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Abstract
This paper gives two representations of the Argonne V18 potential in momentum space. One is as
an expansion in terms elementary functions and other as an expansion in terms of Chebyshev poly-
nomials. Both provide practical and efficient representations for computing the momentum-space
potential that does not require integration or interpolation. Programs based on both expansions

are available as supplementary material.

PACS numbers: 21.45.Bc ,21.30.Cb



I. INTRODUCTION

The Argonne V18 potential [? | is one of a number of realistic nucleon-nucleon interac-
tions [? ][? ][? |. It is distinguished from other realistic interactions because it is expressed
as an operator expansion with local configuration-space coefficient functions. This represen-
tation has advantages when used in variational Monte Carlo calculations. On the other hand
there are a number of calculations that require a realistic interaction that are more naturally
performed in momentum space. These include some Faddeev calculations, relativistic few-
body calculations, and electromagnetic calculations. In the momentum representation the
variable conjugate to the relative coordinate is the difference between the final and initial
momenta. In calculations, both momenta appear, which requires a separate Fourier trans-
form for each pair of momenta. While the direct Fourier transforms of the V18 potential
have been used in some applications, this is not the most efficient method to calculate the
Fourier transform of the potential. The purpose of this paper is to provide useful, tested,
easily reproducible analytic forms of the Fourier transform of the Argonne V18 potential for
use in momentum-space calculations. The analytic forms allow for a direct calculation of
the momentum-space interaction for any pair of initial and final momenta. In keeping with
the traditional Argonne form, the momentum-space potential is given in operator form.
The resulting momentum space potential has 24 terms. This is because the L?V (r) and
(L - S)*V (r) operators become linear combinations of two momentum-space operators with
different coefficient functions. In this work the Fourier transform is applied to the strong
part of the Argonne V18 potential, without the electromagnetic terms. The Argonne V18

potential has the form
18
V=> V.(r)O, (1.1)
n=1

where V,,(r) are rotationally invariant coefficient functions of the relative coordinate of the

nucleons and the O,, are the following set of eighteen spin-isospin operators:
Olzl, OQI(TI'TQ), 03:(0'1'0'2), (12)

O4I(Sl'Sg)<T1"T2), 05:Slg:3(01'f)(02'f'>—01'02, 06:5’12(71'7-2>7 (13)
07: (LS), 08: (L'S)(Tl"rg) 09:<LL) (14)

OlOZ(L'L)(’Tl"Tz), 011:(L'L)(0'1'0'2), Olgz(L'L)(O'l'O'g)(’Tl"Tg), (15)



013 = (L . S)z, 014 = (L . S)z(Tl . 7'2), 015 = T12 = (37‘12ng — T - ’T), (16)
O = (01 '02)T12, O17 = Si2Tho, Oi5 = (7'1z + T2z)- (1-7)

where T, is the isotensor operator 115 := 37,79, — T1 - To. While the isospin operators, 7;,
factor out of the Fourier transforms, the operators L? L-S, (L-S)? and the tensor operator
S12 contribute to the Fourier transform.

For the eighteen operators there are four types of integrals that must be computed to
calculate the Fourier transforms. The potential matrix element (k'|V|k), with q .=k — K/,

has the following contributions:

1. Identity
1 i 1>
(27r)3/€ (K'—k) V}-(r)dr:ﬁ/o Jolqr)V;(r)rdr (1.8)
2. L-S
1 —ik/-r ik-r . / 1 - 3
n)? e Vi(r)L - Se™"dr = ik x k 27 |, J1(gr)V;(r)rdr (1.9)
3. L-L
1 —ik/-r ik-r
ok e Vi(r)L - Le™"dr =
m
~X10-(K x5 [ a2 52 [ Vi (.10
4 (L-S)?
1 —ik’-r 2 jik-r
L e Vi(r)(L-S)%e™ dr =

—(S- (k x k))? /000 Ja(qr)Vi(r)rtdr 4+ (k' x S) - (k x S) /000 J1(qr)V;(r)yrdr

(1.11)

2122 2m2q

5. 812 = 3(f"0’1)(f"0’2) — 0109

(23__‘_)3 /e_ikl'rV(T) (3(f‘ : 01)(f‘ : 0'2) — 07 0'2) eik'rdr =
— (3(q-01)(q-02) — ¢’y - 02) %2(]2 /Ooojg(qr)V(r)r2dr (1.12)



These expressions are used to represent the momentum-space interaction as a sum of
scalar functions of ¢ := |q| multiplied by spin-isospin operators. The scalar functions of

momentum transfer that multiply the spin-isospin operators are:

Vinlq) = %/Ooojo(qr)‘/m(r)ﬁdr m € {1,2,3,4,15,16, 18} (1.13)

Vinlq) = 2732q /0 h G1(qr)\V(r)r3dr — m e {7,8,9b,10b,11b, 120, 13b, 14b} (1.14)
Vinlq) = %W/Omjg(qr)‘/m(r)r"‘dr m € {9a,10a, 11a,12a, 13a, 14a} (1.15)
Vin(q) = %W/Owjg(qr)‘/m(r)ﬁdr m € {5,6,17} (1.16)

where V,,(r) is the m* potential in the expansion (??) and V,..(¢) and V,.,(q) are the two

different functions that appear in (?7) and (??7). These functions have a finite limit as ¢ — 0

in spite of the 1/¢' coefficient because the Bessel function j;(qr) vanishes like ¢ as ¢ — 0.
The resulting momentum-space potential can be expressed as

(V) = Vil (1.17)

meS
where S = {1,2,3,4,5,6,7,8,9a,9b, 10a, 10b, 11a, 11b, 12a, 12b, 13a, 13b, 14a, 14b, 15,16, 17,18}.
The 24 operators O,, are

O,=1 Oy = (11-72) Oy = (01 -02) O, = (01-09)(T1-T2) (1.18)

05 = — (3(a-01)(q-02) — ¢’o1 - 03) Os =—(3(q-01)(q-02) — ¢°01 - 02) (T1 - T2)
1

(1.19)

O7 =ikxk  Os=ikxK(11-13)  Ogy=—(K'xk)-(K'xk)  Og =2(kK-k) (1.20)
O1pa = —(K' x k) - (K xK)(T1-72)  Oipp = 2(K - k) (71 - T2) (1.21)

O11g = —(K' x k) - (K xKk)(01-03) Oy = 2(K -k)(0, - 02) (1.22)

Oroa = —(K' x k) - (K xK)(01-02)(T1 - T2)  O1p = 2(K - Kk)(01 - 02) (71 - T2)  (1.23)
O13a = —(S-(kxKk'))? Oz = (K'xS)-(kxS)  Orgq = —(S-(kxKk))(11-75) (1.24)
Oy =K x8)-(kxS)(T1-T2) Ois=T1s  O5= (01 02)T12 (1.25)

O =—(3(a-01)(a-02) — ¢’01-02) 1o O = (71 + 72.). (1.26)

In the approximate potentials the coefficient functions V, (q) are replaced by expansions in

known functions.



II. EXPANSIONS

Two approaches are used to compute the scalar functions (?7-?7). Both approaches in-
volve approximating these functions by a finite linear combination of elementary functions.
The first method approximates these functions by linear combinations of Chebyshev poly-
nomials on three distinct intervals of momenta, for momenta up to 100 fm~!. The second
approach approximates the integrand by a finite linear combination of orthogonal functions
that have analytic Fourier transforms. The configuration-space basis functions are associ-
ated Laguerre polynomials multiplied by decaying exponentials which have analytic Fourier
transforms that can be expressed in terms of Jacobi polynomials [? |. In both approaches
the coefficients of the expansion are stored and the potentials can then be efficiently com-
puted for any values of momenta by summing a finite series of elementary functions. In both
cases the required expansion functions at any point can be determined recursively, leading
to efficient and accurate approximations to the momentum space potential.

This section discusses the Chebyshev basis. Because the configuration space potential
falls off asymptotically like e™™", the radial integrals are evaluated with a finite cutoff at 20
fm. The Chebyshev expansion is used for ¢ < 100 fm~!. With these cutoffs the maximum
value of x := ¢r that can appear in the argument of the spherical Bessel functions in the
integrals (?77-77) 18 X4, = 2000. To evaluate these integrals the zeros of the spherical Bessel
functions jo(x), j1(x), and ja(z) for 0 < z < 2000 are computed for each fixed value of g.
For each value of ¢ the integrals are expressed as sums integrals between successive zeros
of the spherical Bessel function that appear in the integral. If ¢ is such that g¢r is never
a zero of jj(qr) for 0 < r < 20fm then the integral over r is performed using a 100 point
Gauss-Legendre quadrature on the interval [0, 20 fm]. If ¢ is such that ¢r has zeros of j5;(qr)
for 0 < r < 20fm, then the integrals between zeros [gr;, qr;11] are computed using 20 Gauss-
Legendre points when r;11 < 5 fm, 40 Gauss-Legendre points when 5 fm < r;11 < 10 fm
and 80 Gauss-Legendre points when 10 fm < r;y; < 20 fm.

The functions f/m(q) are replaced by a Chebyshev polynomial approximation on the in-

terval ¢ € [a, b] using [? |

. 00 atb 2
Vinla) = €o/2+ D eaTu(—3—— + =) (2.1)
n=1




where

T, (z) = cos(ncos !(x))) (2.2)

are Chebyshev polynomials and the coefficients ¢, are computed using a Clenshaw-Curtiss

quadrature[? | :

2
N

Cn = [%f/m(bw V(S50 L 02 s /NY) cos(n/N) + (<) V(@) (23)

N =

with N = 101. The functions Vm(q) are evaluated at the quadrature points ¢; = aTer +
b’T“ cos(mj/N) using the methods discussed above. This is repeated for ¢ in each of three
intervals, [a, b] = [0, 10], [10, 50], [50, 100] and the 101 expansion coefficients associated with
each of these three intervals are stored. The Chebyshev polynomials are computed using

the recurrence relations
Toi1(x) = 22T, (x) — T4 (), To(x) =1, Ti(x) = . (2.4)

For ¢ larger than 100 fm™~' V,,(q) is approximated by 0.
This method provides an accurate and efficient representation for computing a momentum
space V18 interaction. While it requires a substantial effort to compute the integrals at the

required quadrature points, this only has to be done once.

III. BASIS FUNCTIONS

While the method of the previous section gives accurate results, a more straightforward
approach is to represent the potential directly as an expansion in basis functions that have
analytic Fourier transforms. The plots in figures 1-24 show the configuration-space functions
that must be Fourier-Bessel transformed for each of the 24 integrals listed in (?7-77). These
graphs actually show both the exact radial functions and the basis function expansions of
these functions, which are discussed below. The curves are indistinguishable on these plots.
The plots show that the radial functions are simple smooth functions.

In order to represent the potential, each of the scalar potentials Vm(q), is approximated by
an expansion in known basis functions. A method to compute both the expansion coefficients

and a recursion formula to compute basis functions are given below.



The functions V,,(r), rV,,(r), and 7?V,,(r) that appear in the integrals (??-?77?) are ex-
panded using an orthonormal set of radial functions that have analytic Fourier-Bessel trans-
forms [? ]. These functions are associated Laguerre polynomials multiplied by decaying
exponentials in configuration space. Their Fourier-Bessel transforms have power-law fall of
in momentum space. In addition, they vanish at the origin in a manner that can be used to
explicitly cancel the factors 1/¢ and 1/¢? that appear in the definitions (??-??) of V,,. Both
sets of basis functions can be generated efficiently using recursion relations. The cancellation
of the factors 1/q and 1/¢* can be directly incorporated into the recursion that generates the
momentum-space basis functions so the final expression for the potential does not require a
special treatment for ¢ near 0.

The radial basis functions for different values of [ are given below. The dimensionless
parameter x := Ar is used in the basis functions, where A is a scale parameter that can be
chosen to improve convergence. The parameterization of the Argonne V18 interaction uses

the value A = 7(fm)~!. The configuration space basis functions are

1
Gn(r) = Tlleil“(Qx)e_x (3.1)
where
a . m n+a "
Ly = ZO(—) o (3.2)

and the normalization coefficient is

1 I'n+a+1)

Ny = A73(5)%%° 3.3
: (2) n! (3:3)
These functions satisfy the orthogonality relations
/ ¢nl(r)¢ml (T)TQdT - 5mn (34)
0

They have analytic Fourier-Bessel transforms defined by

Oui(q) = \/%/0OO Julqr) i (r)rdr. (3.5)

For iy = q/A the ¢,,;(q) can be expressed in terms of Jacobi polynomials:

1 y! Pl-i—%,l—&-%(yQ - 1)

Pui(q) = m(y2+1)l+2 n y2 + 1

(3.6)



with normalization coefficient

- A3 T(n+1+3T(n+1+3
N = (nt it lin+it5) (3.7)
2(2n + 20+ 3) n!'(n + 21+ 3)
and
r 1 & r 1
Pe(z) = et it P Hetiintmi g g
nll(a+B+n+1) c=\ 4 2m(a+m+1)
These functions satisfy the orthogonality relations
0

These basis functions can be generated by using the following recursion formulas for the

associated Laguerre functions and Jacobi polynomials
(n+1)Ly (v)=2n+a+1—-2)Ly (x) — (n+ o)Ly (x) (3.10)
and
2n+1)(n+a+B6+1)2n+a+ 8PP (x) =
(2n+a+B+1)(0” =) +2(2n+a+0)2n+a+ G+ 1)2n +a+ 5+ 2)] B ()
—2(n+a)(n+ B)2n+a+ B+ 2) P (z). (3.11)

These recursion relations can be modified to incorporate the normalization constants (?7)
and (?7?) directly into the recursion. The recursion for the normalized radial basis functions

with (x = Ar) is given by:

Pulr) = V(2 *11 +1)! \/2121+3A3/2xl6_x (3.12)
oulr) = o= 1) (313)

C2n+1+20-2x (n—1)(n+ 14 2I)
bu(r) = e i)~ \/ S i) (314)

Similarly, the normalized momentum-space basis functions with (y = g/A) are generated by
the recursion:
dor(q) =
1 1 L1

\/2l+3 \/_\/ . 2l+3\/ e (1 + 1)

2

(3.15)

8



~ 1 y?—1 20+5 ~
oulq) = (§+(l+2)y2—|—1)\/(l+2+%)(l—|—1—|—%)¢01(q) (3.16)

énl((ﬁ =

(2n + 20+ 3)n(n + 20 + 2)
@Cn+20+1)n+1+3)(n+1+1)

220+ DR+ + 2+ 20+ D20+ 2)(2n+ 20+ 2 - 1) 5 y
2n(n + 20+ 2)(2n + 20)(y2 — 1) n—11{q

B (2n+20+3)(n—1)n(n+ 1+ 20)(n+ 20 +2)
@n+20—1D)n+1+3)n+l+)n+1+5)(n+1-3)

(n+l+3)n+1-3)2n+20+2)-

(n)(n + 20 + 2)(2n + 21) On-11(9): (3.17)
Replacing ¢o(q) by do(q) := du(q)/¢ given by
du(q) =
1 1 . 1

(3.18)

A
~/21+3 J_\/ .2l+3\/1...w (y2 + 1)2+2

2
to start the recursion in equations (?7?)-(??) generates én(q) == dn(q)/q', which are well-
behaved as ¢ — 0. Seventy expansion coefficients are used to construct the momentum-space

potential for each value of m

nm 27TQ/ Do (T )ridr  m € {1,2,3,4,15,16,18} (3.19)
=53 / G (1 )ridr m € {7,8,9b,10b,11b,12b, 13b, 14b} (3.20)
=52 / Pra(r yridr m € {9a, 10a, 11a, 12a, 13a, 14a} (3.21)
271'2/ Daa(r Jridr m e {5,6,17} (3.22)

The integrals are approximated using an 80 point Gauss Legendre quadrature between 0
and 10fm. The basis functions ¢,,;(r) are generated using (??-?7). The scale parameter in
the recursion for ¢,;(r) is taken as A = 7fm™!

The 70x24 expansion coefficients ¢,,, are stored. The momentum space potential func-

tions are then given by

70
n=1



where the reduced expansion functions ¢n(q) := dw(q)/q' are generated recursively using

(77-77).

The full momentum-space potential in operator form is given by

V= Z Vi (¢)Om, (3.24)

meS

where O,, are the 24 operators (??-??) and ¢ = VA2 + k2 — 2k’ - k.

IV. TESTS

Three tests are performed on the two potentials. First, the exact radial functions that
appear on the right side of the integrals (??-??7) are compared with their configuration space
expansions in the basis (??). Second, the momentum space coefficient functions, V,,(¢) are
compared to the more precise calculation of the Fourier-Bessel transforms based on direct
Fourier-Bessel transforms with a Chebyshev polynomial interpolation. Finally, both poten-
tials are used to compute the deuteron binding energy and wave functions. These results
are compared to a direct calculation of these quantities using the partial wave expansion of
the original configuration space potential.

Figures 1-24 compare the structure of the 24 configuration space functions (the integrands
in (??-77) for r < 5fm computed from the 70 term expansion (dashed lines) to the exact
expressions (solid lines). The difference between the exact and approximate radial functions
is too small to be seen in these plots. The quality of the approximations is not surprising
given that exact functions are smooth with minimal structure.

To test the Fourier transforms the Fourier-Bessel transforms (7?-77) based on the Cheby-
shev expansion, discussed in the previous section, are compared to the Fourier-Bessel trans-
forms obtained by analytically Fourier transforming the basis functions. Figures 25-48 show
both plots. The solid lines are the series expansions while the dashed lines are the Chebyshev
expansion. The figures for the potentials associated with the

Again differences are not visible on these plots. A better comparison is given in tables
1-4, which list values of the Fourier-Bessel transforms of the 24 radial functions using both

methods for momenta of 1,5,15 and 25 fm ™.

Table 1. - Fourier transforms at 1 fm™!

10



series Chebyshev expansion

6.789973e-01 6.789990e-01
-4.019392¢-01 -4.019400e-01
-1.692090e-01 -1.692090e-01
2.358519e-01 2.356720e-01
7.216739e-03 7.218230e-03
2.857732e-01 2.860470e-01
-2.511547e-01 -5.511560e-01
-1.678888e-01 -1.678890e-01
1.741415e-01 1.741420e-01
10 -3.272988e-02 -3.272990e-02
11 1.999136e-02 1.999140e-02
12 -7.414060e-03 -7.414070e-03
13 9.084422¢-02 9.084440e-02
14 1.245017e-01 1.245020e-01
15 1.122388e-02 1.122390e-02
16 -1.214926e-02 -1.216020e-02
17 2.403290e-03 2.420790e-03
18 6.124964e-03 6.124970e-03
19 1.304278e-02 1.304280e-02
20 -1.702409e-02 -1.702400e-02
21 -7.227244e-03 -7.227270e-03
22 -7.849686e-03 -7.849720e-03
23 4.518193e-02 4.518270e-02
24 3.980251e-02 3.980280e-02

© o0 N O Ot e W NN =

Table 2. - Fourier transforms at 5 fm~!
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series Chebyshev expansion
1.160699e+-00 1.160700e4-00
-1.360382e-02 -1.360380e-02
-1.148807e-01 -1.148810e-01

-1.065288e-01 -1.065200e-01

4.405849¢-03 4.405360e-03
-4.623736e-02 -4.623740e-02
-1.871380e-02 -1.871380e-02
2.471311e-02 2.471320e-02

10 1.480758¢e-03
11 6.027203e-03
12 1.465070e-03
13 5.222260e-03
14 8.233502¢-03
15 4.828280e-03

n
1
2
3
4
5 4.489757e-03 4.489760e-03
6
7
8
9

1.480760e-03
6.027210e-03
1.465070e-03
5.222270e-03
8.233520e-03
4.828290e-03

16 -4.815794e-03 -4.815310e-03

17 1.656921e-06
18 4.274306e-04
19 4.273833e-03
20 1.791462¢-04
21 9.672551e-04
22 1.814761e-04
23 1.620319e-03
24 1.790086¢-03

1.627536e-06
4.274310e-04
4.273840e-03
1.791460e-04
9.672570e-04
1.814760e-04
1.620320e-03
1.790090e-03

Table 3. - Fourier transforms at 15 fm™!

12



series Chebyshev expansion
9.321365e-04 9.321050e-04
4.123439e-05 4.123390e-05
-1.924812e-05 -1.924670e-05
-6.648375e-05 -6.643920e-05
-9.010902e-06 -9.010533e-06
1.026393e-05 1.026324e-05
5.541260e-06 5.540870e-06
2.632043e-06 2.631910e-06
-1.962835e-06 -1.962590e-06
10 -9.304609e-07 -9.304860e-07
11 -6.015901e-07 -6.015370e-07
12 -1.047669e-07 -1.047530e-07
13 -4.725022e-06 -4.725160e-06
14 -1.527634e-06 -1.527590e-06
15 2.942747e-06 2.942630e-06
16 -2.895027e-06 -2.892440e-06
17 -2.865458e-10 -3.050827e-10
18 9.986465e-08 9.985120e-08
19 -2.604487e-07 -2.604660e-07
20 -6.335039e-08 -6.334960e-08
21 -7.055132e-08 -7.055530e-08
22 -1.454468e-08 -1.454570e-08
23 -3.115148e-07 -3.115090e-07
24 -1.394089e-07 -1.394130e-07

© o0 N O Ot e W NN =

Table 4. - Fourier transforms at 25 fm™!
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series Chebyshev expansion
-1.386301e-05 -1.383430e-05
-6.108349e-08 -6.010020e-08
8.598072e-07 8.595170e-07
1.014189e-06 1.003920e-06
-4.600082e-07 -4.599216e-07
4.739733e-07 4.738720e-07
2.443040e-08 2.442090e-08
9.428095e-09 9.412980e-09
-1.534834e-08 -1.533920e-08
10 3.457372e-10 3.607580e-10
11 -3.619628e-09 -3.613210e-09
12 -1.005784e-09 -1.003140e-09
13 4.666338e-09 4.709400e-09
14 -3.274714e-09 -3.270330e-09
15 -5.425469e-08 -5.415690e-08
16 5.452722e-08 5.399650e-08
17 -2.888773e-12 -4.234000e-12
18 -5.852151e-09 -5.841450e-09
19 -2.512190e-10 -2.555620e-10
20 7.827015e-12 7.411800e-12
21 -5.864134e-11 -5.980770e-11
22 -1.617550e-11 -1.652710e-11
23 8.297311e-11 8.271960e-11
24 -5.322500e-11 -5.424550e-11

© o0 N O Ot e W NN =

Table 5 s and d wave functions using Chebyshev, series and partial waves
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kfm~! s-Cheb. S-pw s-series d-Cheb, d-pw d-series

0.0 1.2695e+4-01 1.2638e+-01 1.2695e+-01 0.00000e+4-00 0.00000e+00 0.00000e+00
0.5 1.9609e+-00 1.9606e+4-00 1.9609e+-00 -2.19827e-01 -2.19752e-01 -2.19811e-01
1.0 3.7684e-01 3.7687e-01 3.7685e-01 -1.72164e-01 -1.72174e-01 -1.7216e-01
1.5 8.2472e-02 8.2472e-02 8.2473e-02 -1.1243e-01 -1.12418e-01 -1.1243e-01
2.0 6.0810e-03 6.1039¢-03 6.0810e-03 -7.10859e-02 -7.10846e-02 -7.10868e-02
2.5 -1.3615e-02 -1.3601e-02 -1.3616e-02 -4.4543e-02 -4.45444e-02 -4.45435e-02
3.0 -1.6153e-02 -1.6154e-02 -1.6153e-02 -2.76854e-02 -2.76819e-02 -2.76856e-01
3.5 -1.3648e-02 -1.3648e-02 -1.3648e-02 -1.69881e-02 -1.69856e-02 -1.69882e-02
4.0 -1.0153e-02 -1.0146e-02 -1.0153e-02 -1.02234e-02 -1.02219e-02 -1.02235e-02
4.5 -6.9954e-03 -6.9994e-03 -6.9955e-03 -5.98474e-03 -5.98642e-03 -5.9848e-03
5.0 -4.5270e-03 -4.5234e-03 -4.5271e-03 -3.37042e-03 -3.36900e-03 -3.37046e-03

As a final test the deuteron binding energy and wave functions using the two different
momentum space potentials are compared to each other and to the same quantities using a
direct calculation based on the configuration space potential in partial waves.

We solve for the deuteron binding energy and the s and d wave functions using direct
integration of the vector variables. The method of solution, which is discussed in [? |, uses
the expansion (?7) directly without using partial waves. Calculations are performed for
both momentum space potentials.

For comparison, the wave functions are represented by an expansion in 70 configuration
space basis using the configuration space basis functions (?7). Matrix elements of the partial
wave projection of the Hamiltonian in this basis are directly computed and the eigenvalue
problem is solved. The solution of the eigenvalue problem gives an independent evaluation
of both the binding energy and wave functions that do not require Fourier transforms of the
potential.

The Deuteron binding energy obtained by both Fourier transform methods was e =
—2.24225M eV compared with e = —2.24221MeV using a partial wave calculation that
directly uses the configuration space version of the Argonne V18 potential. These eigenvalues
differ slightly from the eigenvalues obtained including the electromagnetic corrections of
+17.6 keV [? ]. If this correction is added to the numbers above the binding energy
e = —2.2246MeV , is obtained.
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The s and d wave functions for all three calculations are shown in figures 49 and 50. The
solid lines represent the wave functions computed using the Chebyshev expansion of the
Fourier transformed potential, the long dashes represent the partial wave wave-functions
and the short dashes represent the wave functions computed using the series expansion
of the Fourier transformed potential. Explicit values of both wave functions in all three
calculations are compared table 5. The wave functions differ in the fourth significant figure
for momenta less that 5 fm~!, while binding energies of all three calculations differ in the
seventh significant figure. This level of accuracy should be adequate for most applications.

The programs to compute the potentials f/m(q) are freely available as supplementary
material to the electronic version of this article.

This work supported by the U.S. Department of Energy, contract # DE-FG02-
86ER40286.

V. APPENDIX

In this appendix we calculate the Fourier transform of the operators that appear (?77-77)
in V18.
L-S: Letq=k -k

1 —ik’-r kr ik r der
(27?)3/6 k Vj(T)L-Sek dr = (27r)3/6 k V}'(?‘)S-(rXp)ek dr —
(271r)3 / eTIV()S - (r x k)T = (271r)3 / eIV (1)8 - (r x K)dr =

(247733/2 Z lel(qr)ﬁm(Q)}ﬁ;(f)%(r)S . (I‘ X k)dr. (5.1)

=0 m=—1
Since r can be expanded as a linear combination of Y},,(r) the only terms that survive are

the [ = 1 terms. The integral over angles and the spherical harmonics simply replace r by

q, giving
- (;l%;g /Ooojl(qr)vj(r)s (gxk)r*dr=S-(k x k') x [% /Oooj1(qr)1/}(r)r3dr] _
S (ke k) x [Q;QQ /OOOﬁ(qT)V}(?‘)T?’dT] (5.2)
Thus we ge
) t 1 —ik/-r ikr . ,
(27)3/e Vi(r)L - 8e™dr =S - (k x k) Ii(q) (5.3)
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where

I(g) = - / )V (5.4)

N 2m2q Jo

The following relations are useful for treating the remaining three operators:

Vf(a) = 1), (5.5)

V2i(q) = f"(q) + f’<q>§ - f’(q% — f'(q) + gf’(q) (5.6)
@-9)b-Ifla) = @)= I ()22 g & q;gb Jd_ 5o
A2 () - B + 2 (5.8)

L-L: Let q=k—KkK

(271r)3 /eikl'r‘/j(r)(r x p)-(rxp)e®rdr = (271T)3 /eik"r‘/j(r)(r x K') - (r x k)e™*dr =
. / . 1 iqr _ / Am > . 2
(—quxk).(—quxk)W/Vj(r)e dr = —(V,xk )-(quk)(QW)3 /0 Vi (r)jo(qr)r=dr.

(5.9)
To compute the derivatives note
(Vq X k/) ) (Vq X k) =
(k ) k/)(vq ) vq) - (k ) vq)(k ) vq)
Using this in the above gives
—(Vy xK) - (Vg x k)(;TW)3 /OOO V;(r)jolgr)ridr = — (K - k)V?2 — (K - V,)(k - V,)) Io(q)
(5.10)
where
10) = s [ Viinlaydr = 5 [ Viintanyetar (5.11)
Evaluating this gives
— (K- X) Vg = (K- V,)(k- V,)) Io(q) =
~( 1 0) + 2130 + 1) (< - B gy )
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~ 10 0) + (o) + UL 1) — i) (5.12)
To eliminate the derivatives use
) = ) =55 | VO — i) Dt =
1 > -1 ./ 1 4 1 o . 4
3z [ VOV = ditan) Dt = oo [TV e)ianrtar = ko
B+ 1) =55 | V) ~ e+ 2iidar) e =
3z | VOt = 5 [TVt = ki) - 25l
This gives
i [ € ) PR = (<R (Ele) - S ha) + U D gy
(5.13)

which can be reexpressed in terms of cross products

(271T)3 /e_ik/'r‘/}(r)(r xp)-(rxp)e™Tdr = —I(q) L k)qé(k/ ) +§(k'~k)1—1(Q) (5.14)
(L-S)%
1 e—i(k/—k)-r (r . Q)2 r = 1 e—i(k’—k)-r (r (r 2 r =
o V(L8 = s | Vi(r)(S - (x x p))d
47 , . 2.
(6 X 8)- V) (03 8)-9,) [Galaniryrtar =
—((K % 8) - V,)(k x S) - V) Iolg) =
(K xS) - q((k x S)- q))q—ius'(q) - §Ja<q>> S xS) (kx s>§fa<q> _
(K xS)-a(kxS)-q) = %zg(q) + (K xS) - (k % S)%[l(q) (5.15)
which gives
(8- (k% k'))?%fm) LK xS) - (k x s>§h<q> (5.16)
1 —i(k'—k 2 o N2 1 / 1
2 /e K=Y (r)(L-8)%dr = —((S- (k x K')) ?Iz(q)—i-(k xS) - (k x S)afl(q) (5.17)
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(t-01)(F-02) — 201 -02):

(271T)3 /e—ik'.rv(r) ((f- 01)(t-09) — %01 ‘02> KT gy —

- ((vq~al)(vq 03) — %01 mvg) (24;3 /V(r):—zjo(qr)dr _

_01-902- q((f(’)',(q) B I(/)—(Q)> st 821(/)((]) _

q q q q
1 " 2 /
+301-02(lp_(q) + gfo_(Q)) (5.18)
Thus,
1 " . . 1 or 01-q03- 0,0
e R ] (O R E e e R S L
(5.19)
where
4 ) )
]O—(Q) = (27_[_)3 V(T)h(qT’)T’ d’l" (520)
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