ψ∗(y)χ(y)dy = (ψ, χ) (5)

where y = x − 1. This means that the unit translation operator preserves
the scalar product:

(Tψ, Tχ) = (ψ, χ). (6)

If A is a linear operator its adjoint A† is defined by the relation

(ψ,A†χ) = (Aψ, χ). (7)

It follows that

(ψ, T †χ) = (Tψ, χ) =

∫ ∞

−∞
ψ∗(x− 1)χ(x)dx. (8)

Changing variables to y = x− 1 gives

(ψ, T †χ) =

∫ ∞

−∞
ψ∗(y)χ(y + 1)dy (9)

or
(T †χ)(x) = χ(x+ 1) (10)

which is a left shift by one unit. Since

(ψ, χ) = (Tψ, Tχ) = (ψ, T †Tχ) (11)

it follows that T † = T−1. An operator whose adjoint is its inverse is called
unitary. Unitary operators preserve inner products.

It follows from the definition of the Haar scaling function, φ(x), that

(Tmφ, T nφ) = (φ, T n−mφ) =

∫ ∞

−∞
φ∗(x)φ(x− n+m)dx =
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∫ 1

0

φ(x− n+m)dx = δnm (12)

This means the functions

φn(x) := (T nφ)(x) = φ(x− n) (13)

are orthonormal. There are an infinite number of these functions for integers
n satisfying −∞ < n <∞.

The integer translates of the scaling function span a space, V0, which is a
subspace of the space of square integrable functions. The elements of V0 are
functions of the form

f(x) =
∞
∑

n=−∞
fnφn(x) =

∞
∑

n=−∞
fn(T

nφ)(x) =
∞
∑

n=−∞
fnφ(x− n), (14)

where the square integrability requires that the coefficients satisfy

∞
∑

n=−∞
|fn|2 <∞. (15)

For the Haar scaling function V0 is the space of square integrable functions
that are piecewise constant on each unit-width interval. Note that while
there are an infinite number of functions in V0, it is a small subspace of the
space of square integrable functions.

In addition to translations T , the linear operator D, corresponding to
discrete scale transformations, is defined by:

(Dχ)(x) =
1√
2
χ(x/2). (16)

When this is applied to the Haar scaling function it gives

(Dφ)(x) =







0 x ≤ 0
1√
2

0 < x ≤ 2

0 x > 2

. (17)

This function has the same box structure as the original Haar scaling
function, except it is twice as wide as the original scaling function and shorter
by a factor of

√
2. Note that the normalization ensures

(Dψ,Dχ) =

∫ ∞

−∞

1

2
ψ∗(x/2)χ(x/2)dx (18)
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=

∫ ∞

−∞
ψ∗(y)χ(y)dy = (ψ, χ) (19)

where the variable in the integrand has been changed to y = x/2.
The adjoint of D is determined by the definition

(ψ,D†χ) = (Dψ,χ) =

∫ ∞

−∞

1√
2
ψ∗(x/2)χ(x)dx. (20)

Setting y = x/2 gives
∫ ∞

−∞
ψ∗(y)

√
2χ(2y)dy (21)

which gives
(D†χ)(x) =

√
2χ(2x). (22)

This shows that D† = D−1 or D is also unitary.
Define the functions constructed by n translations followed by m scale

transformations

φmn(x) = (DmT nφ)(x) = (Dmφn)(x) (23)

= 2−m/2φ(2−mx− n) = 2−m/2φ(2−m(x− 2mn)). (24)

It follows that for a fixed scale m

(φmn, φmk) = (Dmφn, D
mφk) = (φn, D

m−mφk) = (φn, φk) = δnk. (25)

This shows that the functions φmn(x) for any fixed scale m are orthonormal.
We define the subspace Vm of the square integrable functions to be those

functions of the form:

f(x) =
∞
∑

n=−∞
fnφmn(x) =

∞
∑

n=−∞
fn(D

mT nφ)(x) (26)

where the square integrability requires that the coefficients satisfy

∞
∑

n=−∞
|fn|2 <∞. (27)

These elements of Vm are square summable functions that are piecewise con-
stant on intervals of width 2m. The spaces Vm and V0 are related by m scale
transformations DmV0 = Vm.
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In general the scaling function φ(x) is defined as the solution of a scaling
equation subject to a normalization condition. The scaling equation relates
the scaled scaling function, (Dφ)(x), to translates of the original scaling
function. The general form of the scaling equation is

(Dφ)(x) =
∑

l

hlT
lφ(x) (28)

where hl are fixed constants, and the sum may be finite or infinite. This
equation can be expressed as

1√
2
φ(
x

2
) =

∑

l

hlφ(x− l) (29)

which is sometimes written as

φ(x) =
√

2
∑

l

hlφ(2x− l) =
∑

l

clφ(2x− l) (30)

where cl =
√

2hl. Equation (28) is the most important equation in these
notes.

In general the scaling equation cannot be solved analytically. In the
special case of the Haar scaling function the solution is obtained by observing
that the scaled box is stretched over two adjacent boxes with a suitable
reduction in height. It follows that:

Dφ(x) =
1√
2
φ(x/2) =

1√
2
φ(x) +

1√
2
Tφ(x)

=
1√
2
φ(x) +

1√
2
φ(x− 1). (31)

Here h0 = h1 = 1/
√

2. These coefficients are special to the Haar scaling
function. The best way to think about the scaling function φ(x) is to note
that the scaling function φ(x) is the solution of the scaling equation up to
normalization. The normalization is fixed by

∫

φ(x)dx = 1.

An additional relation involving the translation T and dilatation operator
D is useful for future computations. First note that
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DTψ(x) = Dψ(x− 1) =
1√
2
ψ(x/2 − 1) =

1√
2
ψ(
x− 2

2
) = T 2Dψ(x), (32)

which leads to the operator relation

DT = T 2D. (33)

It follows from this equation that

Dφn(x) = DT nφ(x) = T 2nDφ(x) = T 2n(h0φ(x) + h1Tφ(x)). (34)

This shows that all of the basis elements in V1 can be expressed in terms of
basis elements in V0. For the case of the Haar scaling function this is obvious,
but the argument above is more general.

Specifically if ψ(x) ∈ V1 then

ψ(x) =
∞
∑

n=−∞
dnφ1n(x) =

∞
∑

n=−∞
dnDφn(x) (35)

=
∞
∑

n=−∞
[dnh0φ2n(x) + dnh1φ2n+1(x)] =

∞
∑

−∞
enφn(x) (36)

where
e2n = dnh0 e2n+1 = dnh1. (37)

It is easy to show that

∞
∑

n=−∞
|en|2 =

∞
∑

n=−∞
|dn|2. (38)

What we have shown, as a consequence of the scaling equation, is the
inclusion property

V0 ⊃ V1. (39)

Similarly, using the same method, it is possible to show the chain of inclusions

· · · V−k ⊃ V−k+1 ⊃ · · · ⊃ V0 ⊃ · · · Vk ⊃ Vk+1 · · · (40)

These properties hold for the solution of any scaling equation. In the Haar
example the spaces Vm are spaces of piecewise constant, square integrable
functions that are constant on intervals of the real line of width 2m.
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The subspaces Vm are used as approximation spaces in applications. To
understand how they are used as approximation spaces note that asm→ −∞
the approximation to f(x) given by

fm(x) =
∞
∑

n=−∞
fmnφmn(x) (41)

with

fmn =

∫ ∞

−∞
φmn(x)f(x)dx (42)

is bounded by the upper and lower Riemann sums for steps of width 2−m.
This is because, up to a scale factor, the coefficients fmn are just average
values of the function on the appropriate sub-interval (to deal with the infinite
interval it is best to first consider functions that vanish outside of finite
intervals and take limits). Since the upper and lower Riemann sums converge
to the same integral (when the function is integrable) it follows that

∫ ∞

−∞
|fm(x) − f(x)|dx < ε (43)

for sufficiently large −m. A similar argument can be extended to get L2

convergence .
Similarly, asm→ +∞, the width of φmn(x) grows like 2m while the height

falls off like 2−m/2. Again, if the function vanishes outside of a bounded
interval then for sufficiently large m there is only one (or two) φmn(x) that
are non-vanishing where the function is non-vanishing. In the case that only
one φmn = φmn0 overlaps the support of f(x)

fm(x) ∼ 2−m/2φmn0(x)

∫ ∞

−∞
f(x)dx. (44)

The integral of the square of this function ∼ 2−m → 0 as m→ ∞.
Note that

∫ ∞

−∞
fm(x)dx→

∫ ∞

−∞
f(x)dx (45)

as m → ∞. This shows that the limit of the integral of fm(x) as m → ∞ is
finite in L1 but 0 in L2.
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It is useful to express some of these results in a more useful form. Define
the projection operators

Pmf(x) =
∞
∑

n=−∞
fmnφmn(x) (46)

where

fmn =

∫ ∞

−∞
φ∗
mn(x)f(x)dx. (47)

The above conditions can be stated in terms of these projectors:

lim
m→−∞

Pm = I (48)

lim
m→+∞

Pm = 0. (49)

These results mean that the approximation space Vm approaches the space
of square integrable functions as m → −∞. We have shown that (48) and
(49) are valid for the Haar scaling function, but they are also valid for a large
class of scaling functions,

We are now ready to construct wavelets. First recall the condition

V0 ⊃ V1. (50)

Let W1 be the subspace of vectors in the space V0 that are orthogonal to the
vectors in V1. We can write

V0 = V1 ⊕W1. (51)

This notation means that any vector in V0 can be expressed as a sum of two
vectors - one that is in V1 and one that is orthogonal to every vector in V1.

Note that the scaling equation implies that every vector in V1 can be
expressed as a linear combination of vectors in V0 using

Dφn(x) = h0φ2n(x) + h1φ2n+1(x). (52)

Clearly the functions that are orthogonal to these in V1 on the same interval
can be expressed in terms of the difference functions

ψ1n(x) := Dψn(x) = h1φ2n(x)− h0φ2n+1(x) =
1√
2
(φ2n(x)− φ2n+1(x)). (53)
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Direct computation shows that the ψ1n(x) are elements of V0 that satisfy

(Dψ1n, Dφl) = 0. (54)

and
(ψ1n, ψ1k) = δnk. (55)

Thus we conclude that W1 is the space of square integrable functions of
the form

f(x) =
∞
∑

n=−∞
fnψ1n(x) (56)

with

f(x) =
∞
∑

n=−∞
|fn|2. (57)

Similarly, we can decompose Vl = Vl+1 ⊕ Wl+1 for each value of l. For
the special case of W0 we define the Haar mother wavelet as

ψ(x) := D−1(h1φ(x) − h0Tφ(x)) = (58)

h1

√
2φ(2t) − h0

√
2φ(2(t− 1)) = (φ(2t) − φ(2(t− 1))) (59)

which is manifestly orthogonal to the scaling function. Translates of the
mother wavelet define a basis for W0

ψn(x) = T nψ(x) = T nD−1(h1φ(x) − h0Tφ(x)) = (60)

D−1(h1φ2n(x) − h0φ2n+1(x)). (61)

If we decompose Vm we have:

V−m = W−m+1 ⊕ V−m+1

= W−m+1 ⊕W−m+2 ⊕ V−m+2

= W−m+1 ⊕W−m+2 ⊕ · · · ⊕Wl ⊕ Vl. (62)

Note that unlike the Vm spaces, the Wm spaces are all mutually orthogonal,
since if m > n→ Wm ⊂ Vn which is orthogonal to Wn by definition.

If f(x) is any square integrable function the conditions

lim
m→−∞

Pm = I (63)
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lim
m→+∞

Pm = 0 (64)

mean that for sufficiently large m and any l that f(x) can be well approxi-
mated by a function in

W−m+1 ⊕W−m+2 ⊕ · · · ⊕Wl. (65)

This means that the function can be approximated by a linear combination
of basis functions (wavelets) from each of the spaces Wr .

A multiresolution analysis is a set of subspaces Vm and Wm satis-
fying (62), (63), and (64). The condition (63) allows one to interpret the
space Vm, for sufficiently large −m, as an approximation space for numerical
applications.

Basis functions for Wm are given by

ψmn(x) = DmT nψ(x) = Dm−1(h1φ2n(x) − h0φ2n+1(x)). (66)

That these are a basis with the required properties is easily shown by showing
that these functions are orthogonal to Vm and can be used to recover the
remaining vectors in Vm−1.

The functions ψnl(x), are called Haar wavelets. They satisfy the orthonor-
mality conditions:

(ψnl, ψn′l′) = δnn′δll′ (67)

where the δnn′ follows from the orthogonality of the spaces Wn and Wn′ for
n 6= n′.

The δll′ follows from the unitarity of D and

(ψ, T nψ) = δn0. (68)

The important steps discussed above generalize to the case of a general
scaling equation of the form:

Dφ(x) =
∑

hlT
lφ(x). (69)

This equation is solved to find the scaling function φ(x). This, along with
translations and dilatations is used to construct the spaces Vl. The scaling
equation ensures the existence of spaces Wm, satisfying Vm+1 = Wm ⊕ Vm
that can be used to build discrete orthonormal bases. The mother wavelet
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function is expressed in terms of the scaling function and the coefficients hl
as

ψ(x) = D−1
∑

l

glT
lφ(x) (70)

where we will see later that

gl = (−)khk−l (71)

where k is any odd integer. In general the coefficients hl must satisfy con-
straints for the solution to the scaling equation to exist. General wavelets
can be expressed in terms of the mother wavelet using (66). In the next
section the coefficients gl will be expressed in terms of the scaling function.

3 Scaling Functions - General Considerations

This section extends the treatment of scaling equation to a more general class
of scaling functions than the Haar functions. In general, a scaling function
satisfies the following three conditions. First, the scaling function is the
solution of the scaling equation

Dφ(x) =
∑

l

hlT
lφ(x) (72)

where hl are numerical coefficients that define the scaling equation. Second,
in addition to satisfying the scaling equations, integer translates of the
scaling functions are required to be orthonormal

(φn, φm) = (T nφ, Tmφ) = (φ, Tm−nφ) = δmn. (73)

Third, the initial scale is fixed by the normalization condition
∫

φ(x)dx = 1. (74)

It might seem like the normalization conditions in (73) and (74) are not
compatible. To see that this is not true note that condition (73) is invariant
under unitary changes of scale of the form

Dsχ(x) :=
1√
s
φ
(x

s

)
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while condition (74) is not. It follows that condition (74) can be interpreted
as setting a starting scale, s. The condition (73) is preserved independent of
the starting scale.

We now investigate the consequences of these three conditions. Using the
definitions of the operators D and T the scaling equation becomes:

1√
2
φ(
x

2
) =

∑

hlφ(x− l). (75)

As shown in section 1, it can be put in the useful form

φ(x) =
∑

l

√
2hlφ(2x− l). (76)

In general the sums may be from −∞ → ∞. Finite sums are treated by
assuming that only a finite number of the hl’s are non zero. All of the
compactly supported scaling functions are solutions of scaling equations with
a finite number of non-zero coefficients.

If the scaling equation has a solution, it is unique up to an overall nor-
malization factor. To see this take the Fourier transform of both sides of
equation (76) to get

φ̃(k) =
1√
2π

∫ ∞

−∞
e−ikxφ(x)dx =

∑

l

√
2hl

1√
2π

∫ ∞

−∞
e−ikxφ(2x− l)dx. (77)

Changing variables x→ 2x− l on the right-hand side gives

1√
2π

∫ ∞

−∞
e−ikxφ(x)dx =

∑

l

1√
2
hl

1√
2π

∫ ∞

−∞
e−i(k/2)(x+l)φ(x)dx (78)

or

φ̃(k) = φ̃

(

k

2

)

h̃

(

k

2

)

(79)

where

h̃(k) =
∑

l

hl√
2
e−ikl. (80)

This form of the scaling equation can be iterated n times to get:

φ̃(k) = φ̃

(

k

2n

) n
∏

m=1

h̃

(

k

2m

)

(81)
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This equation holds for any n provided the Fourier transforms exist. For
a finite n, an approximation can be made by a finite number of iterations of
the form

φ̃n(k) = φ̃n−1

(

k

2

)

h̃

(

k

2

)

(82)

for any starting function φ̃0(k). In the limit of large n the function φ̃n(k)
should converge to a solution to the scaling equation. The result of formally
taking this limit is

φ̃(k) = lim
n→∞

φ̃0(
k

2n
)

n
∏

l=1

h̃(
k

2l
)

= φ̃(0)
∞
∏

l=1

h̃(
k

2l
). (83)

If the limit exists as n → ∞, and the scaling function is continuous in a
neighborhood of zero, then the solution of the scaling equation is uniquely
determined by the scaling coefficients hl up to the overall normalization φ̃0(0).
The condition φ̃0(0) = 1/

√
2π is equivalent to the standard normalization

condition
∫ ∞

−∞
φ(x)dx = 1.

The resulting solution of the scaling equation is independent of the choice
of starting function provided it is normalized so ˜φ(0) = 1/

√
2π. Once the

normalization is fixed, the limit only depends on the coefficients hl.
Thus, if the infinite product converges, then we have an expression for

the scaling function, up to normalization, which is fixed by assigning a value
to φ̃(0). To show how this works we compute this limit for the Haar scaling
equation.

For the Haar scaling equation the expression for the scaling function is

1√
2π

∞
∏

l=1

1

2
(1 + e−ik/2

l

)

= lim
l→∞

1√
2π

1

2l
(1 + e−ik/2)(1 + e−ik/4) · · · (1 + e−ik/2

l

)

expanding this out in powers of e−ik/2
l

gives

=
1√
2π

lim
l→∞

1

2l

2l−1
∑

m=0

(e−ik/2
l

)m
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=
1√
2π

lim
l→∞

1

2l
1 − e−ik

1 − e−ik/2l
=

=
1√
2π
e−ik/2

sin(k/2)

(k/2)
. (84)

A direct calculation of the Fourier transform of the Haar scaling function
gives

φ̃(k) =
1√
2π

∫ ∞

−∞
e−ikxφ(x)dx =

1√
2π

∫ 1

0

e−ikxdx

=
1√
2π
e−ik/2

sin(k/2)

(k/2)
(85)

which agrees with (84).
The above analysis shows that the solution of the scaling equation de-

pends on the choice of scaling coefficients hl. The scaling coefficients hl are
not arbitrary. First note that setting k = 0 in (83) gives

1 =

∞
∏

l=0

h̃(0). (86)

Now using (80) gives

h̃(0) = 1 =
∑

l

hl√
2

(87)

or
∑

l

hl =
√

2. (88)

This condition is satisfied by the Haar wavelets. This is a necessary condition
on the scaling coefficients in order to have a solution to the scaling equation.

Another condition which constrains the scaling coefficients is the orthog-
onality of the unit translates, (φn, φm) = δnm. This requires, using (76),

2
∑

lk

hlhk

∫ ∞

−∞
φ(2x− 2n− l)φ(2x− 2m− k)dx

= 2
∑

lk

hlhk

∫ ∞

−∞
φ(2x)φ(2x− 2(m− n) − (k − l))dx

=
∑

lk

hlhk

∫ ∞

−∞
φ(x)φ(x− 2(m− n) − (k − l))dx
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=
∑

l

hlhl−2(m−n) = δmn (89)

or equivalently
∑

l

hl−2mhl = δm0. (90)

This is trivially satisfied for the Haar wavelets. Here and in all that follows
we restrict our considerations to the case that the scaling coefficients and
scaling functions are real.

The orthogonality condition also requires that the number of non-scaling
coefficients must be even. To see this assume by contradiction that there are
2N + 1 non-zero scaling coefficients, h0 · · · h2N . Then setting m = −N in
(90) gives

∑

l

hl+2Nhl = h2Nh0 = δN0 = 0. (91)

which means that either h0 = 0 or h2N = 0, which contradicts the assumption
that there are 2N + 1 non-zero scaling coefficients. This shows that if the
number of non-zero scaling coefficients are finite, then there must be an even

number, 2K, with l = 0 · · · 2K − 1.
Note that if there are only two non-vanishing scaling coefficients, h0 and

h1, then the conditions (88) and (90) have a unique solution, which is the
Haar scaling coefficients. In this case these equations become

h0 + h1 =
√

2 (92)

h0h0 + h1h1 = 1. (93)

These equations have the unique solution h0 = h1 = 1/
√

2.
Conditions (88) and (90) are important constraints on the scaling coeffi-

cients.
For scaling equations with more than two non-zero scaling coefficients,

additional conditions are needed to determine the scaling coefficients.
The number of non-zero scaling coefficients determines the support of

the scaling function. The important property is that scaling functions that
are solutions of a scaling equation with a finite number of non-zero scaling
coefficients have compact support. The support is determined by the number
of non-zero scaling coefficients.

To determine the support of the scaling function, consider a scaling equa-
tion with N = 2K + 1 non-zero scaling coefficients. The scaling function is
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given by

φ(x) =
φ̃(0)√

2π

∫ ∞

−∞
eikx

∞
∏

m=1

h̃(
k

2m
)dk

=
1

2π

∫ ∞

−∞
eikx

∞
∏

m=1

(

N−1
∑

nm=0

hnm√
2
e−iknm/2m

)

dk

= lim
m→∞

N−1
∑

n1=0

· · ·
N−1
∑

nm=0

(

m
∏

k=1

hnk√
2

)

δ(x−
m
∑

k=1

nk/2
m).

This defines the scaling function as a distribution. This is not a useful
representation for computation, however it indicates that if a scaling function
has N non-zero coefficients hl then the scaling function has support on

[0, (N − 1)(
1

2
+

1

4
+

1

8
· · ·)] = [0, N − 1]

where N is the number of non-zero scaling coefficients.
While the support condition depends only on the number of non-zero coef-

ficients, there are many scaling functions with N non-zero scaling coefficients.
Except for the constraints dictated by the scaling equation, orthonormality,
and normalization, there is considerable freedom in choosing the coefficients
hl.

The scaling coefficients also determine the mother wavelet function. In
the general case the spaces Vm are the spaces of square integrable functions
spanned by the orthogonal basis functions φmn(x) := DmT nφ(x) for integer
n satisfying −∞ < n <∞. As in the Haar case, the scaling equation implies
that Vm ⊃ Vm+k for k > 0. Wavelet spaces are defined by

Wm : Vm−1 = Vm ⊕Wm.

It they also satisfy (63) and (64) they define a multiresolution analysis.
The mother wavelet function lives in the space W0 which means that it
has an expansion in V−1:

ψ(x) =
∑

n

√
2gnφ(2x− n) =

∑

n

gnD
−1T nφ(x). (94)

This equation can be expressed in a form similar to the scaling equation:

Dψ(x) =
∑

n

gnT
nφ(x). (95)
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The mother wavelet and all of its integer translates should be orthogonal
to the scaling function, which is in V0. In terms of the coefficients this
requirements is:

(ψm, φ) =
∑

n,l

hlgn(φn+2m, φl)

=
∑

n,l

hlgnδn+2m,l

=
∑

n

hn+2mgn = 0 (96)

for all m.
Orthonormality of the translated mother function requires

(ψm, ψn) =
∑

l,k

glgk(φl+2m, φk+2n)

∑

k

gk+2(n−m)gk = δmn (97)

or equivalently

(ψm, ψ) =
∑

k

gk+2mgk = δm0. (98)

The choice gk := (−1)khl−k where l is any odd integer it satisfies (95) and
(98):

∑

k

gk+2(n−m)gk =
∑

k

(−1)k+2(n−m)hl−k−2(n−m)(−1)khl−k

=
∑

k′

hk′+2(n−m)hk′ = δmn (99)

where we have let k′ = l − k in the last term. It also follows that

∑

n

hn+2mgn =
∑

n

hn+2m(−1)nhl−n

=
∑

n′

hl−n′(−1)l−n
′−2mhn′+2m = (−)l

∑

n′

hl−n′(−1)n
′

hn′+2m

= (−1)l
∑

n′

gn′hn′+2m. (100)
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Since l is odd, the sum is equal to its negative which shows that it vanishes.
The choice of l is arbitrary - changing l shifts the origin of the mother by an
even number of steps. Since the mother is orthogonal to all integer translates
of the scaling function, it does not matter where the origin is placed.

This shows that the coefficients hl, satisfying
∑

l

hl =
√

2. (101)

∑

l

hl−2mhl = δm0 (102)

with gk defined by
gk := (−1)khl−k l odd (103)

give a multi-resolution analysis, scaling function, and a mother function.
The Daubechies order-K wavelets are defined by the conditions

∫

xnψ(x)dx = 0, n = 0, 1, · · · , K − 1. (104)

These equations ensure that polynomials of degree < K − 1 can be lo-
cally represented by finite linear combinations of scaling functions on a fixed
scale. This is a useful property for numerical approximations. The order
K-Daubechies scaling function has 2K scaling coefficients, with K = 1 cor-
responding to the Haar wavelets, and each additional value of K adds one
more orthogonality condition.

The scaling equation (95) and the moment conditions (104) for the mother
wavelet function gives the additional equations necessary to find the Daubechies
scaling coefficients, hl:

0 = (xn, ψ) = (Dxn, Dψ)

=

∫

dxxn2−n−1/2
∑

m

gmφ(x−m).

This gives
∑

m

∫

dx(x+m)ngmφ(x) = 0.

For n = 0 this gives (using the n = 0 equation)
∑

gm = 0,→
∑

m

(−1)mhl−m = 0,
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Table 1: Scaling Coefficients

hl K=1 K=2 K=3

h0 1/
√

2 (1 +
√

3)/4
√

2 (1 +
√

10 +
√

5 + 2
√

10)/16
√

2

h1 1/
√

2 (3 +
√

3)/4
√

2 (5 +
√

10 + 3
√

5 + 2
√

10)/16
√

2

h2 0 (3 −
√

3)/4
√

2 (10 − 2
√

10 + 2
√

5 + 2
√

10)/16
√

2

h3 0 (1 −
√

3)/4
√

2 (10 − 2
√

10 − 2
√

5 + 2
√

10)/16
√

2

h4 0 0 (5 +
√

10 − 3
√

5 + 2
√

10)/16
√

2

h5 0 0 (1 +
√

10 −
√

5 + 2
√

10)/16
√

2

for n = 1 this gives
∑

mgm = 0,→
∑

m

m(−1)mhl−m = 0,

for n = 2 · · · k this gives
∑

m2gm = 0,→
∑

m

m2(−1)mhl−m = 0,

...
∑

mkgm = 0,→
∑

m

mk(−1)mhl−m = 0.

When coupled with
∑

hl =
√

2

and the orthonormality constraints,
∑

l

hlhl−2n = δn0

we get a system of equations that can be solved for the Daubechies-K scaling
coefficients. The cases K = 1, 2, 3 have analytic solutions. These solutions
are given in Table 1.

Scaling coefficients for other values of K are tabulated in the literature [1].
With the exception of the Haar case (K = 1), there are two solutions which
are related by reversing the order of the coefficients.
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Given the scaling coefficients, hl, it is possible to use them to compute
the the scaling function. While the Fourier transform method can be used to
compute the Haar functions exactly, it is more difficult to use in the general
case.

An alternative is to compute the scaling function exactly on a dense set
of dyadic points. This construction starts from the scaling equation in the
form:

φ(x) =
∑

l

√
2hlφ(2x− l). (105)

Let x = n to get relations between the values of the scaling function at
integer points

φ(n) =
∑

l

√
2hlφ(2n− l). (106)

Set m = 2n− l to get

φ(n) =
∑

m

√
2h2n−mφ(m) (107)

This gives the equations

φ(n) =
∑

m

Hnmφ(m) (108)

for the non-zero φ(n) corresponding to n = 1, · · · , 2K − 2 where

Hnm =
√

2h2n−m. (109)

Eigenvectors of the matrix Hmn with eigenvalue 1 are solutions of the scaling
function at integer points - up to normalization.

Rather than solve the eigenvalue problem, one of the equations can be
replaced by the condition

∑

n

φ(n) = 1 (110)

which follows from the assumption that
∫

ψ(x)dx = 0. (The proof of this
statement uses the fact that the translates of the scaling function on a fixed
scale and the wavelets on all smaller scales is a basis for square integrable
functions. Since 1 is locally orthogonal to all of the wavelets by assumption, 1
can be expressed as a linear combination of translates of the scaling function.
The normalization condition gives the coefficients of the expansion above.)
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The support condition implies that only a finite number of the φ(n) are
non-zero. This condition is independent of the orthonormality condition.

For the case of the K = 2 Daubechies wavelets these equations are

φ(0) =
√

2h0φ(0)

φ(1) =
√

2(h0φ(2) + h1φ(1) + h2φ(0))

φ(2) =
√

2(h1φ(3) + h2φ(2) + h3φ(1))

φ(3) =
√

2h3φ(3)

1 = φ(0) + φ(1) + φ(2) + φ(3).

The first and fourth equation give φ(0) = φ(3) = 0 (or h0 = h1 = 1/
√

2
which is the Haar solution). This also follows from the continuity of the
wavelets, since 0 and 3 are the boundaries of the support. The second and
third equations are eigenvalue equations

(

φ(1)
φ(2)

)

=

( √
2h1

√
2h0√

2h2

√
2h3

)(

φ(1)
φ(2)

)

. (111)

Instead of solving the eigenvalue problem for an eigenvector with eigenvalue
1, use

φ(1) + φ(2) = 1 (112)

with
φ(1) =

√
2(h0φ(2) + h1φ(1))

to get
φ(1) =

√
2(h0(1 − φ(1)) + h1φ(1))

which can be solved for

φ(1) =

√
2h0

1 +
√

2(h0 − h1)
(113)

and

φ(2) =
1 −

√
2h1

1 +
√

2(h0 − h1)
. (114)

This gives exact values of the scaling function at integer points in terms of
the scaling coefficients. This solution satisfies

∑

n φ(n) = 1. In this case
there are only two non-zero terms.
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In order to construct the scaling function at an arbitrary point x the first
step is to make a dyadic approximation to x. Let m be an integer that defines
a dyadic resolution. This means that we want the dyadic approximation to
satisfy the inequality |x− xapprox| < 2−m. For any m it is possible to find an
integer n such that

n

2m
≤ x <

n+ 1

2m
. (115)

Writing this as
n ≤ 2mx < n+ 1 (116)

immediately gives
n := [2mx] = floor(2mx) (117)

where [] means greatest integer ≤ 2mx.
Since the scaling function is continuous, for any ε > 0 we can find a large

enough m so

|φ(x) − φ(
n

2m
)| < ε.

In what follows we evaluate φ(n/2m) exactly. Let x = n/2m. We also assume
that 0 < n < 2K − 1 × 2m, otherwise φ(x) = 0 by the support condition (in
this example we consider the case K = 2) . In order to evaluate φ(x) note
that the scaling equation gives:

φ(x) = φ
( n

2m

)

=
√

2Dφ
( n

2m−1

)

=

∑

l

√
2hl1T

l1φ
( n

2m−1

)

=
∑

l

√
2hl1φ

( n

2m−1
− l1

)

=
∑

l

√
2hl1φ

(

n− 2m−1l

2m−1

)

(118)

Repeating this process a second time gives

φ(x) =
∑

l1,l2

2hl1hl2φ

(

n− 2m−1l1 − 2m−2l2
2m−2

)

. (119)

Using the scaling equation m times gives

φ(x) =
∑

l1,l2···lm

2m/2hl1hl2 · · · hmφ(n−2m−1l1−2m−2l2−· · · 2lm−1− lm). (120)
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In this case the last expression is evaluated at integer values which gives (for
the Daubechies K = 2 case):

φ(x) =
∑

l1,l2···lm

cl1cl2 · · · cm× (121)

[

δn−2m−1l1−2m−2l2−···2lm−1−lm,1

√
2h0

1 +
√

2(h0 − h1)
+ (122)

δn−2m−1l1−2m−2l2−···2lm−1−lm,2
1 −

√
2h1

1 +
√

2(h0 − h1)

]

(123)

where ck :=
√

2hk.
This method generalizes to any value of K and any choice of scaling

coefficients, hl.
The scaling function and mother wavelet for the Daubechies wavelet are

pictured in Figure 1.

25



0 1 2 3 4 5

Daubechies−3 Basis Functions

Scaling Function

Wavelet Function

Figure 1.

4 Daubechies Wavelets

The Daubechies wavelets have two special properties. The first is that there
are a finite number of non-zero scaling coefficients, hl, which means that
the scaling functions and wavelets have compact support. The order-K
Daubechies scaling equation has 2K non-zero scaling coefficients, and the
support of the scaling function and mother wavelet function is on the inter-
val [0, 2K − 1]. The second property of the order-K Daubechies wavelets is
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that the first K − 1 moments of the wavelets are zero.
The second property of the Daubechies wavelets is what makes them

useful as basis functions. The expansion of a function f(x) in a wavelet basis
has the form

f(x) =
∑

mn

fmnψmn(x) fmn :=

∫

f(x)ψmn(x)dx.

If f(x) can be well-approximated by a low-degree polynomial on the support
of ψmn(x), then the vanishing of the low-order moments of ψmn(x) means
that the expansion coefficient fmn will be small. On the other hand, as we
will show in this section, the scaling function basis can be used to make
local pointwise representation of low-degree polynomials. Since the scaling
function basis on Vm is equivalent to the wavelet basis on all scales, k >
m, this means that the wavelet basis provides an efficient representation
of functions that can be accurately approximated by local polynomials on
different scales. For integral equations with smooth kernels, this means that
the matrix representation of the kernels in a wavelet basis will be represented
by a sparse matrix.

The constraint on the moments of the Daubechies wavelets,

∫

ψ(x)xldx = 0 l = 0 · · ·K − 1, (124)

has important consequences. Eq. (124) implies

∫

ψ0m(x)xldx =

∫

ψ(x−m)xldx =

∫

ψ(y)(y +m)ldy

=
l
∑

k=0

l!

k!(l − k)!
ml−k

∫

ψ(y)ykdy = 0 l = 0 · · ·K − 1, (125)

which means that first K − 1 moments of the unit translates of the mother
wavelet function vanish. Similarly, changing scale gives

∫

ψ10(x)x
l =

∫

Dψ(x)xldx =
1√
2

∫

ψ(x/2)xldx

= 2l+1/2

∫

ψ(y)yldy = 0 l = 0 · · ·K − 1. (126)
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It straight forward to proceed inductively to show for all m and n that

∫

ψnm(x)xl = 0 l = 0 · · ·K − 1. (127)

This means that every Daubechies wavelet basis function is orthogonal to all
polynomials of degree less than K, where K is the order of the wavelet basis.

For the orthonormal basis of L2(R) consisting of

{T nφ(x), DmT nψ(x) : m ≤ 0} (128)

the only basis functions with non-zero moments with l < K are the scaling
basis functions

∫

φm(x)xldx 6= 0 l = 0 · · ·K − 1. (129)

Although polynomials are not square integrable, we can multiply a polyno-
mial by a box function b(x) which is 1 between x− and x+ and zero elsewhere.
The product of the box function and the polynomial is square integrable and
is equal to the polynomial on the interval [x−, x+]. It follows that

p(x)b(x) =
∑

mn

cmnψmn(x) =
∑

n

dnφkn(x) +
∑

n

∑

m≤k

cmnψmn(x) (130)

where p(x) is a polynomial of degree less than K and

cmn =

∫ x+

x−

ψmn(x)p(x)dx (131)

dn =

∫ x+

x−

φn(x)p(x)dx. (132)

The moment condition means that the coefficients cmn = 0 whenever the
support of the wavelet is completely contained inside of the interval [x−, x+].
Thus in the first expression the non-zero coefficients arise from end-point
contributions and from many small contributions from wavelets with support
that are much larger than the box.

If k is set to correspond to a sufficiently fine scale, so the support of
all of the wavelets is much smaller than the support of the box, then the
second sum in (130) has no wavelets with support larger than the width of
the box. The endpoint contributions only affect the answer within a distance
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∆, equal to the width of the support of the scaling basis function, from the
endpoints of the box. Inside this distance the only nonzero coefficient are
due to the translates of the scaling functions. There are a finite number of
these coefficients, and in this region they provide an exact representation of
the polynomial. Specifically let

I(x) = b(x)p(x) −
∑

n

dnφkn(x) +
∑

n

∑

m≤k

cmnψmn(x) (133)

then we have

0 = ‖I‖2 =

∫ x−+∆

x−

I(x)2dx+

∫ x+

x+−∆

I(x)2dx+

∫ x+−∆

x−+∆

|p(x) −
∑

n

dnφkn(x)|2dx. (134)

Since all three terms are non-negative we conclude that
∫ x+−∆

x−+∆

|p(x) −
∑

n

dnφkn(x)|2dx = 0. (135)

Since ∆ is fixed by the choice of the support of the scaling function and x±
is arbitrary we have

∫ b

a

|p(x) −
∑

n

dnφkn(x)|2dx = 0 (136)

for any interval [a, b]. Since p(x) and φ(x) are continuous (we did not prove
this for φ(x)) and the sum of translates has a finite number of non-zero terms,
it follows that

p(x) =
∑

n

dknφn(x) (137)

pointwise on every finite interval. Since the box support is arbitrary this holds
for any k. This establishes the desired result, that polynomials of degree less
than K can be represented exactly by the finite linear combinations of the
scaling functions φn(x). Since both bases in (130) are equivalent, it follows
that local polynomials can also be represented exactly in the wavelet basis.

Figure 2. shows integer translates of the Daubechies 2 scaling function.
Note how the sum of the non zero wavelets at any point in identically one,
in spite of the complex fractal nature of each individual scaling function.
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Figure 2.

Figure 2. shows a local representation of a constant function in terms of
scaling fucntions.
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Figure 3.

Figure 3. shows a local representation of a linear function in terms of
scaling functions, while Figure 4. shows a local representation of a linear
function.
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Figure 4.

Note that expansion in the wavelet basis gives all coefficients zero. This
is not a contradiction because none of the polynomials are square integrable.
The key point is that once one puts a box around a function, wavelets with
very large support (large m) lead to many small contributions.
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5 Moments and Quadrature Rules

One of the most important properties of the scaling equation is that it can be
used to generate linear relations between integrals involving different scaling-
function or wavelet basis elements. In this section we show how the scaling
equation can be used to obtain exact expressions for moments of the scaling
function and wavelet basis elements as functions of the scaling coefficients.
These can be used to develop quadrature rules that can be applied to linear
integral equations. In section 6 the scaling equation is used to obtain exact
expressions for the inner products of the these functions and their derivatives,
which are important for applications to differential equations. We also show
that these same methods can be used to compute integrals of scaling functions
and wavelets over the different types of integrable singularities encountered
in singular integral equations.

Moments of the scaling function and mother wavelet function are defined
by

< xm >φ=

∫

φ(x)xmdx < xm >ψ=

∫

ψ(x)xmdx. (138)

Normally these are integrated over the real line. For compactly supported
wavelets this is equivalent to integrating over the support of the wavelet.

A polynomial quadrature rule is a collection of N points {xi} and
weights {wi} with the property

< xm >φ=

∫

φ(x)xmdx =
N
∑

i=1

xmi wi (139)

which hold for 0 ≤ m ≤ 2N − 1. By linearity this means that

∫

φ(x)P (x)dx =
N
∑

i=1

P (xi)wi (140)

is exact for all polynomials of degree up to 2N − 1.
In order to construct a quadrature rule we need to first compute the

moments, and from these we can compute the points and weights. The
moments can be constructed recursively from the normalization condition

< x0 >φ= (x0, φ) =

∫

dxφ(x) = 1 (141)
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using the scaling equation

< xm >φ= (xm, φ) = (Dxm, Dφ)

=
1√
2

1

2m

∑

l

hl(x
m, T lφ)

=
1√
2

1

2m

∑

l

hl((x+ l)m, φ)

=
1√
2

1

2m

∑

l

hl

m
∑

k=0

m!

k!(m− k)!
lm−k < xk >φ .

Using
∑

l hl =
√

2, and moving the k = m term to the left side of the above
equation gives the recursion relation:

< xm >φ=
1

2m − 1

1√
2

m−1
∑

k=0

m!

k!(m− k)!

(

2K−1
∑

l=1

hll
m−k

)

< xk >φ . (142)

Note that the right hand side of this equation involves moments with k < m.
Similarly the moments of the mother wavelet function are expressed in terms
of the moments of the scaling functions using eq. (95)

< xm >ψ=
1

2m

m
∑

k=0

m!

k!(m− k)!

(

2K−1
∑

l=0

gl√
2
lm−k

)

< xk >φ . (143)

Since the scaling equation for the mother wavelet function relates the mother
wavelet function to the scaling function there is no need to take the k = m
term to the left of the equation; it is known from the first recursion.

Equations (141), (142), and (143) give a recursive method for generating
all non-negative moments of the scaling and mother wavelet function from
the normalization integral of the scaling function.

The moments for φkl = DkT lφ and ψkl = DkT lψ can be computed from
the moments (142) and (143) using the unitarity of the D and T operators

< xm >φkl
= (xm, DkT lφ) = (T−lD−kxm, φ)

= 2k(m+1/2)
m
∑

n=0

m!

n!(m− n)!
lm−n < xn >φ
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and
< xm >ψkl

= (xm, DkT lψ) = (T−lD−kxm, φ)

= 2k(m+1/2)

m
∑

n=0

m!

n!(m− n)!
lm−n < xn >ψ .

Thus, all moments of translates and scale transforms of both the mother
wavelet and scaling functions can be computed exactly in terms of the scaling
coefficients.

Partial Moments: Partial moments of the form

< xm >φ[0:n]=

∫ n

0

φ(x)xmdx

and

< xm >φ[n:2K−1]=

∫ 2K−1

n

φ(x)xmdx =< xm >φ − < xm >φ[0:n]

for n ∈ {1, · · · , 2K − 2} are also needed of numerical applications.
These are can be calculated recursively in terms of the full moments using

the scaling equation. First consider the order m = 0 partial moments. Use
the scaling equation

Dφ(x) =
1√
2
φ(
x

2
) =

∑

l

hlφ(x− l),

which gives

φ(x) =
∑

l

√
2hlφ(2x− l),

in the definition of the m = 0 partial moment to obtain:

< x0 >φ[0:n]=

∫ n

0

φ(x)dx =
∑

l

√
2hl

∫ n

0

φ(2x− l)dx.

Substituting y = 2x− l gives

< x0 >φ[0:n]=
∑

l

hl√
2

∫ 2n−l

−l
φ(y)dy =

∑

l

hl√
2
< x0 >φ[−l,2n−l] .
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The support condition of the scaling function φ(x) implies that the lower
limit of all of the integrals can be taken as zero which gives the relations:

< x0 >φ[0:n]=
2n
∑

k=2n−2K+1

c2n−k < x0 >φ[0:k]

where

cl :=
hl√
2

are non-zero for l = 0, · · · , 2K − 1. These equations are a linear system for
the non-trivial partial 0-moments, mn =< x0 >φ[0:n], in terms of the full
0-moments < x0 >φ= 1. These equations have the form

Mmnmn = vm (144)

where n,m : 1 → 2K − 2 and

Mmn = δmn − Cmn

with
Cmn = c2m−n m < K − 1, n = 1, · · · , 2m

Cmn = 0 m < K − 1, n = 2m+ 1, · · · , 2K − 2

Cmn = c2m−n m = K − 1, K

Cmn = c2m−n m > K,n = 2m− 2K + 1, · · · , 2K − 2

Cmn = 0 m > K,n = 1, · · · , 2m− 2K

and
vn = 0 n < K

vn =

2(n−K)+1
∑

k=0

ck K ≤ n ≤ 2K − 2.

The matrix M := I − C has the form

I − C :=























1 − c1 −c0 0 0 · · · 0
−c3 1 − c2 −c1 −c0 · · · 0

...
...

...
... 0

−c2K−3 −c2K−4 · · · −c0
−c2K−1 −c2K−2 · · · −c2

...
...

...
...

...
0 0 · · · 0 −c2K−1 1 − c2K−2
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the vector mn, of partial moments, has the form

m :=























< x0 >φ[0:1]

< x0 >φ[0:2]
...

< x0 >φ[0:K−1]

< x0 >φ[0:K]
...

< x0 >φ[0:2K−2]























and the driving term has the form

v′ :=























0
0
...
0

c0 + c1
...

c0 + · · · c2K−3























.

The solution of this system of linear equations gives the partial moments of
order zero:

mn =< x0 >φ[0:n]= (I − C)−1v.

Complementary partial moments are given by:

< x0 >φ[n:2K+1]= 1− < x0 >φ[0,n] .

Higher order partial moments can be constructed similarly

< xk >φ[0:n]:=

∫ n

0

φ(x)xkdx

=
2K−1
∑

l=0

√
2hl

∫ n

0

φ(2x− l)xkdx

=
2K−1
∑

l=0

hl

2k
√

2

∫ 2n−l

−l
φ(x)(x+ l)kdx
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=
2K−1
∑

l=0

hl

2k
√

2

k
∑

m=0

k!

m!(k −m)!
lk−m

∫ 2n−l

0

φ(x)xmdx.

Rearranging indices, putting terms with the partial moments of the highest
power on the left gives the following equation for the order k partial moments:

2K−2
∑

r=1

(δmr −
1

2k
Cmr) < xk >φ[0:r]= wm (145)

where the inhomogeneous term wn in (145) is

wn = δ(n ≥ K)
r=2n
∑

2n−2K+1

c2n−r
2k

< xk >φ

+
2K−1
∑

l=1

cl
2k

k−1
∑

m=0

k!

m!(k −m)!
lk−m < xm >φ[0:2n−l], (146)

which can be expressed in terms of the full moments of order k and partial
moments of order less than k. The desired order-k partial moments are
obtained by inverting the matrix

< xk >φ[0:m]:=
∑

r

(δmr −
1

2k
Cmr)

−1wr.

Note that C matrix is identical to the C matrix that appears in equation for
the 0-order partial moments.

Having solved for the partial moments of the scaling function, it is possible
to find the partial moments for the mother wavelet function < xm >ψk[0:n]

using

< xm >ψk[0:n]:=
1

2m+1/2

∑

l

gl

m
∑

k=0

m!lm−k

k!(m− k)!
< xm >φk[0:2n−l]

where the < xm >φk[0:2n−l] vanish for 2n − l ≤ 0, are partial moments for
0 < 2n− l < 2K−1, and are full moments for 2n− l ≥ 2K−1. This equation
expresses the partial moments of the mother wavelet function directly terms
of moments and partial moments of the scaling function.

Given the moments and partial moments of φ(x) and ψ(x) we can solve
for the partial moments of φmn and ψmn in terms of the partial moments of
φ(x) and ψ(x) by rescaling and translation.
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Quadrature Rules: Given exact the expression for the moments it is pos-
sible to formulate quadrature rules for integrating the product smooth func-
tions times wavelet or scaling basis functions. The simplest quadrature rule is
the one-point quadrature rule. To understand this rule consider integrals
of the form

∫

f(x)φ(x)dx. (147)

The quadrature point is defined as the first moment of the scaling function

x1 :=

∫

xφ(x)dx = µ1. (148)

With this definition we have
∫

(a+ bx)φ(x)dx = a+ bµ1 = a+ bx1. (149)

For orthogonal wavelets note that

km :=

∫

xφ(x)φ(x−m)dx =

∫

(y +m)φ(y +m)φ(y)dy

=

∫

xφ(x+m)φ(x)dx = k−m.

It follows that
∑

m

mkm =
∑

m

(−m)km = 0. (150)

For the Daubechies order K > 1 scaling functions

∑

m

mφ(x−m) = x− µ1 (151)

which gives

0 =
∑

m

m

∫

xφ(x)φ(x−m)dx =
∑

m

∫

φ(x)x(x− µ1)dx = µ2 − µ2
1. (152)

This means that µ2 = µ2
1 or

∫

φ(x)(a+ bx+ cx2)dx = a+ bµ1 + cµ2 = a+ bx1 + cx2
1. (153)
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This gives a one-point quadrature rule with point x1 = µ1 and weight w1 =
1, that integrates the product of the scaling function and polynomials of
degree 2 exactly. This is very useful and simple when used with scaling basis
functions that have small support.

More generally, given a collection of 2N moments of the scaling function
or mother wavelet we can construct quadrature points and weights using the
following method [?]. If {xi} are the (unknown) quadrature points define the
polynomial

P (x) =
N
∏

i=1

(x− xi) =
N
∑

n=0

pnx
n

where pN = 1 and the other pn’s are unknown. Define the polynomials of
degree n+m

Qm(x) = xmP (x)

for m = 1, · · ·N − 1. By construction, for each m and xi , Qm(xi) = 0
because P (xi) = 0.

If we require that the points {xi} and weights {wi} exactly reproduce 2N
moments then it follows that

∫

φ(x)Qm(x)dx =

N
∑

i=1

Qm(xi)wi = 0 (154)

because Qm(xi) = 0. The condition that the weights reproduce the moments
give the conditions

∫

φ(x)Qm(x)dx =
N
∑

n=0

pn < xn+m >φ,

and this must be equal to zero for each value m from m = 0 to m = N − 1.
This gives N linear equations for the N unknowns p0 · · · pN−1:

N
∑

n=0

pn < xn+m >φ= 0 m = 1 · · ·N ; pN = 1

or

N−1
∑

n=0

< xn+m >φ pn = − < xN+m >φ pN m = 1 · · ·N ; pN = 1.
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Solving this linear system for the coefficients pn , using pN = 1, gives the
polynomial P (x).

Given the polynomial P (x) the next step is to find its zeros. The N zeros
of the polynomial P (x) are the quadrature points xi. Given the quadrature
points, the weights are determined from the remaining N moments by solving
the linear system

< xn >φ=
N
∑

i=1

xni wi n = 0, · · · , N − 1

for the weights, wi.
This shows how to construct the quadrature points and weights from the

moments. In applications the linear equations for the coefficients pn are real .
It follows that the zeros of P (x) are either real or come in complex conjugate
pairs. In general it is desirable that the points are real and lie in the support
of the scaling function. When this fails to occur it is best to simply assign
real quadrature points that lie on the support of the scaling function. In
doing this some accuracy is sacrificed, but it is easy to go to a higher order.
Generally quadrature rules are used to integrate over the support of a scaling
function of a small scale; normally a small number of quadrature points and
weights is sufficient.

For quadrature rules on a half-interval the partial moments, < xm >φl[0:∞],
need to be used near 0 to generate a quadrature rule.

Quadrature points are normally needed for different scaling basis func-
tions, φmn(x). Points and weights for integrating φmn(x) can be generated
by scaling and translation. To see this consider a set of points and weights
{xi, wi} that satisfy

(xm, φ) =

∫

xmφ(x)dx =
∑

xmi wi.

It follows that

(xm, φnk) = (xm, DnT kφ) = 2n(m+1/2)(xm, T kφ, )

= 2n(m+1/2)((x+ k)m, φ) =
∑

2nm+n/2wl(xl + k)m

=
∑

(2n/2wl)(2
n(xl + k))m.

41



If we define the transformed points and weights by

w′
l = 2n/2wl x′l = 2n(xl + k),

we get

(xm, φnk) =
∑

l

w′
l(x

′
l)
m.

The new points and weights involve simple transformations of the original
points and weights.

While it is possible to formulate quadrature rules for both the wavelet
basis and scaling function bases, it makes more sense to develop the quadra-
ture rules for the scaling function on a sufficiently fine scale. This is because
the scaling basis functions have small support, which means that the quadra-
ture rule will be accurate for functions that can be accurately represented by
low-degree polynomials on the support of the scaling function.

Integral Equations: To use the quadrature rules to solve linear integral
equations first consider the non-singular integral equation

f(x) = g(x) +

∫

K(x, y)f(y)dy.

Let
f(x) ≈

∑

n

fnφsn(x)

where φsn(x) are translates of the scaling function on a sufficiently fine scale
s. Inserting the approximate solution in the integral equation gives

∑

n

fnφsn(x) ≈ g(x) +
∑

n

∫

K(x, y)fnφsn(y)dy.

Using the orthonormality of the φsm(x) for different m values and a suitable
quadrature rule gives the equation for the coefficients fm:

fm =
∑

l

g(xlm)wlm +
∑

n

∑

l,k

wlmK(xlm, xkn)wknfn

or
∑

n

[

δmn −
∑

l,k

wlmK(xlm, xkn)wkn

]

fn =
∑

l

g(xlm)wlm. (155)
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Note that no integrals need to be evaluated, except using the local quadra-
ture rules. In addition the points and weights only have to be calculated
for the scaling function on one scale - the rest can be obtained by simple
transformations.

While the scaling function basis on the approximation space Vs is useful
for deriving the matrix equation above, it is useful to use the multiresolution
analysis to express the approximation space as

Vs = Ws+1 ⊕Ws+2 ⊕ · · · ⊕Ws+r ⊕ Vs+r.

The representation on the right has a natural basis consisting of scaling basis
functions φs+r,m(x) on the larger scale, s+r > s, and wavelet basis functions
ψmn(x) on intermediate scales s < m ≤ s+r. These two bases are related by
a real orthogonal transformation called the wavelet transform. Normally
the wavelet transform is an infinite matrix. In applications it is replaced by
finite orthogonal transformation that uses some conventions about how to
treat the boundary.

To solve the integral equation the last step is to use the wavelet transform
on the indices m,n. This should give a sparse linear system that can be used
to solve for fn. While the precise form of the sparse matrix will depend
on how the boundary terms are treated, the solution in the space Vm is
independent of the choice of orthogonal transformation used to get the sparse-
matrix form of the equations.

Given the solution fn it is possible to construct f(x) for any x using the
interpolation

f(x) = g(x) +
∑

n

∑

k

K(x, xkn)wknfn.

This method has the feature that the solution can be obtained without ever
evaluating a wavelet or scaling function. The wavelet nature of this calcu-
lation appears in the quadrature points and weights, which are functions of
the scaling coefficients.

Scattering integral equations have two complications. First the integral
is over a half line. Second, the kernel has a 1/(x± iε) singularity.

The endpoint near x = 0 of the half line can be treated using special
quadratures for the functions on the half interval. If there is a φn with
support containing an endpoint, the δmn in (155) needs to be replaced by

∫ ∞

0

φm(x)φn(x)dx = Nmn = Nnm,
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which is not a Kronecker delta when the support of φm and φn contain
the origin. These integrals can be evaluated using the same methods that
were used to calculate moments on the half interval. We use the scaling
equations and the orthonormality when the support of both terms are in the
half interval. Specifically for a and b integers

Na,b
i,j =

∫ b

a

φi(x)φj(x)dx

=

∫ b−i

a−i
φ(x)φ(x+ i− j)dx

=
∑

l,l′

hlhl′

∫ b−i

a−i
φ(2x− l)φ(2x+ 2i− 2j − l′)2dx

=
∑

l,l′

hlhl′

∫ 2(b−i)−l

2(a−i)−l
φ(x)φ(x+ 2i− 2j + l − l′)dx

=
∑

l,l′

hlhl′N
2a−2i−l,2b−2i−l)
0,−2i+2j−l+l′ .

When either function has support inside the interval this is a Kronecker delta.
These equations are linear equations that relate these known elements to the
unknown elements where the support overlaps an upper or lower endpoint.
These formulas simplify if one of the endpoints satisfy a = ∞ or b = −∞.
The final relations are

Na−i,b−i
0,j−i =

∑

l,l′

hlh
′
lN

2a−2i−l,2b−2i−l
0,−2i+2j−l+l′ .

Note that N0,k = 1 if k = 0, N0,k = 0 if k > 0 or k ≤ −(2K − 1). It is
non-trivial for −(2K−2) ≤ k < 0. This gives a linear system for the overlap
coefficients, Ni,j .

For scaling functions that overlap x = 0 the equation becomes:

∑

n

[

N0,n−m −
∑

l,k

w̃lmK(x̃lm, x̃kn)w̃kn

]

fn =
∑

l

g(x̃lm)w̃lm

where the x̃lm, w̃lm indicate that for m satisfying 2K − 2 ≤ m < 0 the
quadrature points and weights need to be replaced by the ones for the half
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interval. In this case overlap matrix elements Nmn need to be computed on
the scale dictated by the approximation space Vk.

Mapping techniques are valuable for transforming the equation to an
equivalent equation on a finite interval and for treating singularities. For
example, the mapping

x = −x0
b

a

y − a

b− y

transforms the domain of integration to [a, b] and a singularity at x = x0 to
the origin. What remains is a mechanism for treating an integrable singu-
larity. The first step is to use a mapping, like the one above, to place the
singularity at the origin. After mapping, the relevant integrals for a 1/(x−x0)
singularity, when using the subtraction technique discussed below, are

Im(n) :=

∫

DmT nφ(x)

x
dx.

Using unitarity of D gives

Im(n) :=

∫

D(DmT nφ(x))D
1

x
dx =

2√
2

∫

Dm+1T nφ(x)

x
dx =

√
2

∫

DmT 2nDφ(x)

x
dx =

2K−1
∑

l=0

√
2hlIm(2n+ l).

The equations

Im(n) =
2K−1
∑

l=0

√
2hlIm(2n+ l)

give linear equations relating the integrals with singularities to the integrals
with no singularities. The singular terms for the order-K Daubechies scaling
functions are

φm0(−1), φm0(−2), · · ·φm0(−2K + 2)

The endpoint terms, φm0(0) and φm0(−2K + 1) are not singular because
φm(x) must be continuous at the endpoints.
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We found that these equations are ill-conditioned, but they can be sup-
plemented by

0 =
∑

n

P
∫ k

−k

φmn(x)

x
dx, (156)

which has the form
0 =

∑

n

Ikm(n) (157)

where the integrals Ikm(n) include partial integrals when n is such that the
support of φmn(x) contains the points k or −k. These linear relations relate
the singular integrals to the non-singular ones. For φmn(x) with support far
enough away from the origin and not containing k or −k the integrals can
be expressed in terms of the moments:

Im(n) =

∫

DmT nφ(x)

x
dx =

∫

T nφ(x)D−m 1

x
dx = 2−

m

2

∫

φ(x)T−n 1

x
dx

= 2−
m

2

∫

φ(x)
1

x+ n
dx = 2−

m

2
1

n

∞
∑

l=0

(

−1

n

)l

〈xl〉φ.

For large values of n this series converges rapidly. Similar methods can be
used for values of n where k or −k is in the support of φmn(x). In this case
the full moments need to be replaced by the appropriate partial moments.

For singularities of the form 1/(x± iε) equation (156) is replaced by
∫ m

−m

dx

x± i0+
= ∓iπ.

Using this with the wavelet expansion
∑

n

φ(x) = 1

provides the needed additional equation,

∓2πi =
∑

n

Ikm(n),

which replaces (157). The result of solving these linear equations is accurate
approximations to the integrals

∫

φn(x)

x± i0+
. (158)
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To use these to solve the integral equation consider the case m = 0:

∫

K(x, y)

y
φn(y)dy

=

∫

K(x, y) −K(x, 0)

y
φn(y)dy +K(x, 0)

∫

φn(y)

y
dy

=
∑

l

K(x, xl) −K(x, 0)

xl
wl +K(x, 0)I0(n)

In applications the I0(m) should be computed for m values far from the
singularity using the series expansion. The equations relating the I0(m) are
used to calculate the remaining I0(n)’s.

Similar methods can be used to treat other types of integrable singulari-
ties. For example, for logarithmic singularities define

I0(n) :=

∫

φn(x) ln(x)dx

The scaling equation gives the linear relations

I0(n) = (T nφ, ln) = (DT nφ,D ln)

=
1√
2
[(T 2nDφ, ln) − ln(2)(T 2nDφ, 1)]

=
1√
2

(

∑

l

hlI0(2n+ l) − ln(2)

)

.

In this case, because the singularity is integrable and the value of the inte-
gral is unambiguous, we do not need an additional equation to specify the
treatment of the singularity; however the function is multiply valued, so the
computation of the input integrals far from the singularity should reflect the
choice of Riemann sheet.

The linear equations above relate the integrals I0(n) that overlap the
singularity to integrals far away from the singularity, which may or may not
have support containing the endpoints ±a. These terms serve as input to the
linear system and can be computed with the moments and partial moments
using expansion methods. For the case that the support of φn(x) does not
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Table 2: Singular Integrals

K = 2
n = −2

∫

φ(x− n) ln |x|dx 0.456927033732831
n = −1

∫

φ(x− n) ln |x|dx −1.64215549088219
K = 3
n = −4

∫

φ(x− n) ln |x|dx 1.15737952417967
n = −3

∫

φ(x− n) ln |x|dx 0.750468355278047
n = −2

∫

φ(x− n) ln |x|dx 0.315624303943019
n = −1

∫

φ(x− n) ln |x|dx −1.83646456399118

contain ±a the following expansion can be used when the support of φn(x)
contains positive values of x:

I0(n) =

∫

φn(x) ln(x)dx =

∫

φ(y) ln(n(1 + y/n))dy

= ln(n) −
∞
∑

m=1

(−1)m

m

< xm >φ

nm
. (159)

This expansion converges rapidly for large n. When |n| is large with n < 0
we use

ln(n) = ln|n| + i(2m+ 1)π

and m is fixed by the treatment of the integral near the origin. In the
case that one of the endpoints ±a are contained in the support of φn the
moments, a similar expression can be used to approximate the integrals Ia0 (n),
except the moments, including the 0-th moment multiplying ln(n), need to
be replaced by partial moments.

For the case of the Daubechies K = 2 and K = 3 wavelets the solution
of these equations in given in Table 2. The numbers in the table are for
∫

φn(x) ln |x|dx for the φn(x) with support containing x = 0.

6 Derivatives and Differential Equations

The scaling equation can also be used as a tool to solve differential equations.
Consider the following approximation of the function f(x) given by

f(x) ∼
∑

n

fnφmn(x) (160)
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where φmn(x) = DmT nφ(x) is the scaling function basis on the approximation
space Vm. As m→ −∞ this representation becomes exact.

For the purpose solving differential equation we want to calculate approx-
imate derivatives of f(x) on the same approximation space

f ′(x) :=
∑

n

d′nφmn(x).

f ′′(x) :=
∑

n

d′′nφmn(x).

The orthonormality of the scaling basis functions can be used to find the
expansion coefficients d′n and d′′n:

d′n :=

∫

φmn(x)f
′(x)dx = −

∫

φ′
mn(x)f(x)dx. (161)

d′′n :=

∫

φmn(x)f
′′(x)dx =

∫

φ′′
mn(x)f(x)dx. (162)

Using the expansion (160) in (161) gives

d′n = −
∑

n′

(φ′
mn, φmn′)fn′

and
d′′n =

∑

n′

(φ′′
mn, φmn′)fn′ .

The coefficients (φ′
mn, φmn′) and (φ′′

mn, φmn′) are needed to compute the ex-
pansion coefficients d′n and d′′n for the derivatives in terms of the expansion
coefficients fn′ of the function.

Given these linear relations between the coefficients d′n and d′′n, the so-
lution of a linear differential equation can be reduced to solving a linear
algebraic system for the coefficients fn. The size of this system can be re-
duced by employing the wavelet transformation. The method of solution
depends on the type of problem. Standard methods can be used to enforce
boundary conditions; the only trick is that all of the basis functions with
support that overlaps the boundary should be retained.

The goal of this section is to show that the scaling equation can be used
to compute the needed overlap integrals.
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To proceed we first consider the simplest case where the scale m = 0.
Using unitarity of the translation operator gives the following relations

(φ′
n, φn′) = (φ′, φn′−n) = (φ′

n−n′, φ)

(φ′′
n, φn′) = (φ′′, φn′−n) = (φ′′

n−n′, φ).

In addition these coefficients have the following symmetry relations

(φ′, φn) =

∫

φ′(x)φ(x− n)dx = −
∫

φ(x)φ′(x− n)dx =

= −
∫

φ′(y)φ(y + n)dy = −(φ′, φ−n)

and
(φ′′, φn) = (φ′′, φ−n)

which follow by integration by parts.
The overlap coefficients can be computed using the scaling equation and

the derivatives of the scaling equation:

φ(x) =
√

2
2K−1
∑

l=0

hlφ(2x− l)

φ′(x) = 2
√

2
2K−1
∑

l=0

hlφ
′(2x− l)

φ′′(x) = (22)
√

2
2K−1
∑

l=0

hlφ
′′(2x− l).

We first consider the computation of the coefficients (φ′(x), φn).
For an defined by

an := (φ′(x), φn)

this leads to the following linear relations among the overlap coefficients

an = 4
2K−1
∑

l,l′=0

hlhl′

∫

φ(2x− 2n− l)φ′(2x− l′)dx

= 2
2K−1
∑

l,l′=0

hlhl′

∫

φ(y − 2n− l + l′)φ′(y)dy = 2
2K−1
∑

l,l′=0

hlhl′a2n+l−l′. (163)
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Since both φ(x) and φ′(x) have support for 0 ≤ x ≤ (2K − 1), the non-zero
terms in the sum are constrained by

−(2K − 1) < 2n+ l − l′ < 2K − 1.

For the second derivative these equations are replaced by

an := (φ′′(x), φn) = 8
2K−1
∑

l,l′=0

hlhl′a2n+l−l′ (164)

These linear equation are homogeneous and must be supplemented by a
normalization condition. For the Daubechies wavelets of order K > 1 we
have the expansion

x =
∑

n

b′nφn(x) x2 =
∑

n

b′′nφn(x)

where the expansion coefficients are

b′n =

∫

φn(x)xdx = n+

∫

φ(x− n)(x− n)dx = n+ < x >φ

and

b′′n =

∫

φn(x)x
2dx =

∫

φ(x)(x+ n)2dx = n2 + 2n < x >φ + < x2 >φ

= n2 + 2n < x >φ + < x >2
φ= (n+ < x >φ)

2.

Thus

x =< x >φ +
∑

n

nφn(x) x2 =< x >2
φ +2(x− < x >φ) < x >φ +

∑

n

n2φn(x)

These equations can be differentiated to get

1 =
∑

n

nφ′
n(x) 2 =

∑

n

n2φ′′
n(x)

Multiplying by φ(x) and integrating gives the desired inhomogeneous equa-
tion

1 =
∑

n

n(φ, φ′
n) =

∑

n

n(φ−n, φ
′) =
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−
∑

n

n(φn, φ
′) = −

∑

n

nan (165)

and
2 =

∑

n

n2a′′n (166)

Equations (163) and (165) or (163) and (166) are linear systems that can be
used to solve for the coefficients a′n and a′′n.

In general, it is desirable to expand a function using a scaling basis associ-
ated with a sufficiently small scale m, In addition, for efficiency it also useful
to use the basis on the approximation space Vm consisting or the scaling
functions on the scale m + k and wavelet basis functions on scales between
m + 1 and m + k. Finally, one needs to be able to treat higher derivatives.
Generalizations of the methods can be used to find exact expression for all of
these quantities expressed a solutions of linear equations involving the scaling
coefficients. For the higher derivatives it is necessary to use a Daubechies
wavelet of sufficiently high order. The number of derivative of the wavelet
and scaling function basis increases with order.

A necessary condition for the solution of the scaling equation to have k
derivatives can be obtained by differentiating the scaling equation k times,
which gives

φ(k)(x) =
√

22k
∑

l

hlφ
k(2x− l)

Letting x = m and n = 2m− l gives the equation

φ(k)(m) =
√

22k
∑

l

h2m−nφ
k(n)

where the non-zero values of φk(n) satisfy 0 ≤ n ≤ 2K−1. For this equation
of have a solution the matrix Hmn := h2m−n must have eigenvalue 2−(k+1/2).
This is a necessary condition for the basis to have k derivatives. When the
k-th derivative exists, it can be computed up to normalization by iterating
the Fourier transform of equation (6). The method used to compute wavelets
at dyadic points can also be used with the above equation to compute the
k-th derivatives of scaling functions and wavelets at dyadic points.

The scaling equation can be used to exactly compute all of the expansion
coefficients. In order to exhibit the key relations it is useful to use operators:

Df(x) =
1√
2
f(
x

2
) (167)
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Tf(x) = f(x− 1) (168)

∆f(x) =
df

dx
(x). (169)

Direct computation shows the following intertwining relations

∆D =
1

2
D∆ (170)

DT = T 2D (171)

∆T = T∆ (172)

∆† = −∆ T † = T−1 D† = D−1. (173)

We also have the scaling equations:

Dφ =
∑

l

hlT
lφ (174)

Dψ =
∑

l

glT
lφ. (175)

Using the operator relations above give

D∆rφ = 2r
∑

l

hlT
l∆rφ (176)

D∆rψ = 2r
∑

l

glT
l∆rφ. (177)

The different expansion coefficients can be expressed in terms of these
operators as

(φm′n′ ,∆rφmn) = (Dm′

T n
′

φ,∆rDmT nφ) (178)

(ψm′n′,∆rφmn) = (Dm′

T n
′

ψ,∆rDmT nφ) (179)

(φk′n′ ,∆rψmn) = (Dk′T n
′

φ,∆rDmT nψ) (180)

(ψk′n′,∆rψmn) = (Dk′T n
′

ψ,∆rDmT nψ). (181)

The following steps are used to evaluate these coefficients:
1. Move all of the factors of D to a single side of the equation. Choose

the side where the power of D is positive.
2. Move the D’s through all derivatives.
3. Use the scaling equations to eliminate all of the D’s.
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4. Move all of the T ’s to the left side of the scalar product.
Using these steps all of the overlap coefficients can be expressed in terms

of
(φn,∆

rφ) (182)

(ψn,∆
rφ) (183)

(φn,∆
rψ, ) (184)

(ψn,∆
rψ) (185)

The scaling equation can be used to express all of the ψ terms in terms of
the φ terms. The result is at all of the coefficients can be expressed in terms
of the coefficients

(φn,∆
rφ) (186)

We have shown how to compute these for r = 1 and 2. The coefficients for
larger values of r can be obtained by solving the system:

r! =
∑

n

nrφ(r)
n (x)

a(r)
n := (φ′′(x), φn) = 22r−1

2K−1
∑

l,l′=0

hlhl′a
(r)
2n+l−l′ (187)

7 Galerkin for Scattering

We want to find the solution to the s-wave Schrödinger equation

− ~
2

2m

1

r

d2

dr2
[r ψ(r)] + V (r)ψ(r) = E ψ(r) (188)

for a particle with mass m and energy E = ~
2k2/2m, where ψ(r) has the

asymptotic form
rψ(r) −→

r→∞
sin(kr + δ) , (189)

and rψ(r) is zero at the origin. Equation (188) can be rewritten in the form

−1

r

d2

dr2
[r ψ(r)] + U(r)ψ(r) = k2ψ(r) , (190)
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where

U(r) =
2m

~2
V (r) . (191)

To solve Equation (190) we choose a complete set of basis functions φn(r)
and write

ψ(r) =
N
∑

n=1

an φn(r) . (192)

To solve for the expansion coefficients an we first multiply Equation (190) by
r2φm(r) and integrate from 0 to R. This gives

−
∫ R

0

r φm(r)
d2

dr2
[r ψ(r)] dr+

∫ R

0

φm(r)U(r)ψ(r)r2dr = k2

∫ R

0

φm(r)ψ(r) r2dr .

(193)
Using integration by parts, the first term in Equation (193) can be written
as

−
∫ R

0

r φm(r)
d2

dr2
[r ψ(r)] dr = −r φm(r)

d

dr
[r ψ(r)]

∣

∣

∣

R

0
+

∫ R

0

d

dr
[r φm(r)]

d

dr
[r ψ(r)] dr .

(194)
Now we set

d

dr
[r ψ(r)]

∣

∣

∣

r=R
= 1 , (195)

which corresponds to a change in the normalization of ψ(r), and use r ψ(r)
is zero at r = 0 to write

−
∫ R

0

r φm(r)
d2

dr2
[r ψ(r)] dr = −Rφm(R) +

∫ R

0

d

dr
[r φm(r)]

d

dr
[r ψ(r)] dr .

(196)
Thus, Equation (193) can be written in the form

∫ R

0

d

dr
[r φm(r)]

d

dr
[r ψ(r)] dr +

∫ R

0

φm(r)U(r)ψ(r)r2dr

− k2

∫ R

0

φm(r)ψ(r) r2dr = Rφm(R) . (197)

Substituting the expansion for ψ(r) in Equation (192) into Equation (197)
gives

N
∑

n=1

an

{∫ R

0

d
dr

[r φm(r)] d
dr

[r φn(r)] dr +
∫ R

0
φm(r)U(r)φn(r)r

2dr

− k2
∫ R

0
φm(r)φn(r) r

2dr
}

= Rφm(R) , (198)
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which can be written as the matrix equation

N
∑

n=1

Amn an = bm . (199)

Given the solution to Equation (199) we need to determine the normaliza-
tion and the phase shift. For the new boundary condition given in Equation
(195)

rψ(r) −→
r→∞

A sin(kr + δ) , (200)

Thus, we need an additional equation to use with Equation (195). We use
the integral

I =

∫ R

0

sin(kr)U(r)ψ(r) rdr

=

∫ R

0

sin(kr)

{

1

r

d2

dr2
[r ψ(r)] + k2 ψ(r)

}

rdr

= sin(kr)
d

dr
[r ψ(r)]

∣

∣

∣

R

0
− k cos(kr)[r ψ(r)]

∣

∣

∣

R

0
(201)

+

∫ R

0

[(

1

r

d2

dr2
+ k2

)

sin(kr)

]

r ψ(r) dr

= kA [sin(kR) cos(kR + δ) − cos(kR) sin(kR+ δ)]

= −kA sin δ .

From Equations (195) and (200) we get

kA cos(kR + δ) = kA cos δ cos(kR) − kA sin δ sin(kR) = 1 , (202)

which using Equation (201) can be written as

kA cos δ =
1 − I sin(kR)

cos(kR)
. (203)

Finally, from Equations (201) and (203) we find

tan δ =
−I cos(kR)

1 − I sin(kR)
. (204)

Given δ the value of A can be found using Equation (201).
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Eckart Wave Function

To test the method we use the Eckart potential

V (r) = − ~
2

2m

2βλ2e−λr

(βe−λr + 1)2
, (205)

which has the analytic solution

rψ(r) =

[

(4k2 + λ2) + (4k2 − λ2)βe−λr
]

sin(kr + δ) − 4kλβe−λr cos(kr + δ)

(4k2 + λ2) (βe−λr + 1)
,

(206)
where the phase shift is given by

δ = arctan

(

λ

2k

)

+ arctan

(

λ(β − 1)

2k(β + 1)

)

. (207)

If β is chosen to have the value

β =
λ+ 2κ

λ− 2κ
(208)

the potential will have a bound state with the energy

EB = −~
2κ2

2m
. (209)

The boundstate wave function is given by

rψB(r) =
2
√

2κβ sinh (λr/2) e−κr

eλr/2 + βe−λr/2
. (210)

8 Wavelet Filters

The wavelet transform is the orthogonal mapping between the scaling func-
tion basis on a fine scale and the equivalent basis consisting of scaling func-
tions on a coarser scale and wavelets at all intermediate scales. The wavelet
transform can be implemented by treating the scaling equation and the equa-
tion defining the wavelets as linear combinations of scaling functions for a
finer scale, as low and high pass filters. This has the advantage when most
of the high-frequency information is unimportant.
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The wavelet filter is defined using the scaling relations

Dφ(x) =
1√
2
φ
(x

2

)

=
2k−1
∑

l=0

hlT
lφ(x) (211)

and

Dψ(x) =
1√
2
ψ
(x

2

)

=
2k−1
∑

l=0

glT
lφ(x) , (212)

where gl = (−1)lh2k−1−l. Using Equations (211) and (212) we can write

φj,m(x) = DjTmφ(x)

=
2k−1
∑

l=0

hlD
jTmD−1T lφ(x)

=
2k−1
∑

l=0

hlD
j−1T 2mT lφ(x) (213)

=
2k−1
∑

l=0

hlφj−1,2m+l(x)

and

ψj,m(x) = DjTmψ(x)

=
2k−1
∑

l=0

glD
jTmD−1T lφ(x)

=
2k−1
∑

l=0

glD
j−1T 2mT lφ(x) (214)

=
2k−1
∑

l=0

glφj−1,2m+l(x) ,

where we have used

T D−1φ(x) = T
√

2φ(2x)

=
√

2φ(2x− 2) (215)

= D−1T 2φ(x)
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to write TmD−1 = D−1T 2m.
We use the orthonormality of the functions φj,m(x) and ψj,m(x) to obtain

the inverse relation. Since Vj−1 = Vj ⊕Wj, we can write

φj−1,m(x) =
∑

n

anφj,n(x) +
∑

n

bnψj,n(x) , (216)

Using the scaling relations, we find

an =

∫

φj,n(x)φj−1,m(x) dx

=
∑

l

hl

∫

φj−1,2n+l(x)φj−1,m(x) dx

=
∑

l

hlδ2n+l,m (217)

= hm−2n (218)

and

bn =

∫

ψj,n(x)φj−1,m(x) dx

=
∑

l

gl

∫

φj−1,2n+l(x)φj−1,m(x) dx

=
∑

l

glδ2n+l,m (219)

= gm−2n . (220)

Thus, we find

φj−1,m(x) =
∑

n

hm−2nφj,n(x) +
∑

n

gm−2nψj,n(x) . (221)

An alternate derivation is to use the orthonormality relations

∑

l

hlhl+2m = δm0 (222)

∑

l

glgl+2m = δm0 (223)

∑

l

hlgl+2m = 0 , (224)
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derived in the Wavelet Notes. Now using the scaling relations in Equation
(216) gives

φj−1,m(x) =
∑

n

an
∑

l

hlφj−1,2n+l(x) +
∑

n

bn
∑

l

glφj−1,2n+l(x) . (225)

Taking the inner product with φj−1,k gives

δkm =
∑

n

∑

l

an hl δ2n+l,k +
∑

n

∑

l

bn gl δ2n+l,k

=
∑

n

anhk−2n +
∑

n

bngk−2n . (226)

Multiplying Equation (226) by hm−2n′ and summing over m gives

hk−2n′ =
∑

n

an
∑

k

hk−2n′hk−2n +
∑

n

bn
∑

k

hk−2n′gk−2n

=
∑

n

anδnn′ (227)

= an′ ,

where we have used the relations (222) and (224). Multiplying Equation
(226) by gk−2n′ and summing over k gives

gk−2n′ =
∑

n

an
∑

k

gk−2n′hk−2n +
∑

n

bn
∑

k

gk−2n′gk−2n

=
∑

n

bnδnn′ (228)

= bn′ ,

where we have used the relations (223) and (224).
Given the expansion of f(x) in terms of the scaling functions

f(x) =
2J−1
∑

n=0

cj,n φj,n(x) , (229)

we can use Equation (221) to write the expansion in the form

f(x) =
2J−1
∑

n=0

cj,n
∑

m

hn−2m φj+1,m(x) +
2J−1
∑

n=0

cj,n
∑

m

gn−2m ψj+1,m(x)

=
2J−1−1
∑

m=0

cj+1,m φj+1,m(x) +
2J−1−1
∑

m=0

dj+1,m ψj+1,m(x) , (230)
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where

cj+1,m =

2m+2p−1
∑

n=2m

hn−2m cj,n (231)

and

dj+1,m =

2m+2p−1
∑

n=2m

gn−2m cj,n , (232)

where we use the periodic wrap-around condition cj,2J+i = cj,i. Equations
(231) and (232) can be written as a matrix equation, which for J = 3 has
the form

























cj+1,0

cj+1,1

cj+1,2

cj+1,3

dj+1,0

dj+1,1

dj+1,2

dj+1,3

























=

























h0 h1 h2 h3 0 0 0 0
0 0 h0 h1 h2 h3 0 0
0 0 0 0 h0 h1 h2 h3

h2 h3 0 0 0 0 h0 h1

g0 g1 g2 g3 0 0 0 0
0 0 g0 g1 g2 g3 0 0
0 0 0 0 g0 g1 g2 g3

g3 g4 0 0 0 0 g0 g1

















































cj,0
cj,1
cj,2
cj,3
cj,4
cj,5
cj,6
cj,7

























(233)

for the Daubechies p = 2 wavelets. Repeated application of the filter trans-
form to the remaining cj+1,m gives

























cj,0
cj,1
cj,2
cj,3
cj,4
cj,5
cj,6
cj,7

























−→

























cj+1,0

cj+1,1

cj+1,2

cj+1,3

dj+1,0

dj+1,1

dj+1,2

dj+1,3

























−→

























cj+2,0

cj+2,1

dj+2,0

dj+2,1

dj+1,0

dj+1,1

dj+1,2

dj+1,3

























−→

























cj+3,0

dj+3,0

dj+2,0

dj+2,1

dj+1,0

dj+1,1

dj+1,2

dj+1,3

























. (234)

The reverse transform can be obtained by substituting Equations (213)
and (214) into Equation (230). This gives

f(x) =
2J−1−1
∑

m=0

cj+1,m

2k−1
∑

l=0

hl φj,2m+l(x) +
2J−1−1
∑

m=0

dj+1,m

2k−1
∑

l=0

gl φj,2m+l(x)
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=
∑

n

∑

m

hn−2m cj+1,m φj,n(x) +
∑

n

∑

m

gn−2m dj+1,m φj,n(x) (235)

=
∑

n

cj,n φj,n(x) ,

where
cj,n =

∑

m

hn−2m cj+1,m +
∑

m

gn−2m dj+1,m . (236)

For the example used in Equation (233), this gives

























cj,0
cj,1
cj,2
cj,3
cj,4
cj,5
cj,6
cj,7

























=

























h0 0 0 h2 g0 0 0 g2

h1 0 0 h3 g1 0 0 g3

h2 h0 0 0 g2 g0 0 0
h3 h1 0 0 g3 g1 0 0
0 h2 h0 0 0 g2 g0 0
0 h3 h1 0 0 g3 g1 0
0 0 h2 h0 0 0 g2 g0

0 0 h3 h1 0 0 g3 g1

















































cj+1,0

cj+1,1

cj+1,2

cj+1,3

dj+1,0

dj+1,1

dj+1,2

dj+1,3

























, (237)

which is the transpose of the matrix in Equation (233).

9 Wavelet Transfrom

The wavelet transform is by its nature local at each level and therefore admits
an implementation in which the data to be transformed can be placed in a
buffer instead of storing the entire data set at once. This significantly reduces
the amount of storage space required for applications involving compression.

In the one-dimensional case, the J-level wavelet transform can be com-
puted by buffering O(J) nonessential elements or the full transform can be
computed buffering O(log(N)) elements. The standard form for the two-
dimensional transform of an N × N matrix can be performed by buffering
only O(N log(N)) elements. In general, a D-dimensional wavelet transform
can be computed by only storing O(ND−1 log(N)) elements. This buffered
wavelet transform can be applied to any type of data that can be input or
computed in series. Some notable examples include the compression of time-
series data and applications to solutions of integral equations. Below, we
will explain the exact implementation of the transform including the buffer
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and the extension of the method to two dimensions. The extension to ar-
bitrary dimension is straightforward from the two dimensional case. First,
we will layout the terminology that will be used throughout. we adopt the
filter viewpoint since it makes the explanation of the buffering procedure
more clear. But this is equivalent to the linear algebra viewpoint and we will
attempt to explain the procedure in this language as well.

From the filter viewpoint, the wavelet transform is a convolution of the
data set and two vectors h and g followed by a decimation. This is equiva-
lent to a convolution that proceeds by steps of two instead of one. For the
Daubechies family of wavelets, both of these filters have a length L = 2K−1.
The convolution with h produces what is called the father set and the con-
volution with g produces the mother set. We denote the data set to be
transformed as A and use brackets to denote subscripts. In all contexts be-
low, the one-dimensional length of the data set will be N = 2n where n is an
integer. That is the data runs from A[0] to A[N − 1]. The typical procedure
to deal with a finite data set is to periodize the data over the boundary such
that A[N ] = A[0], A[N + 1] = A[1], · · ·A[N + L− 3] = A[L− 3].

Now, if we write out the first level of the transform as a matrix we can
see that it is banded with a bandwidth L corresponding to the convolution
operation. The second level of the transform is identical to the first except
that it only acts on the father set of data, i.e. the transform on the moth-
ers is the identity. This corresponds to the fact that all of the information
about coarser levels is contained in the father functions. The mother func-
tions form an orthogonal subspace to the fathers and mothers on all higher
levels. Using this knowledge we can immediately perform a thresholding pro-
cedure on the mother set without affecting the rest of the data in any way.
The father set can simultaneously be transformed and the resulting mothers
thresholded as well. Iterating this procedure on all the relevant levels forms
the basis for the buffered wavelet transform. Of course, one must have an
a priori thresholding scheme to accomplish this. The simplest such example
is an absolute threshold. In this scheme, one chooses an epsilon and all el-
ements with a magnitude less than this epsilon. Other more sophisticated
thresholding procedures exist as well, such as procedures based on the level
on the transform. The important fact is that one cannot have a procedure
that depends in any way on the final transformed data set. Examples of such
procedures would be based on the relative size of the transformed elements or
a threshold that keeps a certain number/percentage of the final coefficients.
In many applications, the absolute thresholding is an acceptable method.
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Now, we will explain the detailed implementation of the one-dimensional
transform. One begins by computing the elements A[0] to A[L − 3] of the
data set. As noted above, these elements are necessary for the periodic
boundary conditions and form a boundary buffer that must be saved until
the end of the calculation. Now, elements can be added to a moving buffer
of length L that constitutes the heart of the procedure. After the elements
A[L − 2] and A[L − 1] are computed and placed in the moving buffer, one
can begin transforming the data set. Convolving this data set, including the
boundary terms, with h produces the first member of the father set F [0] and
convolving with g produces the first member of the mother set M [0]. As
described previously, this mother element can be immediately thresholded
and placed in the final output vector. The father element is considered the
beginning of a new data set to be transformed and is placed in the boundary
buffer corresponding to the next level of the transform. One then proceeds
to compute two more elements and convolve A[2] to A[L+ 1] with h and g.
This produces F [1] and M [1], which are treated the same way as before. We
continue in this manner, calculating more elements and convolving, until we
have computed the element A[2L− 3]. The moving buffer is now full and we
have reached the interior of the data set. When we compute the next element
of the data set we can discard the last element of the moving buffer and shift
all the elements of the buffer one place. The new element is then appended to
the moving buffer. Discarding the last element is justified by the fact that all
the information in that element is represented by the corresponding father
and mother data sets due to the equivalence of the subspaces. The name
moving buffer is clear since this buffer can be viewed as scanning the interior
of the data set by moving over it. This process continues, the shifting and
convolving, until the end of the data set is reached. When the end of the data
set is reached we simply make the data set periodic using the boundary buffer.
This process is simultaneously carried out at each level. Now counting the
elements in each buffer we see that in each level we must store L−2 elements
in the boundary buffer and L elements in the moving buffer. So, for J levels
we must store J(2L− 2) elements. This gives us our size of O(J) where the
coefficient depends on the length L of the wavelet filter as is common with
most wavelet algorithms.

In many wavelet applications, the data vector to be transformed will be of
length N = 2n and a wavelet transform of level J = n will be computed. In
this case, the number of elements stored in the buffers will be of O(log(N)).
A minor point to note is that for wavelet filters of length > 2 the last few
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levels will not be filled completely. As a programming point one can either fill
the buffers periodically or just periodize the convolution. Both procedures
are equivalent and consistent with the periodic wavelet transform. Also note
that the number of operations has been increased by the shift operation, but
is still of O(N) which is the case for the standard wavelet transform. The
standard procedure to perform the wavelet transform on a two dimensional
data set is to first transform the rows of the matrix and then transform the
columns. Alternatively, one could transform the columns and then the rows.
Both are equivalent as can be seen by writing out the transform as a matrix
multiply and noting the associativity of matrix multiplication.

To perform the buffered wavelet transform on a two-dimensional data
set we calculate the data column by column. Each row has a separate set
of buffers associated with it. We can view this as a strip that scans the
matrix in much the same way as the moving buffer did in the one-dimensional
case. Each of these buffers behaves in exactly the same way as the one-
dimensional case, except the output is handled differently. The first output
from the buffer associated with row one is placed in two vertical buffers.
FB[0] and MB[0] the B stands for blank since these are internal buffers
that have no outside significance. Both of these outputs must be saved
because they contain information about the columns of the matrix. Row
two then produces FB[1] and MB[1], and so on continuing down the rows.
The transform procedure is applied to the vertical buffers, which produce
output FF , FM , MF , and MM . The output MM can be thresholded
immediately. The output FM is placed in an array of row buffers of height
N/2 that transform the rows and filter immediately the MB’s produced.
The MF output is placed in another vertical buffer where the traditional
one-dimensional transform procedure is enacted. The FF output is placed
in an array of row buffers identical to the original configuration, except that
it is only N/2 tall. The same procedure is enacted on this data set that is
half as small. Now this proceeds across the matrix in a similar manner as
the one-dimensional case, except that the vertical buffers can be completely
purged as the next column is reached. To count the number of elements that
are necessary we can ignore the vertical buffers, which are subdominant.
At the first level we note that there are N ∗ (2L − 2) elements in the row
buffer and (N/2) ∗ (2L − 2) in the FF output and FM output. Hereafter
we will drop the 2L− 2 to simplify the counting since we are just looking for
order. So we have N and N/2 and N/2. The FM output will proceed like
the one-dimensional case. Therefore it will produce (N/2) log(N) elements.
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The FF out put will produce N/4FF and N/4FM . So we can see that

the total number of elements will be N(1 + log(N))
∑J

j=0
1
2

j
. The sum is a

simple geometric sum that in the limit that J goes to infinity is bounded
by 2. So the final tally of the necessary elements is O(N log(N)). The
generalization to D dimensions is straightforward. One begins with a data
structure of dimensions (ND−1)(2L− 2). One then performs a transform to
produce two ND−2 data structures. One performs a transform on these two
structures to produce four ND−3 structures. This process continues until the
final transform where one has a single dimension. This transform is enacted
and the MD elements are filtered. Appropriate lower dimensional transforms
are applied to the mixed output, MMMFF · · ·MF,FFFFFF · · ·M, etc.
The process is repeated for the FFF · · ·FFF data set. In higher dimensions
the algorithm becomes more complicated, but the idea is the same. And the
leading order number of elements that need to be saved is O(ND−1 log(N)).

10 Appendix I: Continuous Wavelets

We begin by considering the continuous wavelet transform. The continuous
wavelet transform is an alternate representation of a function, like a Fourier
transform. Both continuous and discrete wavelets are built from a single
function called a mother function. The notation, ψ(x), is used to denote
the mother function of a wavelet.

Wavelets are built from translations and scale transformations of the
mother function. Translations and scale transformations of ψ(x) are defined
by:

ψt,s(x) := |s|−pψ(
x− t

s
). (238)

The factor p is a parameter. The functions ψt,s(x) are the wavelets associ-
ated with the mother function ψ(x). The wavelet ψt,s(x) has two continuous
parameters. We investigate conditions on the mother function that allow one
to expand any function in terms of wavelets.

To choose the parameter p note that

∫ ∞

−∞

∣

∣

∣

∣

|s|−pψ(
x− t

s
)

∣

∣

∣

∣

q

dx =

|s|1−qp
∫ ∞

−∞
|ψ(u)|qdu. (239)
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It follows that if p = 1/q the Lq-norm of ψ

‖ψ‖q :=

(∫ ∞

−∞
|ψ(u)|qdu

)1/q

(240)

is preserved under scale transformations. Thus for p = 1/q:

‖ψ‖q = ‖ψs,t‖q for all s, t. (241)

The continuous wavelet transform of f is defined by taking the scalar
product of f with the wavelet ψs,t:

f̂(s, t) :=

∫ ∞

−∞
ψ∗
s,t(x)f(x)dx = (ψs,t, f) (242)

where asterik ′∗′ indicates the complex conjugate for a complex mother func-
tion. In what follows a f̂ is used to indicate the wavelet transform of the
function f .

Parseval’s identity for the Fourier transform implies that the wavelet
transform can be expressed in terms of the original function and the mother
function or alternatively in terms of their Fourier transforms:

f̂(s, t) = (ψs,t, f) = (ψ̃s,t, f̃) (243)

where the ∼ indicates the Fourier transform defined by:

ψ̃s,t(k) =
1√
2π

∫ ∞

−∞
e−ikxψs,t(x)dx (244)

f̃(k) =
1√
2π

∫ ∞

−∞
e−ikxf(x)dx. (245)

Note that Parseval’s identity states (f, f) = (f̃ , f̃). Using this with f =
g + h and f = g + ih gives

(g, g) + (h, h) + (g, h) + (h, g) = (g̃, g̃) + (h̃, h̃) + (g̃, h̃) + (h̃, g̃) (246)

and

(g, g) + (h, h) + i(g, h) − i(h, g) = (g̃, g̃) + (h̃, h̃) + i(g̃, h̃) − i(h̃, g̃) (247)
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which, using the identities (g, g) = (g̃, g̃) and (h, h) = (h̃, h̃), gives the solu-
tion to (246) and (247):

(g, h) = (g̃, h̃) (248)

which is the form of Parseval’s identity used in (243).
The Fourier transform of the wavelet ψs,t(x) can be expressed in terms of

the Fourier transform of the mother function:

ψ̃s,t(k) :=
1√
2π

∫ ∞

−∞
e−ikx|s|−pψ(

x− t

s
)dx =

1√
2π

∫ ∞

−∞
e−iksue−ikt|s|−p+1ψ(u)du =

|s|1−pe−iktψ̃(sk). (249)

The inner product of the Fourier transforms gives

f̂(s, t) = (ψ̃s,t, f̃) =

∫ ∞

−∞
ψ̃∗
s,t(k)f̃(k)dk

∫ ∞

−∞
|s|1−peiktψ̃∗(sk)f̃(k)dk. (250)

Multiplying both sides of (250) by e−ik
′t and integrating over t gives

1

2π

∫ ∞

−∞
e−ik

′t(ψ̃s,t, f̃)dt =

|s|1−pψ̃∗(sk′)f̃(k′), (251)

where the representation of the delta function:

1

2π

∫ ∞

−∞
e−i(k

′−k)tdt = δ(k′ − k). (252)

was used to get (251).
The right-hand side of (251) is a product of the Fourier transform of the

original function with another function. We can’t divide by the function
ψ̃∗(sk′) because it might be zero for some values of k′. Instead, the trick is
to eliminate it using the variable s.
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Multiply both sides of this equation by ψ̃(sk′) and a yet to be determined
weight function w(s) and integrate over s. This gives

1

2π

∫ ∞

−∞
w(s)ds

∫ ∞

−∞
dte−ik

′tψ̃(sk′)f̂(s, t) =

f̃(k′)

∫ ∞

−∞
w(s)ds|s|1−pψ̃∗(sk′)ψ̃(sk′) = f̃(k′)Y (k′) (253)

where

Y (k′) =

∫ ∞

−∞
dsw(s)|s|1−p|ψ̃(sk′)|2. (254)

In order to be able to extract the Fourier transform of the original func-
tion, it is sufficient that Y (k′) satisfies 0 < A ≤ Y (k′) ≤ B < ∞ for some
numbers A and B. In this case

f̃(k) =
1

2πY (k)

∫ ∞

0

w(s)ds

∫ ∞

−∞
dte−iktψ̃(sk)f̂(s, t). (255)

It is convenient to rewrite this in terms of the wavelet basis:

f̃(k) =
1

2πY (k)

∫ ∞

−∞
w(s)|s|p−1ds

∫ ∞

−∞
dtψ̃s,t(k)f̂(s, t). (256)

We define the dual wavelet by

ψ̃s,t(k) =
1

2πY (k)
ψ̃s,t(k). (257)

The dual wavelet is distinguished from the ordinary wavelet by having the
parameters s, t appearing as superscripts rather than subscripts.

The inversion formula can be expressed in terms of the dual wavelet by

f̃(k) =

∫ ∞

−∞
w(s)|s|p−1ds

∫ ∞

−∞
dtψ̃s,t(k)f̂(s, t). (258)

In order to recover the original function, take the inverse Fourier trans-
form of this expressions:

f(x) =
1√
2π

∫ ∞

−∞
dkeikxf̃(k) =
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∫ ∞

−∞
w(s)|s|p−1ds

∫ ∞

−∞
dtψs,t(x)f̂(s, t) (259)

where

ψs,t(x) =
1√
2π

∫ ∞

−∞
dkeikxψ̃s,t(k). (260)

In general this is a tedious procedure because the dual wavelet ψs,t(x) must
be computed using (257) and (260) for each value of s and t. If the dual
wavelet also had a mother function, then it would only be necessary to Fourier
transform the “dual mother” and then all of the other Fourier transforms
could be expressed in terms of the transform of the “dual mother”.

The first step in constructing a “dual mother” is to investigate the struc-
ture of the dual wavelets in x-space:

ψs,t(x) =
1√
2π

∫ ∞

−∞
dkeikxψ̃s,t(k) =

1√
2π

∫ ∞

−∞
dkeikx

1

2πY (k)
|s|1−pe−iktψ̃(sk) =

ψs,0(x− t)

where

ψs,0(x) =
1√
2π

∫ ∞

−∞
dkeikx

1

2πY (k)
|s|1−pψ̃(sk).

This shows for a single scale the dual wavelet and its translation can be
expressed in terms of a single function. This is not necessarily true for the
dual wavelet and the scaled quantity.

ψs,0(x) =
1√
2π

∫ ∞

−∞
dkeikx

1

2πY (k)
|s|1−pψ̃(sk)

=
1√
2π

∫ ∞

−∞
dueiu

x

s

1

2πY (u/s)
|s|−pψ̃(u).

This fails to be a rescaling of a single function because of the s dependence
in the quantity Y (u). It follows that if a weight function w(s) is chosen so
Y (u/s) = Y is constant, the dual wavelet will satisfy

ψs,0(x) =
1√
2π

∫ ∞

−∞
dueiu

x

s

1

2πY
|s|−pψ̃(u) = |s|−pψ1,0(x/s). (261)
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In this case Y (u) is a constant which we denote by Y . The function ψ1,0(x)
serves as the dual mother wavelet.

To determine w(s) note that

Y (sk) =

∫ ∞

−∞
dtw(t)|t|1−p|ψ̃(tsk)|2.

Let t′ = st to get

Y (sk) =

∫ ∞

−∞
dtw(t)|t|1−p|ψ̃(tsk)|2 =

|s|p−2

∫ ∞

−∞
dt′w(t′/s)|t|′1−p|ψ̃(t′k)|2.

This will equal Y (k) provided

w(t′) = |s|p−2w(t′/s) or w(s) = |s|p−2w(1).

With this choice

Y (k) = Y = w(1)

∫ ∞

−∞

dt

|t| |ψ̃(t)|2.

Assuming this choice of weight the admissibility condition becomes

0 < A ≤ Y ≤ B <∞.

Having computed the constant Y it is now possible to write down an
explicit expression for the dual mother wavelet:

ψs,0(x− t) =

|s|−p√
2π

∫ ∞

−∞
dueiu

(x−t)
s

1

2πY
ψ̃(u)

Letting k = u/s

1√
2π

∫ ∞

−∞
dk

1

2πY
|s|1−peik(x−t)ψ̃(ks)

1√
2π

∫ ∞

−∞
dk

1

2πY
eikxψ̃s,t(k).
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This has the form

ψs,t(x) =
1

2π

1

Y
ψs,t(x). (262)

Thus the inversion procedure can be summarized by the formulas:

f(x) =

∫ ∞

−∞
|s|2p−3ds

∫ ∞

−∞
dtψs,t(x)f̂(s, t) (263)

Y =

∫ ∞

−∞

dt

|t| |ψ̃(t)|2 (264)

ψs,t(x) =
ψs,t(x)

2πY
(265)

ψs,t = |s|−pψ(
x− t

s
). (266)

The mother function must satisfy 0 < Y < ∞. This requires that the
Fourier transform of the mother function vanishes at the origin. This is
equivalent to saying that the integral of the mother function is zero.

Using the representation for the wavelet transform gives a representation
of a delta function:

δ(x− y) =

∫ ∞

−∞
|s|2p−3ds

∫ ∞

−∞
dtψs,t(x)ψ∗

s,t(y) =

1

2πY

∫ ∞

−∞
|s|2p−3ds

∫ ∞

−∞
dtψs,t(x)ψ

∗
s,t(y).

We can also use this representation of the delta function to formulate a
Parseval’s identity for continuous wavelets

(f, f) =
1

2πY

∫ ∞

−∞
|s|2p−3ds

∫ ∞

−∞
dt|f̂ (s, t)|2. (267)

Consider the example of the Mexican hat wavelet. The mother function
is

ψ(x) =
1√
2π

(x2 − 1)e−x
2/2.
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To work with the Mexican hat mother function it is useful to use prop-
erties of Gaussian integrals:

∫ ∞

−∞
e−ax

2+bx+cdx =

∫ ∞

−∞
e−a(x−

b

2a
)2+ b

2

4a
+cdx.

Change variables to y =
√
a(x− b

2a
) to obtain:

e
b
2

4a
+c

√
a

∫ ∞

−∞
e−y

2

dy =

√

π

a
e

b
2

4a
+c.

This can be used to compute the Fourier transform of the Mexican hat
mother function:

ψ̃(k) =
1√
2π

∫ ∞

−∞
e−ikxψ(x)dx =

1

2π

∫ ∞

−∞
(x2 − 1)e−x

2/2−ikxdx.

To do the integral insert a parameter a which will be set to 1 at the end of
the calculation:

(−2
d

da
− 1)

1

2π

∫ ∞

−∞
e−x

2a/2−ikxdx =

(−2
d

da
− 1)

1

2π

√

2π

a
e−

k
2

2a =

(
1

a
− k2

a2
− 1)

√

1

2πa
e−

k
2

2a .

In the limit that a→ 1 this becomes

−
√

1

2π
k2e−

k
2

2 .

Using this expression it is possible to calculate the coefficient Y

Y =

∫ ∞

−∞

dk

|k| |ψ̃(k)|2 =
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∫ ∞

−∞

dk

|k| |ψ̃(k)|2 =

1

2π

∫ ∞

−∞
|k|3dke−k2

=

1

π

∫ ∞

0

k3dke−k
2

.

Inserting a parameter a which will eventually be set to 1 gives

Y =
1

2π
(− d

da
)

∫ ∞

0

2kdke−ak
2

=

1

2π
(− d

da
)
1

a

∫ ∞

0

dve−v =

1

2π
.

This satisfies the essential inequality 0 < Y <∞ which ensures the admissi-
bility of the Mexican hat mother function.

The expression for the wavelet transform and its inverse can be written
as:

f̂(s, t) = |s|−p
∫ ∞

−∞
dx

1√
2π

((
x− t

s
)2 − 1)e−(x−t

s
)2/2f(x) =

|s|1−p
∫ ∞

−∞
du

1√
2π

(u2 − 1)e−u
2/2f(su+ t).

where x = su+ t
The inverse is formally given by

f(x) =

∫ ∞

−∞
|s|2p−3ds

∫ ∞

−∞
dt
ψst(x)

2πY
f̂(s, t) =

∫ ∞

−∞
|s|2p−3ds

∫ ∞

−∞
dt

1√
2π

|s|−p((x− t

s
)2 − 1)e−(x−t

s
)2/2f̂(s, t) =

1√
2π

∫ ∞

−∞
|s|p−3ds

∫ ∞

−∞
dt((

x− t

s
)2 − 1)e−(x−t

s
)2/2f̂(s, t) =

1√
2π

∫ ∞

−∞
|s|p−3ds

∫ ∞

−∞
du(u2 − 1)e−u

2/2f̂(s, su+ x)
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where t = su+ x.
Initially we were concerned because we were representing an arbitrary

function by a linear superposition of functions that all have zero integral.
We could not understand how wavelets could be used to represent a function
with non-zero integral.

We tested this by computing the wavelet transform and its inverse for
a Gaussian function with the Mexican hat wavelet. The original Gaussian
function was recovered.

The resolution of this paradox has to do with the difference between L1

and L2 convergence. The wavelet transform has a vanishing L1 norm, but
the L2 norm is non-zero.

11 Appendix II - Spline Wavelets

We use the convention which defines the Fourier transform of a function f(x)
as

F (k) =

∫ ∞

−∞
e−ikxf(x) dx , (268)

and the inverse transform by

f(x) =
1

2π

∫ ∞

−∞
F (k)eikx dk . (269)

For this convention, Parseval relation is
∫ ∞

−∞
f∗(x)g(x) dx =

1

2π

∫ ∞

−∞
F ∗(k)G(k) dk . (270)

The cardinal B-splines, Nm(x), are defined by first defining

N1(x) =

{

0, if x < 0
1, if 0 < x < 1
0, otherwise.

(271)

Then for m ≥ 2, Nm(x) is defined recursively by the convolution integral

Nm(x) =

∫ ∞

−∞
Nm−1(x− t)N1(t) dt

=

∫ 1

0

Nm−1(x− t) dt . (272)
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Since Nm(x) is defined by a convolution integral, the Fourier transform will
be defined by a product. To show this, we evaluate the Fourier transform

Ñm(k) =

∫ ∞

−∞
e−ikxNm(x) dx

=

∫ ∞

−∞
dx e−ikx

∫ ∞

−∞
Nm−1(x− t)N1(t) dt

=

∫ ∞

−∞
dt e−iktN1(t)

∫ ∞

−∞
e−ik(x−t)Nm−1(x− t) dx . (273)

Now setting x− t = y in the second integral, we find

Ñm(k) =

∫ ∞

−∞
dt e−iktN1(t)

∫ ∞

−∞
e−ikyNm−1(y) dy

= Ñm−1(k)

∫ ∞

−∞
e−iktN1(t) dt

= Ñm−1(k)Ñ1(k)

=
[

Ñ1(k)
]m

, (274)

where

Ñ1(k) =

∫ ∞

−∞
e−ikxN1(x) dx

=

∫ 1

0

e−ikx dx

= e−ik/2
sin(k/2)

k/2
. (275)

For this example we use the quadratic spline shifted to the left by one
unit

B̃(k) = eikÑ3(k)

= e−ik/2
[

sin(k/2)

k/2

]3

. (276)
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Now evaluating the inverse transform using Maple, we get

B(x) =



































0, if x < −1
1
2
(x+ 1)2, if −1 ≤ x < 0

3
4
− (x− 1

2
)2, if 0 ≤ x < 1

1
2
(x− 2)2, if 1 ≤ x < 2

0, otherwise.

(277)

The splines are not orthogonal; however, we can use them to construct a
scaling function φ(x) which has the orthonormality property

∫ ∞

−∞
φ∗(x− l)φ(x−m) dx = δlm . (278)

To do this we follow the procedure given in the books by Chui1 and Daubechies2.
Note that this a general procedure; we are using the spline as a convenient
example. The method gives an expression for the Fourier transform, φ̃(k), of
φ(x). The Fourier transform of φ(x− l) is given by

φ̃l(k) =

∫ ∞

−∞
e−ikxφ(x− l) dx

= e−ikl
∫ ∞

−∞
e−ik(x−l)φ(x− l) dx

= e−iklφ̃(k) . (279)

Now we show that if

1

2π

∫ ∞

−∞
eikm

∣

∣

∣
φ̃(k)

∣

∣

∣

2

dk = δm,0 , (280)

then the functions are orthogonal. To show this, we use the Parseval relation
∫ ∞

−∞
φ∗(x− l)φ(x−m) dx =

1

2π

∫ ∞

−∞
φ̃l

∗
(k)φ̃m(k) dk

=
1

2π

∫ ∞

−∞
eiklφ̃∗(k)e−ikmφ̃(k) dk

1Charles K. Chui, An Introduction to Wavelets, Academic Press, 1992
2Ingrid Daubechies, Ten Lectures on Wavelets, SIAM, 1992
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=
1

2π

∫ ∞

−∞
eik(l−m)

∣

∣

∣
φ̃(k)

∣

∣

∣

2

dk

= δl−m,0

= δlm . (281)

Finally, we show that if we can find a φ̃(k) such that

∞
∑

l=−∞

∣

∣

∣
φ̃(k + 2πl)

∣

∣

∣

2

= 1 , (282)

then the functions are orthonormal. The infinite sum in Equation (282) is
periodic in k with a period of 2π; thus it has the Fourier series expansion

∞
∑

l=−∞

∣

∣

∣
φ̃(k + 2πl)

∣

∣

∣

2

=
∞
∑

j=−∞
cje

ikj (283)

where the expansion coefficients are give by

cj =
1

2π

∫ 2π

0

e−ijk
∞
∑

l=−∞

∣

∣

∣
φ̃(k + 2πl)

∣

∣

∣

2

dk

=
1

2π

∞
∑

l=−∞

∫ 2π

0

e−ikj
∣

∣

∣
φ̃(k + 2πl)

∣

∣

∣

2

dk

=
1

2π

∞
∑

l=−∞

∫ 2π(l+1)

2πl

e−i(k−2πl)j
∣

∣

∣
φ̃(k)

∣

∣

∣

2

dk

=
1

2π

∫ ∞

−∞
e−ikj

∣

∣

∣
φ̃(k)

∣

∣

∣

2

dk . (284)

Since the sum in Equation (282) is equal to one, cj = δj,0, and one finds

1

2π

∫ ∞

−∞
e−ikj

∣

∣

∣
φ̃(k)

∣

∣

∣

2

dk = δj,0 . (285)

Thus, the functions are orthonormal.
Now given a function, B(x), we construct a scaling function by taking its

Fourier transform and defining

φ̃(k) =
B̃(k)

[ ∞
∑

l=−∞

∣

∣

∣
B̃(k + 2πl)

∣

∣

∣

2
] 1

2

. (286)
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This function satisfies Equation (282), and the φ(x) will have the orthonor-
mality property given in Equation (278). To evaluate the infinite sum in
Equation (286), we use the finite Fourier series expansion of the function

g(k) =
∞
∑

l=−∞

∣

∣

∣
B̃(k + 2πl)

∣

∣

∣

2

. (287)

This function has period 2π, and the Fourier expansion has the form

g(k) =
∞
∑

j=−∞
cje

ijk . (288)

Following the derivation in Equation (284), the expansion coefficients are
given by

cj =
1

2π

∫ 2π

0

e−ijkg(k) dk

=
1

2π

∫ 2π

0

e−ijk
∞
∑

l=−∞

∣

∣

∣
B̃(k + 2πl)

∣

∣

∣

2

dk

=
1

2π

∫ ∞

−∞
e−ijk

∣

∣

∣
B̃(k)

∣

∣

∣

2

dk

=
1

2π

∫ ∞

−∞
B̃∗(k)e−ijkB̃(k) dk

=

∫ ∞

−∞
B∗(x)B(x− j) dx , (289)

where the Parseval relation was used for the last step. The integral in Equa-
tion (289) is easy to evaluate for the B-splines, and we find

∫ ∞

−∞
B∗(x)B(x− j) dx =















































1
120
, if j = −2

13
60
, if j = −1

11
20
, if j = 0

13
60
, if j = 1

1
120
, if j = 2

0, otherwise.

(290)
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Using these coefficients for the expansion given in Equation (288), we find

g(k) =
11

20
+

13

30
cos(k) +

1

60
cos(2k) . (291)

To find φ(x) the inverse Fourier transform of φ̃(k) must be done numer-
ically; however, there is a nice method which gives an efficient algorithm.
Since the function g(k) has period 2π, we can use the expansion

1
√

g(k)
=

∞
∑

n=−∞
cne

−ink , (292)

where the coefficients

cn =
1

2π

∫ π

−π

eink
√

g(k)
dk (293)

must be computed numerically. For the B-spline, the g(k) is an even function
of k, and one finds

cn =
1

2π

∫ π

−π

cos(nk)
√

g(k)
dk . (294)

In addition, from Equation (294) we see that c−n = cn. Now, using Equation
(292) we get

φ(x) =
1

2π

∫ ∞

−∞

B̃(k)
√

g(k)
eikx dk

=
1

2π

∫ ∞

−∞
B̃(k)

[ ∞
∑

n=−∞
cne

−ink

]

eikx dk

=
∞
∑

n=−∞
cn

[

1

2π

∫ ∞

−∞
B̃(k)eik(x−n) dk

]

=
∞
∑

n=−∞
cnB(x− n) . (295)

Now we need to find the wavelet ψ(x) with the properties

∫ ∞

−∞
ψ∗(x− l)φ(x−m) dx = 0 , (296)
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and
∫ ∞

−∞
ψ∗(x− l)ψ(x−m) dx = δlm . (297)

To do this we introduce the functions

φ−1,l(x) =
√

2φ(2x− l) . (298)

The Fourier transform of these functions is given by

φ̃−1,l(k) =

∫ ∞

−∞
e−ikxφ−1,l(x) dx

=
√

2

∫ ∞

−∞
e−ikxφ(2x− l) dx (299)

and setting 2x− l = y yields

φ̃−1,l(k) =
1√
2
e−ikl/2

∫ ∞

−∞
e−iky/2φ(y) dy

=
1√
2
e−ikl/2φ̃(k/2) . (300)

Using the φ−1,n(x) as an orthonormal basis set, we can write

φ(x) =
∞
∑

n=−∞
hnφ−1,n(x) , (301)

where

hn =

∫ ∞

−∞
φ∗
−1,,n(x)φ(x) dx .. (302)

This is the scaling equation for this system. In this case there are an infinite
number of non-zero scaling coefficients. Since the φ(x− n) are orthonormal,
the hn must have the property

∞
∑

n=−∞
|hn|2 = 1 . (303)

Taking the Fourier transform of Equation (301) gives

φ̃(k) =
1√
2

∞
∑

n=−∞
hne

−ikn/2φ̃(k/2) , (304)
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which can be written as

φ̃(k) = m0(k/2)φ̃(k/2) , (305)

where

m0(k) =
1√
2

∞
∑

n=−∞
hne

−ikn . (306)

Using Equations (282) and (305) we see that

∞
∑

l=−∞

∣

∣

∣
φ̃(2k + 2πl)

∣

∣

∣

2

=
∞
∑

l=−∞

∣

∣

∣
m0(k + πl)

∣

∣

∣

2 ∣
∣

∣
φ̃(k + πl)

∣

∣

∣

2

=
∑

l,even

∣

∣

∣
m0(k + πl)

∣

∣

∣

2 ∣
∣

∣
φ̃(k + πl)

∣

∣

∣

2

+
∑

l,odd

∣

∣

∣
m0(k + πl)

∣

∣

∣

2 ∣
∣

∣
φ̃(k + πl)

∣

∣

∣

2

=
∞
∑

l=−∞

∣

∣

∣
m0(k + 2πl)

∣

∣

∣

2 ∣
∣

∣
φ̃(k + 2πl)

∣

∣

∣

2

+
∞
∑

l=−∞

∣

∣

∣
m0(k + 2πl + π)

∣

∣

∣

2 ∣
∣

∣
φ̃(k + 2πl + π)

∣

∣

∣

2

= |m0(k)|2
∞
∑

l=−∞

∣

∣

∣
φ̃(k + 2πl)

∣

∣

∣

2

+ |m0(k + π)|2
∞
∑

l=−∞

∣

∣

∣
φ̃(k + π + 2πl)

∣

∣

∣

2

= |m0(k)|2 + |m0(k + π)|2 (307)

where we have used the periodicity of m0(k). The sum on the left-hand side
of Equation (307) is equal to unity; thus, we have shown that

|m0(k)|2 + |m0(k + π)|2 = 1 (308)

Now we use a similar procedure to find ψ(x). Using the φ−1,n(x) as an
orthonormal basis set, we write

ψ(x) =
∞
∑

n=−∞
fnφ−1,n(x) , (309)
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with

fn =

∫ ∞

−∞
φ∗
−1,n(x)ψ(x) dx . (310)

Taking the Fourier transform of Equation (309) gives

ψ̃(k) =
1√
2

∞
∑

n=−∞
fne

−ikn/2φ̃(k/2)

= m1(k/2)φ̃(k/2) , (311)

where

m1(k) =
1√
2

∞
∑

n=−∞
fne

−ikn . (312)

If m1(k) has the same property as that given in Equation (308) for m0(k),
then the functions ψ(x − m) will be orthonormal. In addition, we want
ψ(x− n) to be orthogonal to φ(x−m). Thus, we want to find a m1(k) such
that
∫ ∞

−∞
ψ∗(x− n)φ(x−m) =

1

2π

∫ ∞

−∞
eiknψ̃∗(k)e−ikmφ̃(k) dk

=
1

2π

∫ ∞

−∞
ei(n−m)kψ̃∗(k)φ̃(k) dk

=
1

2π

∫ 2π

0

dk ei(n−m)k

∞
∑

l=−∞

ψ̃∗(k + 2πl)φ̃(k + 2πl)

= 0. (313)

This condition is satisfied if
∞
∑

l=−∞

ψ̃∗(k + 2πl)φ̃(k + 2πl) = 0 . (314)

Substituting Equations (305) and (311) into Equation (314) and replacing k
by 2k gives

∞
∑

l=−∞

m∗
1(k)φ̃

∗(k + πl)m0(k)φ̃(k + πl) = 0 . (315)

Regrouping the sums for odd and even l, and following the procedure used
in Equation (307) gives

m∗
1(k)m0(k) +m∗

1(k + π)m0(k + π) = 0 . (316)
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This condition will be satisfied if we choose

m1(k) = e−ikm∗
0(k + π) . (317)

Note this choice for m1(k) is not unique; we can multiply m1(k) by any func-
tion ρ(k) which has period π and |ρ(k)| = 1, and still satisfy the constraints
on m1(k). Substituting this result into Equation (311) gives

ψ̃(k) = e−ik/2m∗
0(k/2 + π)φ̃(k/2)

= e−ik/2
1√
2

∞
∑

n=−∞
h∗ne

i(k/2+π)nφ̃(k/2)

=
1√
2

∞
∑

n=−∞
(−1)nh∗ne

−i(−n+1)k/2φ̃(k/2)

=
∞
∑

n=−∞
(−1)nh∗nφ̃−1,−n+1(k) . (318)

Replacing n by −n+ 1 in Equation (318) gives

ψ̃(k) = −
∞
∑

n=−∞
(−1)nh∗−n+1φ̃−1,n(k) . (319)

For convenience, we drop the minus sign in front of the sum, and write

ψ̃(k) =

∞
∑

n=−∞
gnφ̃−1,n(k) , (320)

where gn = (−1)nh−n+1 for hn a real number. Taking the Fourier transform
of Equation (320) gives the result

ψ(x) =
∞
∑

n=−∞
gnφ−1,n(x)

=
√

2
∞
∑

n=−∞
gnφ(2x− n) . (321)

To evaluate ψ(x) we use the expansion given in Equation (295) in Equa-
tion (321). This gives

ψ(x) =
√

2
∞
∑

n=−∞
gn

∞
∑

m=−∞
cmB(2x− n−m) . (322)
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Now replace m by l − n, this gives

ψ(x) =
∞
∑

l=−∞

[

√
2

∞
∑

n=−∞
gncl−n

]

B(2x− l)

=
∞
∑

l=−∞

dlB(2x− l) . (323)

Numerical Methods

To determine the hn we need to evaluate the overlap integral given in
Equation (302). From Equations (298) and (295), we find

φ−1,n(x) =
√

2
∞
∑

m=−∞
cmB(2x−m− n) . (324)

Then using

B(x) =
∞
∑

j=−∞
bjB(2x− j) , (325)

where, the bj for the quadratic B-splines are given by

bj =



































1
4
, if j = −1

3
4
, if j = 0

3
4
, if j = 1

1
4
, if j = 2

0, otherwise.

, (326)

we can write

φ(x) =
∞
∑

n=−∞
cn

∞
∑

j=−∞
bjB(2x− 2n− j)

=
∞
∑

l=−∞

[ ∞
∑

n=−∞
cnbl−2n

]

B(2x− l)

=

∞
∑

l=−∞

slB(2x− l) . (327)
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Using these expansions, the overlap integral is given by

hn =
√

2
∞
∑

m=−∞

∞
∑

l=−∞

cmsl

∫ ∞

−∞
B(2x−m− n)B(2x− l) dx

=
√

2
∞
∑

m=−∞

∞
∑

l=−∞

cmsl
1

2

∫ ∞

−∞
B(x−m− n+ l)B(x) dx

=
1√
2

∞
∑

m=−∞

2
∑

j=−2

cmsm+n−j

∫ ∞

−∞
B(x)B(x− j) dx , (328)

where, we have set l = m + n − j in the second summation. The values for
the integrals of the quadratic B-splines are given in Equation (289).

To derive Equation (325), we use sin(2θ) = 2 cos(θ) sin(θ) to write Equa-
tion (276) as

B̃(k) = e−ik/2
[

cos(k/4) sin(k/4)

k/4

]3

= e−ik/4
(

eik/4 + e−ik/4

2

)3

e−ik/2
[

sin(k/4)

k/4

]3

= e−ik/4
(

eik/4 + e−ik/4

2

)3

B̃(k/2)

=

(

eik/2 + 3 + 3 e−ik/2 + e−ik

8

)

B̃(k/2) . (329)

Now taking the Fourier transform of (329) and using
∫ ∞

−∞
e−ikxB(2x− j) dx =

1

2
eikj/2

∫ ∞

−∞
e−ikx/2B(x) dx

=
1

2
eikj/2B(k/2) , (330)

we find

B(x) =
1

4
B(2x− 1) +

3

4
B(2x) +

3

4
B(2x+ 1) +

1

4
B(2x− 2) . (331)
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