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This paper discusses the general structure of reflection positive Euclidean covariant distributions
that can be used to construct Euclidean representations of relativistic quantum mechanical models
of systems of a finite number of degrees of freedom. Because quantum systems of a finite number
of degrees of freedom are not local, reflection positivity is not as restrictive as it is in a local field
theory. The motivation for the Euclidean approach is that it is straightforward to construct exactly
Poincaré invariant quantum models of finite number of degrees of freedom systems that satisfy
cluster properties and a spectral condition. In addition the quantum mechanical inner product
can be computed without requiring an analytic continuation. Whether these distributions can
be generated by a dynamical principle remains to be determined, but understanding the general
structure of the Euclidean covariant distributions is an important first step.

I. INTRODUCTION

The purpose of this work is to explore a Euclidean formulation of relativistic quantum mechanics [1] [2],[3] [4] [5].
From a purely academic perspective this Euclidean formulation yields a Hilbert space structure with a representation
of the Poincaré Lie algebra by self-adjoint operators. The Poincaré generators satisfy cluster properties and the Hamil-
tonian is bounded from below. These elements are sufficient to formulate any kind of quantum mechanical calculation.
The interesting feature of the Euclidean representation is that it is not necessary to perform an analytic continuation
to perform these calculations. The dynamical input to this representation of relativistic quantum mechanics is a
collection of Euclidean covariant distributions that satisfy a reflection positivity condition. Reflection positivity is
used to construct a Hilbert space representation with a non-trivial kernel. The reflection positivity requirement in the
quantum mechanical case is weaker than the corresponding condition in quantum field theory. The purpose of this
work is to understand the general structure of these distributions. What is still missing is a dynamical framework to
generate these model distributions.

The motivation for this exploration is discussed below. Understanding the internal structure of elementary hadrons
is a goal of nuclear and particle physics. Hadronic structure can be studied by scattering weak or electromagnetic
probes off of strongly interacting hadronic systems. In a typical reaction the probe scatters off of an initial hadronic
state and causes a transition to a final hadronic state. These reactions are complex since the target and strongly
interacting reaction products are composite systems, and particle number is not generally conserved. In addition,
because the probe can transfer momentum to the initial hadronic state, the final hadronic state(s) is in a moving frame
relative to the initial state. Relativistic momentum transfers are needed for a resolution that is sensitive to the internal
structure of hadrons. QCD is the appropriate theory to model the hadronic states. It is a challenging problem to
use QCD to solve for these strongly interacting Poincaré covariant states. Most non-perturbative calculations utilize
truncations, which are not mathematically controlled approximations. Lattice calculations are directly based on QCD,
but they break Poincaré symmetry and the treatment of scattering problems with composite initial and final states
is challenging, particularly in the Euclidean formulation.

While there are many difficulties associated with solving quantum field theories, one of them is due to the local
nature of quantum field theories, which cannot be satisfied in theories of a finite number of degrees of freedom. The
expectation is that for a given momentum transfer the dynamics will be approximately governed by a relativistic
model of a finite number of relevant degrees of freedom, limited by the available energy and interaction volume.
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Axiomatic formulations of quantum field theory [6][7] [8][9] provide a mathematical formulation of physical prop-
erties that are expected to hold in any reasonable formulation of relativistic quantum field theory. The axioms are
internally consistent since they are satisfied by free field theories. The challenge is the absence of examples of non-
trivial quantum theories that satisfy the axioms in 3+1 dimensional spacetime. The property responsible for most of
the difficulties is the locality axiom. While direct tests of locality on arbitrarily small distances are not possible, con-
sequences of locality such as the PCT theorem, crossing symmetry and the need for antiparticles make it a compelling
constraint.

One approach that avoids some of these difficulties is to use relativistic quantum mechanical models of a finite
number of degrees of freedom to model the initial and final hadronic states [10] [11] [12] [13] [14] [15] [16] [17] [18]
[19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42]. These
phenomenological models can be constructed so they satisfy most of the axioms of a quantum field theory, however
they are not local, since they are formulated in terms of a finite number of degrees of freedom. The advantage is
that model states can be calculated using the same methods that are used in non-relativistic calculations and the
relativistic invariance is exact. While relativistic models have been used successfully, their relation to QCD or a more
fundamental local field theory is not direct.

While relativistic quantum models do not satisfy microscopic locality, in order to be useful they need to satisfy
cluster properties ( macroscopic locality). This is needed to justify tests of special relativity on isolated subsystems
and more importantly to provide a connection between few and many-body systems. While macroscopic locality can
be realized in relativistic models, the construction of dynamical Poincaré generators satisfying macroscopic locality is
based on a recursive construction that uses chains of unitary transformations that map tensor products of subsystem
unitary representations of the Poincaré group and transforms them to a form where the interactions can be added
in a manner that preserves the Poincaré invariance. This is followed by another overall unitary transformation that
restores cluster properties [43][13] [14][21]. This is a complicated construction that has never been used in applications.
Allowing for production reactions in these models presents an additional set of problems.

While relativistic quantum models can provide a formal construction of a relativistically invariant quantum theory
satisfying cluster properties and a spectral condition, it is not a practical solution for more than two or three-body
systems due to the complexity and non-uniqueness of the construction. In addition there is no direct relation to
an underlying local relativistic quantum field theory that can be used to systematically improve the models. The
complexity of this construction, due to requiring macroscopic locality, and the absence of a direct connection to a
local field theory provides motivation for exploring alternative non-local formulations of relativistic quantum mechanics
where cluster properties can be established in a straightforward manner.

This work contributes to an approach based on a Euclidean formulation of Hamiltonian dynamics [1] [2],[3] [4].
In the axioms of Euclidean quantum field theory [8] [9] the locality axiom is logically independent of the other
axioms. This means that it should be possible to formulate relativistic quantum mechanical models satisfying all
of the other Euclidean axioms. The theory is expressed in terms of a collection of Euclidean covariant distributions
that satisfy a condition called reflection positivity [8] [9][44]. The motivation for considering this approach is that
cluster properties are easy to satisfy. In addition, because of the reflection positivity, physical Hilbert space inner
products can be computed without analytic continuation. The consequence of not requiring locality is that there is
no required relation between N-point functions with different numbers of initial and final coordinates. This makes
the positivity of the Hilbert space norm into a more manageable problem. It has the additional advantage that the
N-point distributions of a local quantum theory satisfy all of the required conditions, so there is a clear relation to
the Schwinger functions of a local field theory.

While Wightman functions of a local quantum field theory [6] also have some of the same advantages, they are not
as closely tied to the dynamics. Euclidean N -point functions can be approximated in lattice calculations and they
are solutions of the infinite hierarchy of Euclidean Schwinger-Dyson equations. Scattering is normally formulated
in terms of time-ordered Green functions, which can be obtained from the Euclidean N -point functions by analytic
continuation [45]. The relation to time-ordered distributions focuses on the scattering matrix rather than on the
Hamiltonian as a Hilbert space operator [46][47] [48][49]. An alternative analytic continuation gives the Wightman
distributions, which are kernels of the physical Hilbert space inner product. When the Euclidean N -point distributions
are reflection positive, the quantum mechanical inner product on a dense set of states can be constructed from the
Euclidean distributions without analytic continuation. There is a representation of the Poincaré Lie algebra with self-
adjoint operators on this Hilbert space satisfying both a spectral condition and cluster properties. These conditions
also hold in the non-local case. It is even possible to directly formulate time-dependent scattering calculations in this
representation of the Hilbert space without analytic continuation [1] [2][3] [4].

While analytic continuation is needed to construct the Wightman distributions from the Euclidean distributions,
it is not needed to formulate quantum mechanical calculations. The elements needed for a relativistic quantum
mechanical model are a representation of the physical Hilbert space inner product, a self-adjoint representation of
the Poincaré Lie algebra satisfying cluster properties on this space, and a Hamiltonian satisfying spectral condition.
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Reflection positivity allows these properties to be satisfied without explicit analytic continuation.
Reflection positivity ensures both the positivity of the physical Hilbert space norm and that the spectrum of

Hamiltonian is bounded from below [44]. The resulting spectral condition implies the existence of the analytic
condition, however analytic continuation is not needed to calculate physical Hilbert space inner products. In the
Euclidean axioms of a local field theory the N -point Schwinger functions are completely symmetric (anti-symmetric).
They serve as the kernel of a quadratic form related to the Hilbert space inner product. Because of the symmetry
one N-point distribution appears in the kernel of the Euclidean distributions with M initial and K final variables for
any M + K = N [8] [9] [44]. By relaxing the locality condition a single N -point distribution can be replaced by
N − 1 N -point distributions with M initial points and N −M final points. Because these are no longer required to
be related by locality, the reflection positivity condition is less restrictive.

Having a Hilbert space representation and a set of self-adjoint generators of the Poincaré group satisfying cluster
properties on this space are all that is needed to perform calculations. Cluster properties can be used to formulate
scattering asymptotic conditions [50][51] [52][4]. In the Euclidean case the dynamics is encoded in the collection
of Euclidean covariant distributions which will be referred to as quasi-Schwinger functions. While some aspects of
this approach have been previously discussed [1] [2][3] [4] [5], the purpose of this paper is to understand the general
structure of the reflection positive M + K = N point distributions which provide the dynamical content of this
formulation of non-local relativistic quantum mechanics. This needs to be understood in order to address the problem
of formulating realistic models.

While the purpose of this work is to demonstrate that it is possible to construct a large class of non-trivial examples
of sets of Euclidean covariant distributions that are consistent with all of the desired properties, what is still missing
is a dynamical principle that can be used to determine reflection positive quasi-Schwinger functions from some simple
input. The fact that Schwinger functions can be approximated using Euclidean lattice theories or Schwinger-Dyson
equations suggests that this is possible, however this is beyond the scope of this paper, and will be investigated in
future work.

II. NOTATION

The following notation will be used. Euclidean four vectors are denoted with a subscript e:

xe = (x0e, x
1
e, x

2
e, x

3
e). (1)

Minkowski 4 vectors are denoted with a subscript m:

xm = (x0m, x
1
m, x

2
m, x

3
m). (2)

The signature of the Minkowski metric is (−+++). The following matrices:

σmµ =

((
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
(3)

σeµ =

((
i 0
0 i

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
(4)

are used to construct the 2× 2 matrix representations of Euclidean or Minkowski four vectors:

Xe =

3∑
µ=0

xµeσeµ =

(
ix0e + x3e x1e − ix2e
x1e + ix2e ix0e − x33

)
xµe =

1

2
Tr(σ†

eµXe) (5)

Xm =

3∑
µ=0

xµmσmµ =

(
x0m + x3m x1m − ix2m
x1m + ix2m x0m − x3m

)
xµm =

1

2
Tr(σmµX). (6)

The Euclidean time-reflection operator, θ, which changes the sign of the Euclidean time, is defined by

θxe = (−x0e, x1e, x2e, x3e). (7)

The Euclidean or Minkowski parity operator Π is defined by

Πxe = (x0e,−x1e,−x2e,−x3e) Πxm = (x0m,−x1m,−x2m,−x3m). (8)
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III. WIDDER’S THEOREM

The goal of this work is to understand the general structure of reflection positive distributions. The simplest
prototype of a reflection positive kernel is a k(t) satisfying∫ ∞

0

dtdt′f(t)k(t+ t′)f(t′) ≥ 0 (9)

for continuous functions f(t) with compact support on (0,∞).
The general form of continuous k(t) satisfying (9) is (see of [53])

k(t) =

∫
ρ(λ)dλe−tλ (10)

where ρ(λ) is non-decreasing and the integral converges for 0 ≤ t ≤ 2T where support(f(t)) ∈ [0, T ].
For t > 0 this can be written as

k(t) =

∫
ρ̃(λ)

e−itp

λ2 + p2
dpdλ (11)

where ρ̃(λ) = ρ(λ)λπ and the restriction on the support of f(t) means that the p integral can be computed using the
residue theorem. The relevant observation is that (11) has a structure similar to a Lehmann representation. In what
follows it is shown that all positive mass, positive energy unitary irreducible representations of the Poincaré group
can be constructed using a generalization of this construction. Since any unitary representation of the Poincaré group
can be decomposed into direct integrals of irreducible representations, this provides the general structure of reflection
positive distributions.

IV. RELATIVISTIC COVARIANCE: SL(2,C) AND SU(2) × SU(2)

The relation between the Lorentz and orthogonal groups in four dimensions plays a central role in the connection
between the Euclidean and Minkowski representation of relativistic quantum mechanics.

The covering groups of the complex Lorentz and the four dimensional complex orthogonal groups are isomorphic.
Because of this there are formal expressions for the Poincaré generators as linear combinations of the generators of
the Euclidean group. These operators satisfy the commutation relations of the Poincaré Lie algebra, but they are
not self-adjoint on the Hilbert space where the Euclidean generators are self-adjoint. Reflection positivity leads to a
Hilbert space inner product where the Poincaré generators constructed from the Euclidean generators are represented
by self-adjoint operators.

The purpose of this section is to review the relation between the complex Lorentz and complex orthogonal groups.
The starting point is to note that Euclidean and Minkowski 4-vectors can be represented by 2×2 matrices. Minkowski
4-vectors xm can be represented by Hermitian matrices (5) while the Euclidean 4 vectors xe can be represented by
matrices of the form (6).

The advantage of these matrix representations is that the determinants of these matrices are related to the
Minkowski and Euclidean invariant line elements respectively:

det(Xm) = (x0m)2 − xm · xm det(Xe) = −
(
(x0e)

2 + xe · xe

)
. (12)

In both cases the determinants are preserved under linear transformations of the form

X → X ′ = AXBt (13)

where A and B are both SL(2,C) matrices and X can be Xm or Xe. In both cases the relevant symmetry group is
SL(2,C)× SL(2,C). For arbitrary elements (A,B) ∈ SL(2,C)× SL(2,C) the transformation (13) defines a complex
Lorentz or complex orthogonal transformation that preserves the real invariant line elements. The corresponding
complex 4× 4 Lorentz and orthogonal matrices are

Λ(A,B)αβ =
1

2
Tr(σαAσβB

t) (14)

O(A,B)αβ =
1

2
Tr(σ†

eαAσeβB
t). (15)
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For real Lorentz transformations B = A∗ and for real orthogonal transformations A and B are independent SU(2)
matrices. When the left sides of (14) and (15) are real, the 4 × 4 transformations can also be expressed by taking
complex conjugates

Λ(A,B)αβ =
1

2
Tr(σ∗

αA
∗σ∗

βB
†) (16)

O(A,B)αβ =
1

2
Tr(σt

eαA
∗σ∗

eβB
†). (17)

There are two kinds of spinors associated with SL(2,C)× SL(2,C) that are distinguished by their SL(2,C) trans-
formation properties

ξa → ξa′ =
∑
b

Aabξ
b (18)

ξȧ → ξȧ′ =
∑
ḃ

Bȧḃξ
ḃ. (19)

For reasons that will be discussed later spinors transforming like (18) are called right-handed spinors while spinors
transforming like (19) are called left-handed spinors. Dot superscripts are are used to distinguish left handed spinors
from right handed spinors. For real Lorentz transformations Bȧḃ = A∗

ab while for real orthogonal transformations Aab

and Bȧḃ are independent SU(2) matrices. In both cases the two representations are inequivalent; which means that
a general A and B or A and A∗ cannot be related by a single constant similarity transformation:

̸ ∃ M satisfying MAM−1 = A∗ or MAM−1 = B ∀A,B. (20)

Because they have determinant 1, a general SL(2,C) matrix can be expressed as the exponential of the dot product
of a complex 3-vector z with the vector of Pauli matrices:

A = ±ez·σσσ det(A) = ez·tr(σσσ) = 1. (21)

It follows from the representation (21) and properties of the Pauli matrices that

σ2A
tσ2 = A−1 σ2B

tσ2 = B−1. (22)

This means that σ2 behaves like a metric tensor with respect to these spinors. Dual right- and left-handed spinors
are identified by lower indices:

ξa :=
∑
b

(σ2)abξ
b ξȧ :=

∑
ḃ

(σ2)abξ
ḃ. (23)

The transformation properties of the dual spinors follow from the transformation properties of the corresponding
upper index spinors

ξa → ξ′a =
∑
bc

(σ2)abAbcξ
c =

∑
bc

(σ2)abAbc(σ2)cdξd =
∑
b

(At)−1
ab ξb (24)

ξȧ → ξ′ȧ =
∑
ḃċ

(σ2)ȧḃBḃċξ
ċ =

∑
ḃċ

Bȧḃ(σ2)ḃċξ·c =
∑
ḃ

(Bt)−1

ȧḃ
ξḃ. (25)

The dual spinors define invariant linear functionals on the corresponding spinors. This follows since the contraction
of a spinor and a dual spinor of the same type is invariant under SL(2,C):∑

a

ξa′χ′
a =

∑
abc

Aabξ
b(At)−1

ac χc =
∑
abc

xa(At)ab((A
t)−1)bcχc =

∑
a

ξaχa (26)

and replacing A by B ∑
ȧ

ξȧ′χ′
ȧ =

∑
ȧ

ξȧχȧ. (27)
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For Lorentz transformations when z = −iϕϕϕ2 , A = ±ez·σσσ represents a rotation through an angle |ϕϕϕ| about the ϕ̂ϕϕ axis,
while for z = ρρρ

2 , A = ±ez·σσσ represents a rotationless Lorentz boost with rapidity ρρρ. For rotations A is unitary while
for rotationless boosts A is a positive Hermitian matrix. Both (A,B) and (−A,−B) correspond to the same 4 × 4
complex Lorentz or orthogonal transformation.

The 4 × 4 matrix representation of the complex orthogonal group can be expressed in a number of different ways
in terms of the SL(2,C) matrices A and B using properties of the Pauli matrices∑

µ

(O(A,B)xe)
µ · σeµ =

∑
µ

xµe ·AσeµBt. (28)

Taking transposes gives ∑
µ

(O(A,B)xe)
µ · σt

eµ =
∑
µ

xµe ·Bσt
eµA

t. (29)

Multiplying by σ2 on the right and left using σ2Aσ2 = (At)−1 on (28) and (29) gives∑
µ

(O(A,B)xe)
µ · σ2σeµσ2 =

∑
µ

xµe · (At)−1σ2σeµσ2B
−1 (30)

and ∑
µ

(O(A,B)xe)
µ · σ2σt

eµσ2 =
∑
µ

xµe · (Bt)−1σ2σ
t
eµσ2A

−1. (31)

In all four cases the complex orthogonal matrix, O(A,B)µν , remains unchanged.
A general SL(2,C) matrix has a polar decomposition of the form

A = RP = P ′R′ (32)

where

P := (A†A)1/2 R := A(A†A)−1/2

P ′ := (AA†)1/2 R′ := (A†A†)−1/2A (33)

and P and P ′ are positive Hermitian matrices and R and R′ are SU(2) matrices. This implies that any Lorentz
transformation can be expressed as the product of a rotation and a “rotationless” boost in either order. Since
rotations leave a rest four momentum invariant, both A and P ′ in (32) transform the rest four momentum to the
same final four momentum, p, but the “rotationless” boost, P ′, is distinguished by being a positive matrix. The
rotationaless boost is a function of the 4-velocity, v := p/m. The notation P (p/m) is used for the positive SL(2,C)
matrix corresponding to a boost that transforms p0 := (m,0) to p.

V. IRREDUCIBLE REPRESENTATIONS

The elementary building blocks of a relativistic theory of particles are unitary irreducible representations of the
Poincaré group [54]. In this section transformation properties of single-particle states of mass m and spin s are used
to construct equivalent states in the Euclidean representation. This work is limited to positive-mass positive-energy
irreducible representations. These representations are also the building blocks of general unitary representations of
the Poincaré group, which can be decomposed into direct integrals of irreducible representations.

In this section two-point quasi-Schwinger functions that describe particles of mass m and spin s are constructed.
This construction motivates the structure of multi-point reflection positive quasi-Schwinger functions, which are
discussed in the following section.

The starting point is the standard quantum mechanical description of a particle of mass m and spin s. The state
of the particle is determined by a complete set of compatible measurements. Compatible quantities that can be
measured are a particle’s linear momentum, p, and the projection, µ, of its spin on a fixed axis in a fixed reference
frame. Lorentz boosts can change the momentum to any value and, because the spin satisfies SU(2) commutation
relations, the spin projection can take on 2s + 1 values in integer steps between −s and s. These considerations
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determine the spectrum of the momentum and spin projection operators. A Hilbert space representation for such a
particle is the space of square integrable functions of the eigenvalues of the linear momentum and a spin projection
operator,

⟨(m, s)p, µ|ψ⟩, (34)

satisfying

s∑
µ=−s

∫
R3

dp|⟨(m, s)p, µ|ψ⟩|2 <∞. (35)

Poincaré transformation properties of these wave functions follow from the transformation properties of the basis
of simultaneous eigenstates of mass, spin, linear momentum and spin projection. For particles, m and s are fixed.
In the general case the mass spectrum is no longer discrete and there are additional invariant degeneracy quantum
numbers. The group representation property implies that a general Poincaré transformation can be expressed as a
Lorentz transformation followed by a spacetime translation. It follows that the unitary representation of the Poincaré
group, U(Λ, a), can be expressed as

U(Λ, a) = U(I, a)U(Λ, 0) (36)

where U(I, a) is a four-parameter unitary representation of the group of spacetime translations and U(Λ, 0) is a
unitary representation of SL(2,C). The notation Λ is used to represent the SL(2,C) matrix or the corresponding
4× 4 Lorentz transformation. The interpretation should be clear from the context.
The spacetime translation operator U(I, a) is a multiplication operator acting on the basis states

U(I, a)|(m, s)p, µ⟩ = |(m, s)p, µ⟩eip·a. (37)

For rotations, Λ = R, on a 0 linear momentum eigenstate, the rotation does not change the momentum; it only
transforms the magnetic quantum number. This means that the transformed state is a linear combination of zero
momentum spin states:

U(R, 0)|(m, s)0, µ⟩ =

s∑
ν=−s

|(m, s)0, ν⟩⟨s, ν|U(R, 0)|s, µ⟩ =
s∑

ν=−s

|(m, s)0, ν⟩Ds
νµ[R] (38)

where Ds
νµ[R] is the 2s+1 dimensional unitary representation of SU(2) in the basis of eigenstates of the spin projection

ẑ · s, Ds
νµ[R] = ⟨s, µ|U(R, 0)|s, ν⟩.

The matrix, Ds
νµ[R], can be computed explicitly [45]:

Ds
µ,ν [R] = ⟨s, µ|U(R, 0)|s, ν⟩ =

s+µ∑
k=0

√
(s+ µ)!(s+ ν)!(s− µ)!(s− ν)!

k!(s+ ν − k)!(s+ µ− k)!(k − µ− ν)!
Rk

++R
s+ν−k
+− Rs+µ−k

−+ Rk−µ−ν
−− (39)

where

R =

(
R++ R+−
R−+ R−−

)
= e−

i
2θ·σ = σ0 cos(

θ

2
)− iθ̂ · σ sin(

θ

2
) (40)

is a SU(2) matrix. Ds
µν [R] in (39) is a homogeneous polynomial of degree 2s in the SU(2) matrix elements, Rij , with

real coefficients, while the matrix elements Rij are entire functions of angles, θθθ. This means that Ds
µν [R] is an entire

function of the rotation angles.
The positive matrix, P (p/m) = (AA†)1/2, in the polar decomposition of the SL(2,C) matrix, A, represents a

rotationless Lorentz boost. It can be used to define states |(m, s)p, µ⟩ with non-zero linear momentum in terms of
zero momentum states,

|(m, s)p, µ⟩ := U(P (p/m), 0)|(m, s)0, µ⟩N(p), (41)
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where N(p) is a normalization factor that is chosen to ensure that this transformation is unitary. This definition
means that the eigenvalue of the magnetic quantum number in the state (41) is the value that would be measured in
the particle’s rest frame if it was boosted to its rest frame by the inverse of a rotationless boost. The spin defined by
(41) is called the canonical spin. (Different spins, like helicity or light-front spin, can be defined by replacing P (p/m)
in (41) with a different boost, A(p/m) =: P (p/m)R(p/m), where R(p/m) is a momentum dependent rotation).
For basis states with a Dirac delta-function normalization

⟨(m, s)p′, µ′|(m, s)p, µ⟩ = δ(p′ − p)δµ′µ (42)

the transformation (41) is unitary for

N(p) =

√
m

ωm(p)
, ωm(p) :=

√
m2 + p2. (43)

The unitary transformations, (37), (38) and (41) can be combined to construct a unitary representation of the Poincaré
group on the single-particle Hilbert space

U(Λ, a)|(m, s)p, µ⟩ = U(I, a)U(Λ, 0)|(m, s)p, µ⟩ =

U(I, a)U(P (Λp/m), 0)U(P−1(Λp/m), 0)U(Λ, 0)U(P (p/m), 0)|(m, s)0, µ⟩
√

m

ωm(p)
=

s∑
ν=−s

U(I, a)U(P (Λp/m), 0)|(m, s)0, ν⟩
√

m

ωm(p)
Ds

νµ[(P
−1(Λp/m))Λ(P (p/m)] =

s∑
ν=−s

U(I, a)|(m, s)ΛΛΛp, ν⟩

√
ωm(ΛΛΛp)

ωm(p)
Ds

νµ[(P
−1(Λp/m))Λ(P (p/m)] =

s∑
ν=−s

eiΛp·a|(m, s)ΛΛΛp, ν⟩

√
ωm(ΛΛΛp)

ωm(p)
Ds

νµ[(P
−1(Λp/m))Λ(P (p/m)] (44)

where Rw(Λ, p) := P−1(Λp/m))Λ(P (p/m)) is a canonical-spin Wigner rotation. The representation (44) is referred
to as a Poincaré covariant unitary representation of the Poincaré group.

The next step is to transform (44) into a Lorentz covariant representation of the Poincaré group. Because the Wigner
functions (39) are entire functions of angles, both the group representation property and equations for adding angular
momenta with real Clebsch-Gordan coefficients also hold for complex angles - or equivalently for all Λ ∈ SL(2,C).
Specifically since

s∑
α=−s

Ds
µα[R2]D

s
αν [R1]−Ds

µν [R2R1] = 0 (45)

and

Ds1
µ1ν1

[R]Ds2
µ2ν2

[R]−

∑
s,µ,ν

< s1, µ1, s2, µ2|s, µ > Ds
µν [R] < s1, ν1, s2, ν2|s, µ >= 0 (46)

are entire and vanish for all real angles, they vanish for complex angles by analyticity (i.e. for R = e−i 1
2θθθ·σσσ → e

z
2 ·σσσ).

The coefficients < s1, µ1, s2, µ2|s, µ > in (46) are real SU(2) Clebsch-Gordan coefficients. This means that the 2s+1
dimensional representation of the Wigner rotations can be factored into a matrix product of three 2s+1 dimensional
Wigner functions of SL(2,C) matrices (see 39):

Ds
νµ[Rw(Λ, p)] =

∑
ν′ν′′

Ds
νν′ [P−1(Λp/m)]Ds

ν′ν′′ [Λ]Ds
ν′′µ[P (p/m)]. (47)
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Using this decomposition equation (44) can be rewritten as

U(Λ, 0)

s∑
µ′=−s

|(m, s)p, µ′⟩Ds
µ′µ[(P

−1(p/m)]
√
ωm(p) =

s∑
µ′,µ′′=−s

|(m, s)ΛΛΛp, µ′⟩Ds
µ′µ′′ [P−1(Λp/m)]

√
ωm(ΛΛΛp)Ds

µ′′µ[Λ]. (48)

This leads to the definition of “Lorentz covariant” basis states

|(m, s)p, µ⟩cov :=

s∑
µ′=−s

|(m, s)p, µ′⟩Ds
µ′µ[P

−1(p/m)]
√
ωm(p) (49)

where the spins transform under a 2s+ 1 dimensional representation of SL(2,C):

U(Λ)|(m, s)p, µ⟩cov =

s∑
µ′=−s

|(m, s)ΛΛΛp, µ′⟩covDs
µ′µ[Λ]. (50)

Since for SU(2) matrices, R = (R†)−1, it also follows that

|(m, s)p, µ⟩cov :=

s∑
µ′=−s

|(m, s)p, µ′⟩Ds
µ′µ[P (p/m)]

√
ωm(p) (51)

which transforms like

U(Λ)|(m, s)p, µ⟩cov =

s∑
µ′=−s

|(m, s)ΛΛΛp, µ′⟩covDs
µ′µ[(Λ

†)−1]. (52)

Equations (50) and (52) define inequivalent (see (20)) unitary representations of the Lorentz group.
In terms of the notation for the transformation properties of spinors, the spins in (50) transform like right handed

spinors, ξµ, while the spins in (52) transform like dual left handed spinors, ξµ̇.
Since Ds

µ′µ[P (p/m)] is invertible, both Lorentz covariant representations are isomorphic to the original Poincaré
covariant representation. While either Lorentz covariant representation can be used, these inequivalent representations
get transformed into each other under the discrete transformation of space reflection. This is because complex
conjugation changes the sign of σ2 which results in Xm being reflected about the x − z plane. This means that in
order to treat space reflections and Lorentz transformations consistently in the Lorentz covariant representations,
both representations (49) and (51) must appear either as tensor products, as they do for four vectors, or direct sums,
as they do for Dirac spinors.

These covariant basis vectors can be used to construct Lorentz covariant wave functions:

cov⟨(m, s)p, µ|ψ⟩ (53)

or

cov⟨(m, s)p, µ|ψ⟩. (54)

The Poincaré covariant wave functions are related to the Lorentz covariant wave functions by

⟨(m, s)p, µ|ψ⟩ =
s∑

µ′=−s

Ds
µµ′ [(P )(p/m)]cov⟨(m, s)p, µ′|ψ⟩

√
1

ωm(p)
(55)

or

⟨(m, s)p, µ|ψ⟩ =
s∑

µ′=−s

Ds
µµ′ [(P−1)(p/m)]cov⟨(m, s)p, µ′|ψ⟩

√
1

ωm(p)
. (56)
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The Hilbert space inner product in the Lorentz covariant representation follows from relations (55) and (56) and the
inner product in the Poincaré covariant irreducible representations (44):

⟨ϕ|ψ⟩ =
s∑

µ=−s

∫
R3

dp⟨ϕ|(m, s)|p, µ⟩⟨(m, s)p, µ|ψ⟩ =

s∑
µ,ν=−s

∫
R3

dp⟨ϕ|(m, s)p, µ⟩cov
Ds

µν [P (p/m)P †(p/m)]

ωm(p) cov

⟨(m, s)p, ν|ψ⟩ =

s∑
µ,ν=−s

∫
R4

d4p⟨ϕ(m, s)p, µ⟩cov2δ(m2 + p2)θ(p0)×

Ds
µν [P (p/m)P (p/m))]cov⟨(m, s)p, ν|ψ⟩ (57)

with a similar expression for the inner product in the representation (52):

⟨ϕ|ψ⟩ =

s∑
µ,ν=−s

∫
R3

dp⟨ϕ|(m, s)p, µ⟩cov
Ds

µν [P
−1(p/m)(P †(p/m))−1]

ωm(p) cov

⟨(m, s)p, ν|ψ⟩ =

s∑
µ,ν=−s

∫
R4

d4p⟨ϕ(m, s)p, µ⟩cov2mδ(m2 + p2)θ(p0)×

Ds
µν [P

−1(p/m))P−1(p/m)]cov⟨(m, s)p, ν|ψ⟩ (58)

where (33), P = P †, was used in (57)-(58). Because P (p/m) = e
1
2ρρρ·σσσ, where ρρρ is the rapidity of the boost, it follows

that

P (p/m)P (p/m) = eρρρ·σσσ =
σm · p
m

(59)

and

P−1(p/m)P−1(p/m) =
(σ2σ

t
mσ2) · p
m

=
σm ·Πp
m

(60)

where Π is the parity operator. These are called “right” and “left-handed” representations because they differ by a
space reflection. The resulting kernel is independent of the type of boost used to define the type of spin (41) since for
a general SL(2,C) boost, A(p/m), the polar decomposition (32) gives

A(p/m)A†(p/m) = P (p/m)R(p/m)R†(p/m)P †(p/m) =

P (p/m)P †(p/m) = P (p/m)P (p/m) =
σm · p
m

. (61)

Using (59) and (60) in (57) and (58) gives the following expression for the inner product of right- or left-handed
Lorentz covariant wave functions:

⟨ϕ|ψ⟩ =

s∑
µ,ν=−s

∫
R3

d3p⟨ϕ|(m, s)p, µ⟩cov
Ds

µν [σm · p/m]

ωm(p) cov

⟨(m, s)p, ν|ψ⟩ =
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s∑
µ,ν=−s

∫
R3

d4p⟨ϕ|(m, s)p, µ⟩cov2δ(m2 + p2)θ(p0)Ds
µν [σm · p/m]cov⟨(m, s)p, ν|ψ⟩ (62)

and

s∑
µ,ν=−s

∫
R3

d3p⟨ϕ|(m, s)p, µ⟩cov
Ds

µν [σm ·Πp/m]

ωm(p) cov

⟨(m, s)p, ν|ψ⟩ =

s∑
µ,ν=−s

∫
R3

d4p⟨ϕ|(m, s)p, µ⟩cov2δ(m2 + p2)θ(p0)Ds
µν [σm ·Πp/m]cov⟨(m, s)p, ν|ψ⟩. (63)

Note that both Ds
µν [σm · p/m] and Ds

µν [σm · Πp/m] are positive since each one can expressed as the square of a
Hermitian matrix.

The Fourier transforms of the kernels of these inner products are

W s
Rµν(x, y) =

∫
R3

d3p

(2π)3
eip·(x−y)

Ds
µν [σm · p/m]

ωm(p)
(64)

and

W s
Lµν(x, y) =

∫
R3

d3p

(2π)3
eip·(x−y)

Ds
µν [σ2σ

t
mσ2 · p/m]

ωm(p)
(65)

where p0 = ωm(p) and R and L stand for “right” and “left”. The Lorentz covariance properties of these distributions
are

W s
Rµν(Λx,Λy) =

s∑
µ′ν′=−s

Ds
µµ′ [Λ]W s

Rµ′ν′(x, y)Ds
ν′ν [Λ

†] (66)

and

W s
Lµν(Λx,Λy) =

s∑
µ′ν′=−s

Ds
µµ′ [Λ∗]W s

Lµ′ν′(x, y)Ds
ν′ν [(Λ)

−1]. (67)

Note that in terms of the spinor transformation properties of the matrices in the kernel, Ds
µν [σ · p/m] transforms a

left-handed spinor to a right-handed dual spinor while Ds
µν [σ ·Πp/m] transforms a right-handed spinor to a left-handed

dual spinor. This is because complex conjugation transforms right-handed spinors to left-handed spinors and left-
handed spinors to right-handed spinors. Because of this property of the Wigner functions, the dotted index notation
will not be used, instead Ds

µν [σ · p/m] will be referred to as the right-handed representation while Ds
µν [σ · Πp/m]

will be referred to as the left-handed representation. The invariance of the inner product is due to the momentum
dependence in the kernel.

The kernels of these inner products are representations of two-point Wightman distributions for right- or left-handed
particles with of spin s [6]. The price paid in order to have wave functions with spins that transform under finite
dimensional representations of SL(2,C) is that the inner product has a momentum and spin-dependent kernel. In the
covariant representations (49) and (51) the mass dependence has been moved from the Hamiltonian to the kernel of
the inner product. This is necessary since time translations and rotationless boosts, which are dynamical, transform
trivially in the Lorentz covariant representation.

A general covariant wave function can transform as a product or direct sum of right- and left-handed spinor
representations. For product representations the basis states are replaced by

⟨ϕ|(m, s)p, µ⟩cov → ⟨ϕ|(m, sr, sl)p, µr, µl⟩cov (68)

where the inner product of Lorentz covariant wave functions has the form

⟨ϕ|ψ⟩ =

∫
R3

dp

sr∑
µr,νr=−sr

sl∑
µl,νl=−sl

⟨ϕ|(m, sr, sl)p, µr, µl⟩cov×



12

Dsr
µrνr

[σm · p/m]Dsl
µlνl

[σm ·Πp/m]

ωm(p)
⟨(m, sr, sl)p, νr, νl|ψ⟩cov =

∫
R4

d4p

sr∑
µr,νr=−sr

sl∑
µl,νl=−sl

⟨ϕ|(m, sr, sl)p, µr, µl⟩cov×

2δ(m2 + p2)θ(p0)Dsr
µrνr

[σ · p/m]Dsl
µlνl

[σ ·Πp/m]⟨(m, sr, sl)p, νr, νl|ψ⟩cov. (69)

The kernel of this inner product

W srsl
µrµlνrνl

(x, y) =

∫
d4p

(2π)4
eip·(x−y)2δ(m2 + p2)θ(p0)Dsr

µrνr
[σ · p/m]Dsl

µlνl
[σ ·Πp/m] (70)

is a 2-point Wightman distribution. The notation (sr, sl) will be used to denote the spin representations in (70).
The next step is to relate the Lorentz covariant representation of the Hilbert space inner product given in terms

of the Wightman distributions to a Hilbert space inner product given in terms of Euclidean covariant distributions.
The representation (70) of the Wightman distributions can be related to a reflection positive Euclidean two-point
distribution.

To show this consider the following Euclidean covariant distribution:

Ssrsl
µrµl;νrνl

(xe, ye) :=

∫
d4pe
(2π)4

Dsr
µrνr

[pe · σe]Dsl
µlνl

[Πpe · σe]
p2e +m2

eipe·(xe−ye). (71)

Because the Wigner functions are polynomials in the components of pe, the pe integral in (71) will not generally
converge, however this expression represents a distribution, where it is necessary to perform the xe and ye integrals
before computing the pe integrals. If the test functions are Schwartz functions, their Fourier transforms are Schwartz
functions. This means that the pe integrals converge as distributions. For test functions satisfying the Euclidean
time-support condition, it follows that

hsrslµrµl;νrνl
(x,y, p0e) :=

∫
f∗(θxe)e

ip0
ex

0
edx0e

∫
g(ye)e

−ip0
ey

0
edy0eD

sr
µrνr

[pe · σe]Dsl
µlνl

[Πpe · σe] (72)

is analytic in the lower-half p0e plane, and the p0e integral can be computed using the residue theorem, closing the

contour in the lower half plane. The poles in the p0e integration are at p0e = ±i
√

p2 +m2. The integral over the

contour in the lower half plane gets a contribution from the pole at −i
√
p2 +m2.

This distribution transforms covariantly under the complex orthogonal group

Ssrsl
µrµl;νrνl

(O(A,B)xe, O(A,B)ye) =

sr∑
µ′
rν

′
r=−sr

sl∑
µ′
lν̇

′
l=−sl

Dsr
µrµ′

r
[A]Dsl

µlµ′
l
[(Bt)−1]Ssrsl

µ′
rµ

′
l;ν

′
rν

′
l
(xe, ye)D

sr
ν′
rνr

[Bt]Dsl
ν′
lνl

[A−1]. (73)

Note that as in the SL(2,C) case, Dsr
µrνr

[pe · σe] maps a right-handed SU(2) × SU(2) spinor to a left-handed dual
spinor while Dsl

µlνl
[Πpe · σe] maps a left-handed SU(2)× SU(2) spinor to a right-handed dual spinor.

Of interest is when the test functions have support for positive Euclidean time and the Euclidean time on the final
test function is reflected. Then the Euclidean time difference in the exponent θxe0 − y0e is strictly negative. In this
case the result of this integration (for θx0e − y0e < 0) is

sr∑
µr,νr=−sr

sl∑
µl,νl=−sl

∫
d4xed

4yef
srsl∗
µrµl

(θxe)S
sṡ
µrµl;νrνl

(xe, ye)g
srsl
νν̇ (ye) =

sr∑
µr,νr=−sr

sl∑
µl,νl=−sl

∫
dpfsrsl∗µrµl

(xe)d
4xe

e−ωm(p)x0
e+ip·x

(2π)3/2
×
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Dsr
µr,νr

[pm · σm]Dsl
µl,νl

[Πpm · σm]

2ωm(p)
d4yeg

srsl
νrνl

(ye)
e−ωm(p)y0

e−ip·y

(2π)3/2
(74)

where

(−iωm(p),p) · (σe,σσσ) = (−iωm(p),p) · (iσ0,σσσ) =

(ωm(p),p) · (σ0,σσσ) = pm · σm (75)

was used.
By defining the wave functions

ψνrνl
(p) :=

∫
R4

d4yegνrνl
(ye)

e−ωm(p)y0
e−ip·y

(2π)3/2
(76)

and

ϕ∗µrµl
(p) =

∫
R4

d4xef
∗
µrµl

(xe)
e−ωm(p)x0

e+ip·x

(2π)3/2
(77)

(74) becomes

sr∑
µr,νr=−sr

sl∑
µl,νl=−sl

∫
R3

(ϕsrslµrµl
(p))∗

dpDsr
µrνr

[pm · σm]Dsl
µlνl

[Πpm · σm]

2ωm(p)
ψsrsl
νrνl

(p) (78)

which is exactly the expression for the inner product in the Lorentz covariant representation with wave functions (69)

(ϕsrslµrµl
(p))∗ = ⟨ϕ|(m, sr, sl)p, µr, µl⟩cov (79)

and

ψsrsl
µrµl

(p) = ⟨(m, sr, sl)p, νr, νl|ψ⟩cov. (80)

Since the Wigner functions of pm · σ and Πpm · σ that appear in these expressions are squares of Hermitian matrices,
it follows that (78) is non-negative. When B → A∗ the complex Euclidean covariance condition (73) becomes the
Lorentz covariance condition (66-67):

Ssrsl
µrµl;νrνl

(O(A,A∗)xe, O(A,A∗)ye)

sr∑
µ′
r,ν

′
r=−sr

sl∑
µ′
l,ν

′
l=−sl

Dsr
µrµ′

r
[A]Dsl

µlµ′
l
[(A†)−1]Ssrsl

µ′
rµ

′
l;ν

′
rν

′
l
(xe, ye)D

sr
ν′
rνr

[A†]Dsl
ν′
lνl

[A−1]. (81)

This means that this complex subgroup of the complex orthogonal transformations defines a unitary representation
of the Poincaré group on the Hilbert space defined by the inner product (75).
It follows from (81) that

sr∑
µ′
r,ν

′
r=−sr

sl∑
µ′
l,ν

′
l=−sl

∫
f∗(θxe, µ

′
r, µ

′
l)S

srsl
µ′
rµ

′
l;ν

′
rν

′
l
(xe, ye)f(ye, νr, νl)d

4xed
4ye =

∫ sr∑
µ′
r,ν

′
r=−sr

sl∑
µ′
l,ν

′
l=−sl

f∗(O(A,A∗)θxe, µ
′
r, µ

′
l)D

sr
µrµ′

r
[A]Dsl

µlµ′
l
[(A†)−1]Ssrsl

µ′
rµ

′
l;ν

′
rν

′
l
(xe, ye)×

Dsr
ν′
rνr

[A†]Dsl
ν′
lνl

[A−1]f(O(A,A∗)ye, ν
′
r, ν

′
l)d

4xed
4ye (82)
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or that

f(ye, νr, νl) →
sl∑

ν′
r,ν

′
l=−sl

f(O(A,A∗)ye, ν
′
r, ν

′
l)D

sr
ν′
rνr

[A†]Dsl
ν′
lνl

[A−1] (83)

is a unitary representation of SL(2,C).
In order to understand how the support conditions work for finite Lorentz transformations it is useful to express

the Euclidean coordinates in terms of the matrices Xe. Xe can be decomposed into the sum of Hermitian and
anti-Hermitian parts

Xe =
1

2
(Xe +X†

e) +
1

2
(Xe −X†

e) = Xh +Xa (84)

where

Xh = X†
h Xa = −X†

a. (85)

Under real Lorentz transformations

AXeA
† = AXhA

† +AXaA
† (86)

the Hermitian and anti Hermitian parts transform independently

X ′
h = AXhA

† X ′
a = AXaA

†. (87)

For real Euclidean Xe, Xa = ix0eI so

AXaA
† = AA†Xa = ix0eAA

† (88)

which means Tr(AXaA
†) = ix0eTr(AA

†), or that the sign of the imaginary part of Xe is unchanged, while the
Hermitian part, associated with real Lorentz transformations transforms independently. This means that the sign of
the real part of the Euclidean time is preserved under real Lorentz transformations.

Since the integrals are over 4-dimensional Euclidean variables

|detAXeA
†| = |detXe| = |detX†

e | = |det θXe| (89)

which implies d4xe = d4θxe = d4x′e where x′e is the real Lorentz transformed xe.
The Fourier transforms of these distributions can be computed explicitly (see [46])

Ssrsl
µrµl;νrνl

(xe, ye) =

∫
d4pe
(2π)4

∫
eipe·(xe−ye)Dsr

µrνr
[pe · σe]Dsl

µlνl
[pe · σ2σ∗

eσ2]

p2e +m2
=

m2

(2π)2
Dsr

µrνr
[−iσe · ∇xe ]D

sl
µlνl

[−iσ2σ∗
eσ2 · ∇xe ]

K1(m|xe − ye|)
m|xe − ye|

. (90)

The Wigner functions are polynomial in the derivatives. While this kernel is singular as xe → ye, the Euclidean time
support condition along with the Euclidean time reflection ensures that |xe − ye| never vanishes.

VI. EUCLIDEAN COVARIANCE

The spinor transformation properties of the Schwinger functions in the previous section,(73), were determined by
requiring that the Lorentz invariant inner product is recovered when the Euclidean wave functions have support for
positive Euclidean time and the final Euclidean time is reflected.

The covariance condition for the Schwinger functions follow from equation (73) which can be expressed in the form

Ssrsl
µ′
rµ

′
l;ν

′
rν

′
l
((O(A,B)xe, (O(A,B)ye) =
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sr∑
µ′
r,ν

′
r=−sr

sl∑
µ′
l,ν

′
l=−sl

Ssrsl
µ′
rµ

′
l;ν

′
rν

′
l
(xe, ye)D

sr
µ′
rµr

[At]Dsr
ν′
rνr

[Bt]Dsl
µ′
lµl

[(B)−1]Dsl
ν′
lνl

[A−1]. (91)

where A and B are independent SU(2) matrices. It is straightforward to extend this condition to Euclidean covariant
kernels with more initial and final Euclidean coordinates and spins. The distributions that replace the Schwinger
functions of axiomatic field theory will be referred to as quasi-Schwinger functions, since they are not required to
satisfy the locality (symmetry) requirement.

In the Euclidean case, when spinors are involved, this kernel is no longer positive. This is most easily seen in
equation (71) where Dsr

µrνr
[pe · σe] and Dsl

µlνl
[pe ·Πσe] are not Hermitian for real pe.

VII. CONNECTED DISTRIBUTIONS

The construction of positive-mass positive-energy irreducible representations of the Poincaré group using Euclidean
covariant distributions was discussed in section V. Tensor products of these distributions describe non-interacting
many-particle systems.

The quasi-Schwinger functions for interacting particles have cluster expansions, which are sums of tensor products
of connected quasi-Schwinger functions. Since reflection positivity is preserved under addition and tensor products, re-
flection positivity follows if the connected quasi-Schwinger functions are reflection positive. Connected quasi-Schwinger
functions are the building blocks of general quasi-Schwinger distributions. The purpose of this section is to show that,
in the absence of the symmetry requirement it is straightforward to construct connected quasi-Schwinger functions
satisfying the conditions needed to for a relativistic quantum theory.

The structure of connected quasi-Schwinger functions is motivated by the construction of the quasi-Schwinger
functions for positive-mass positive-energy irreducible representations derived in section (V). The general structure
of a connected quasi-Schwinger function can be understood by considering the example of a connected four-point
quasi-Schwinger function with two initial and two final coordinates and right handed spinors. It is assumed that it
has a contribution from an “intermediate state” with mass λ and spin (s, 0). This exhibits the structural elements of
a general connected quasi-Schwinger functions.

The following structure of the connected quasi-Schwinger function is assumed:

Sc
4(xe1, s1, µ1, xe2, s2, µ2; ye1, s1, ν1, ye2, s2, ν2) =

s∑
µ,ν=−s

∫
S∗s1,s2:s
2 (

1

2
(x1e − xe2), pe)⟨s1, µ2, s2, µ2|s, µ⟩×

Ds
µν(pe · σe)
p2e +m2

eipe·(xe1+xe2−ye1−ye2)d4pe×

⟨s1, ν2, s2, ν2|s, ν⟩Ss1,s2:s
2 (

1

2
(ye1 − ye2), pe). (92)

where

Ss1s2:s
2 (

1

2
(xe1 − xe2), pe) (93)

is a connected Euclidean invariant function of 1
2 (xe1 − xe2) and pe. It is assumed to vanish as (xe1 − xe2)

2 → ∞, but
be analytic in pe. For identical particles the coefficient

⟨s1, ν2, s2, ν2|s, ν⟩Ss1s2:s
2 (

1

2
(ye1 − ye2), pe) (94)

is assumed to be either symmetric or antisymmetric with respect to interchange of 1 ↔ 2.
To show that this expression satisfies the Euclidean covariance condition (91) note

Sc
4(O(A,B)xe1, s1, µ1, O(A,B)xe2, s2, µ2;O(A,B)ye1, s1, ν1, O(A,B)ye2, s2, ν2) = (95)
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s∑
µ,ν=−s

S∗s1s2:s
2 (

1

2
O(A,B)(xe1 − xe2), pe)⟨s1, µ2, s2, µ2|s, µ⟩×

Ds
µν(pe · σe)
p2e +m2

eipe·O(A,B)(xe1+xe2−ye1−ye2)d4pe×

⟨s1, ν2, s2, ν2|s, ν⟩Ss1s2:s
2 (O(A,B)(

1

2
(ye1 − ye2), pe). (96)

Euclidean invariance of the dot product in the exponent can be used to move O(A,B) to pe,

=

∫ s∑
µ,ν=−s

S∗s1s2:s
2 (

1

2
O(A,B)(xe1 − xe2), pe)⟨s1, µ2, s2, µ2, |s, µ⟩×

Dj
µν(pe · σe)
p2e +m2

ei(O(A,B)−1pe)·(xe1+xe2−ye1−ye2)d4pe

⟨s1, ν2, s2, ν2|s, ν⟩Ss1s2:s
2 (

1

2
O(A,B)(ye1 − ye2), pe) (97)

while changing variables p′e = O−1(A,B)pe gives

=

∫ s∑
µ,ν=−s

S∗s1s2:s
2 (

1

2
O(A,B)(xe1 − xe2), O(A,B)pe)⟨s1, µ2, s2, µ2, |s, µ⟩×

Ds
µν(O(A,B)pe · σe)

p2e +m2
eipe·(xe1+xe2−ye1−ye2)d4pe×

⟨s1, ν2, s2, ν2|s, ν⟩Ss1s2:s
2 (

1

2
O(A,B)(ye1 − ye2), O(A,B)pe). (98)

The Euclidean invariance, Ss1s2:s
2 ( 12 (ye1 − ye2), pe) = Ss1s2:s

2 (O(A,B) 12 (ye1 − ye2), O(A,B)pe) means that the factors
of O(A,B) can be removed while (23), (O(A,B)(pe · σe) = A(pe · σe)Bt, gives

=

s∑
µ,ν=−s

S∗s1s2:s
2 (

1

2
(xe1 − xe2), pe)⟨s1, µ1, s2, µ2|s, µ⟩×

Ds
µµ′(A)

Ds
µ′ν′(pe · σe)
p2e +m2

Ds
ν′ν(B

t)eipe·(xe1+xe2−ye1−ye2)d4pe

⟨s1, ν1, s2, ν2|s, ν⟩Ss1s2:s
2 (

1

2
(ye1 − ye2), pe). (99)

Finally the property (46) of the Clebsch-Gordan coefficients can be used to get

=

∫ s∑
µ,ν=−s

s1∑
µ′
1,ν

′
1=−s1

s2∑
µ′
2,ν

′
2=−s2

Ds1
µ1µ′

1
(A)Ds2

µ2µ′
2
(A)S∗s1s2:s

2 (
1

2
(xe1 − xe2), pe)⟨s1, µ′

1, s2, µ
′
2|s, µ⟩×

Ds
µν(pe · σe)
p2e +m2

eipe·(xe1+xe2−ye1−ye2)d4pe
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⟨s1, ν′1, s2, ν′2|s, ν⟩S
s1s2:s
2 (

1

2
(ye1 − ye2), pe)D

s1
ν′
2ν2

(Bt)Ds2
ν′
2ν2

(Bt) (100)

which shows that the two-point quasi Schwinger function (92) satisfies the Euclidean covariance condition (91):

=

s1∑
µ′
1,ν

′
1=−s1

s2∑
µ′
2,ν

′
2=−s2

Ds1
µ1µ′

1
(A)Ds2

µ2µ′
2
(A)Sc

4(xe1, s1, µ
′
1, xe2, s2, µ

′
2; ye1, s1, ν

′
1, ye2, s2, ν

′
2)D

s1
ν′
2ν2

(Bt)Ds2
ν′
2ν2

(Bt) (101)

The other requirement is reflection positivity. In this case it is sufficient to assume that the test functions have
support for positive Euclidean times. It follows that they have support for positive X0

e = 1
2 (x

0
e1 + x0e2).

To show reflection positivity note that (θf, Sf) is:∫ s1∑
µ1,ν1=−s1

s2∑
µ2,ν2=−s2

f∗(θxe1, s1, µ1, θxe2, s2, µ2)S
c
4(xe1, s1, µ1, xe2, s2, µ2; ye1, s1, ν1, ye2, s2, ν2)f(ye1, s1, ν1, ye2, s2, ν2).

(102)
Moving the reflection operators from the final test functions to the quasi-Schwinger function gives

=

∫ s1∑
µ1,ν1=−s1

s2∑
µ2,ν2=−s2

f∗(xe1, s1, µ1, xe2, s2, µ2)S∗s1s2:s
2 (

1

2
(θ(xe1 − xe2), pe)⟨s1, µ1, s2, µ2|s, µ⟩×

Ds
µν(pe · σe)
p2e + λ2

eipe·(θxe1+θxe2−ye1−ye2)×

⟨s1, ν1, s2, ν2|s, ν⟩d4peSs1s2:s
2 (

1

2
(ye1 − ye2), pe)f(ye1, s1, ν1, ye2, s2, ν2). (103)

Using the fact that θ(xe1 − xe2) · Pe = ((xe1 − xe2) · Pe)
∗
gives

=

s1∑
µ1,ν1=−s1

s2∑
µ2,ν2=−s2

s∑
µ,ν=−s

∫
f∗(xe1, s1, µ1, xe2, s2, µ2)(Ss1s2:s

2 (
1

2
((xe1 − xe2), pe)⟨s1, µ1, s2, µ2|s, µ⟩)∗×

Ds
µν(pe · σe)
p2e + λ2

eipe·(θxe1+θxe2−ye1−ye2)×

⟨s1, ν1, s2, ν2|s, ν⟩d4peSs1s2:s
2 (

1

2
(y1 − y2), pe)f(x1, s1, ν1, x2, s2, ν2). (104)

Because the Ss1s2:s
2 are analytic in pe and the Wigner functions are polynomials in the components of pe, as in the

single-particle case, after integrating over test functions in Xe and Ye satisfying the Euclidean time support condition,
the integral over p0e can be computed using the residue theorem. The only contributing pole is at p0 = −iωλ(p):

=

∫ s1∑
µ1,ν1=−s1

s2∑
µ2,ν2=−s2

s∑
µ,ν=−s

(∫
dxe1dxe2f((xe1, s1, µ1, xe2, s2, µ2) ×

Ss1s2:s
2 (

1

2
(xe1 − xe2), pe)⟨s1, µ1, s2, µ2|s, µ⟩)e−ωλ(p)(x

0
e1+x0

e2)

)∗
πdp

ωλ(p)
Ds

µν(pm · σm)×

(∫
dye1dye2f(ye1, s1, ν1, ye2, s2, ν2)Ss1s2:s

2 (
1

2
(y1 − y2), pe)⟨s1, ν1, s2, ν2|s, ν, ⟩e−ωλ(p)(y

0
e1+y0

e2)

)
(105)

which is non-negative since it has the form
∑

mn a
∗
mPmnan where Pmn is positive definite, so it is positive.

Note that unlike the local case, the Euclidean time differences x01 − x02 do not have to be different from zero. This
is because in the non-local case there are different N -point quasi Schwinger functions with different numbers of initial
and final coordinates.

This four-point example is easy to generalize;



18

1. The connected four point function can be replaced by a square matrix of m + n-point connected distributions
with the same “intermediate states”.

2. The spinors of rank (s, 0) can be replaced by spinors of rank (sr, sl) or direct sums of rank (s, 0)⊕ (0, s).

3. A single “intermediate state” of mass, λ > 0, and spin (sr, sl) can be replaced by linear superpositions of states
with different λ’s and spins with a positive weight..

4. The initial and final distributions Ss1s2:s
2 ( 12 (y1 − y2), pe)⟨s1, ν1, s2, ν2|s, ν, ⟩ are replaced sums of products of

invariant distributions and constant coupling coefficients of the form∑
a

S(sr1,sl1)···(srn,sln);(sr,sl)
n,a (Xe − xe1 · · ·Xe − xen−1; p

c
e)C

(sr1,sl1),···(srn,sln);(srsl)
(µr1,µl1)···(µrn,µln);(µr,µl)

(a) (106)

where X = 1
n (xe1+ · · ·+xen), each Sn,a is a connected is a Euclidean invaraint function of the Xe−xei and pe,

analytic in pe, and the coefficients C
(sr1,sl1),···(srn,sln);(srsl)
(µr1,µl1···(µrn,µln);(µr,µl)

(a) decompose the tensor products of D(A), D(B)

to direct sums with spin (srsl), similar to (101),(46).

It isstraightforward to construct Sn,a with these properties. In the general case a single value of m is replaced
by a linear superpostion of states with different values of m with a positive weight, ρ(m):

m→
∫
ρ(m)dm (107)

The combinations (106) should be symmetric or antisymmetric with respect to exchange of identical particles. This
can be realized by projecting the initial and final states on the symmetric or antisymmetric subspace of the Hilbert
space.

With these generalizations the proof of Euclidean covariance and reflection positivity follows the proof in the
four-point case.

The discussion in this section shows that it is not difficult to construct connected quasi-Schwinger functions that
satisfy Euclidean covariance and reflection positivity. These can be used to construct a Hilbert space inner product
where the vectors are function of Euclidean variables with support for positive Euclidean times.

VIII. CLUSTER EXPANSIONS

The motivation for exploring the Euclidean approach to relativistic quantum mechanics is the difficulty in satisfying
cluster properties in relativistic direct interaction models.

In this section a generalization of the linked cluster theorem is used to construct quasi Schwinger functions that
satisfy cluster properties using the connected quasi-Schwinger functions introduced in the previous section.

In this section reflection positive quasi-Schwinger functions will be expressed as linear combinations of products of
connected reflection positive quasi-Schwinger functions. The connected reflection positive quasi-Schwinger functions
are the elementary building blocks of reflection positive quasi-Schwinger functions that satisfy cluster properties. For
systems of identical particles the sums have to include all combinations of tensor products of connected quasi-Schwinger
functions that are generated by permutations.

Let

{Smn(xme, · · · , x1e : y1e, · · · , yne)} (108)

be a collection reflection-positive quasi-Schwinger distribution (1 ≤ m,n ≤ N ≤ ∞ for a system of identical particles.
In this and the following expressions the spinor indices are suppressed.

Each Smn can be expanded as a sum of tensor products of connected reflection positive kernels. The tensor products
contributing to this sum are products of a total of l kernels; k1 connected kernels of type Sc

m1n1
, k2 connected kernels

of the type Sc
m2n2

, · · · , kl connected kernels of the type Sc
mlnl

where

n =

l∑
i=1

kini m =

l∑
i=1

kimi. (109)

For systems of identical particles the sums include all distributions generated by m! permutations of the final coordi-
nates and n! permutations of the initial coordinates.
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Assume each kernel, Sc
mini

, is invariant up to sign under mi!ni! permutations that separately interchange the initial
and final arguments. If a given kernel appears ki times in the product, there are ki! additional permutations that
exchange the ki identical terms in the product. After accounting for these invariances there remain

N =
m!n!

k1! · · · kl!(n1!m1!)k1(n2!m2!)k2 · · · (nl!ml!)kl
(110)

kernels with this structure that differ by permutations, where the integers in (110) are constrained by (109). For
identical particles for each product that contributes to Smn, the sum must also include all N distributions that are
generated by these additional permutations.

It is possible to construct a generating function for the Smn in terms of the individual connected Sc
mn. To do this

consistently for Bosons and Fermions define formal creation and annihilation operators. The a†(yi) operators create
initial states and b†(xi) create final states. These operators satisfy

[a(xi), a
†(yi)]± = δ4(xi − yi)δµirµ′

ir
δµilµ′

il
(111)

[b(xi), b
†(yi)]± = δ4(xi − yi)δµirµ′

ir
δµilµ′

il
(112)

[a(xi), b(yi)]± = 0 (113)

a(xi)|0⟩ = b(xi)|0⟩ = 0 ⟨0|0⟩ = 1. (114)

In these expressions, [A,B]− is a commutator and [A,B]+ is an anticommutator. The operators a(xi) and b(yi) are
just formal operators that are useful for bookkeeping purposes. The same is true for the formal “vacuum”, |0⟩; it
has nothing to do with the ground state of the theory. They are just for the purpose of constructing quasi-Schwinger
functions from the connected distributions.

With this notation define the generating functional, S, as the formal sum

S =
∑
mn

1

m!n!

∫
d4mxd4ny

∫
b†(xme) · · · b†(x1e)×

Smn(xme, · · · , x1e : y1e, · · · yne)a†(x1e) · · · a†(xne). (115)

The individual symmetrized Smn(X : Y ) can be extracted from S using products of annihilation operators and the
formal vacuum vector

Smn(X : Y ) = ⟨0|a(yne) · · · a(y1e)b(x1e) · · · b(xme)S|0⟩. (116)

Note that in (116) there are n!m! pairings of creation and annihilation operators of the same type that are equivalent
to adding all possible exchanges. If Smn is already symmetric or antisymmetric each product of pairings gives the
same result. This results in an overcounting by n!m! which is canceled by the denominator in (115).

Each kernel Smn is a sum of all allowed products of connected kernels that satisfy (109):

Smn =
∑ l∏

i=1

(Sc
mini

)ki (117)

where the sum is over all products of connected kernels satisfying (109). It is useful to express each one of these as
operators in terms of the creation and annihilation operators:

Sc
i =

∑ 1

mi!ni!

∫
d4mxed

4nye

∫
b†(xme) · · · b†(x1e)

Sc
mini

(xmie · · ·x1ie : y1ie · · · ynie)a
†(y1ie) · · · a†(ynie) (118)

where the Sc
mini

are connected factors that appear in the product.
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In this notation the operator S is a sum of products of these different types of connected operators. While the
factor 1

mi!ni!
divides by the number of permutations give the same kernel when Sc

mini
is symmetric, if a given Sc

i

appears ki times in the product, there are ki! permutations that exchange all of the coordinates in each factor in the
product. In terms of the different types of connected operators the generating function has the form

S =
∑ 1

k1!
(Sc

1)
k1 · · · l

kl!
(Sc

l )
kl = e

∑
l S

c
l (119)

and the individual Smn can be extracted from this expression using (116) which can be expressed as

Smn(X : Y ) = ⟨0|a(yen) · · · a(ye1)b(xe1) · · · b(xem)e
∑

l S
c
l |0⟩. (120)

which is the form of the linked cluster theorem for the quasi-Schwinger distributions. The convergence of the series
is irrelevant since only a finite number of terms contribute to a given Smn(X : Y ).

Note that while this generating function involves systems of arbitrary numbers of degrees of freedom, it is possible
the individual connected components can involve a finite number of degrees of freedom.

IX. CONCLUSION

The purpose of this work is to show that by relaxing the requirement of locality it is possible to construct a set
of reflection positive Euclidean covariant distributions satisfying cluster properties. The new feature is that a single
N-point Schwinger function is replaced by N − 1 distributions with m final and k initial degrees of freedom with
m + k = N . This simplifies the reflection positivity requirement. These Euclidean distributions define the kernel of
a Hilbert space inner product. There is a representation of the Poincaré Lie algebra on this Hilbert space, [5]. These
generators are self-adjoint operators satisfying cluster properties. The spectrum of the Hamiltonian is bounded from
below. It follows that there is a unitary representation of the Poincaré group that satisfies space-like cluster properties
and a spectral condition. Given these distributions it is possible to perform any kind of quantum calculation without
the need for analytic continuation.

While establishing the existence of a large class of reflection positive quasi Schwinger functions is an important first
step for constructing dynamical models, the problem is that this construction assumed an acceptable spectral density,
which is dynamical information that should be calculated rather than assumed.

The formulation of a dynamical principle that could generate these distributions is beyond the scope of this paper,
but it in important question that needs to be addressed in the future.

Some aspects of this program are discussed elsewhere. They all assume the existence of a set of distributions with
the properties shown in this work. Reference [1] provides a computational justification that this formalism may be
applied to compute scattering cross sections. The scattering computations used a variation of the time-dependent
formulation of scattering that utilized the invariance principle [55] with narrow wave packets to approximate sharp-
momentum transition matrix elements. Reference [4] provided a formulation of scattering with composite particles,
using a generalization of Haag-Ruelle scattering. This required a Euclidean construction to isolate composite one-
body states using functions of the mass operator, which is represented by the Euclidean Laplacian, with compact
support. This was done by establishing the completeness of polynomials in the Euclidean Laplacian using the Carleman
condition [56]. Reference [5] provides explicit expressions for the Poincaré generators with any spin and proved their
self-adjointness .

One of the interesting observations about this approach is that given reflection positive Euclidean distributions,
it is possible to perform quantum mechanical calculations directly in a Euclidean representation, without analytic
continuation.
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