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The scattering equivalence of quantum field theories formulated with light-front and instant-
form kinematic subgroups is established using non-perturbative methods. The difficulty with field
theoretic formulations of Dirac’s forms of dynamics is that the free and interacting unitary repre-
sentations of the Poincaré group are defined on inequivalent representations of the Hilbert space,
which means that the concept of kinematic transformations must be modified on the Hilbert space
of the field theory. This work addresses this problem by assuming the existence of a field theory
with the expected properties and constructs equivalent representations with instant and front form
kinematic subgroups. In this construction both the light-front and instant-form formulations share
the same vacuum and one-particle states. The free field Fock space plays no role. There is no “quan-
tization” of a classical theory. The property that survives from the perturbative approach is the
notion of a kinematic subgroup, which means kinematic Poincaré transformations can be trivially
implemented by acting on suitable basis vectors. This non-perturbative approach avoids dealing
with issues that arise in perturbative treatments where is it necessary to have a consistent treat-
ment of renormalization, rotational covariance, and the structure of the light-front vacuum. While
addressing these issues in a computational framework is important for applications, this work sug-
gests the nature of the expected resolution and identifies some differences between the perturbative
and non-perturbative approaches.

I. INTRODUCTION

This paper discusses the relation between light-front and instant-form formulations of quantum field theory. The
identification of different forms of dynamics is due to Dirac [1]. In a relativistic quantum theory the invariance
of quantum probabilities in different inertial coordinate systems requires that equivalent states in different inertial
coordinate systems are related by a unitary ray representation of the subgroup of the Poincaré group continuously
connected to the identity [2]. The Poincaré Lie algebra has 3 independent commutators involving rotationless boost
and translation generators that have the Hamiltonian on the right

[Ki, P j ] = iδijH. (1)

If H = H0 + V for some interaction V then the operators on the left side of each commutator must also know about
the interaction. Dirac identified three representations of the Poincaré Lie algebra with the minimum number (3-4)
of interaction-dependent Poincaré generators. He called these the instant, point and front-forms of the dynamics.
In the instant form the generators of space translations and rotations are free of interactions, in the point form, the
generators of rotationless Lorentz transformations are free of interactions and in the front form the generators of
transformations that leave a hyperplane tangent to the light cone invariant are free of interactions.

The equivalence of these different representations of relativistic quantum mechanics was settled by Sokolov and
Shatnyi [3][4]. In quantum field theory the problem is more complicated because the free and interacting dynamics are
formulated on different inequivalent representations of the Hilbert space [5], so the decomposition of the Hamiltonian
into the sum of a free Hamiltonian plus interaction is not defined on the Hilbert space of the field theory. Such a
decomposition makes sense in perturbative quantum field theory with cutoffs, so the notion of instant- and light-
front formulations [6][7][8][9][10][11] of quantum field theory make sense perturbatively. The price paid is that as the
cutoffs are removed the theory has infinities that have to be renormalized. The relation between the different forms
of dynamics depends on a consistent treatment of the renormalization. The light-front formulation of quantum field
theory is of particular interest for applications. The most appealing property of the theory is the apparent triviality
of the light-front vacuum, which reduces the solution of the field theory to linear algebra on a Hilbert space, like
non-relativistic quantum mechanics. In addition to the computational challenges of implementing this program in a
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theory with an infinite number of degrees of freedom, there are a number of puzzles that appear in comparing the
two approaches. These include:

• Is the light-front vacuum the same as the Fock vacuum?

• How to understand P+ = 0 (zero mode) singularities?

• How to formulate spontaneous symmetry breaking in a light-front dynamics?

• How to renormalize the theory consistent with rotational covariance.

• What is the relation between light-front and canonical quantization of a quantum field theory?

• Are both approaches equivalent?

While there is a general consensus that the two formulations are the equivalent, the answers to the above questions are
not as clean as desired. These issues have been discussed extensively in the literature [6] [7] [12] [13] [8] [9] [10] [11] [14]
[15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40]. Most
of these discussions are based on perturbation theory; in particular the assumption that the light-front dynamics can
be formulated on the Fock space of a free field theory. The continued interest in these questions is because compelling
resolutions of these questions are obscured by the need to perform a non-perturbative renormalization of the theory.
In this work these complications are avoided by assuming the existence of the theory with the expected properties.
The existence of an asymptotically complete scattering theory is also assumed, based on the Haag-Ruelle formulation
of scattering theory [41][42][43][44]. Haag-Ruelle scattering has the advantage that it can be formulated in terms of
wave operators defined by strong limits. The construction in this paper makes use of the strong limits. A two-Hilbert
space representation is used, which does not require the existence of a free dynamics on the Hilbert space of the
theory. The second Hilbert space is the direct sum of tensor products of single-particle Hilbert spaces with physical
masses. In the simplest case it is a Fock space with physical particle masses. The mapping from the second Hilbert
space to the Hilbert space of the field theory puts in the internal structure of the physical particles when they are
asymptotically separated. There is a natural unitary representation of the Poincaré group on the second Hilbert space,
which treats the particles as free particles. The second Hilbert space is called the asymptotic Hilbert space. There is
sufficient freedom to choose the mappings from the asymptotic Hilbert space to the Hilbert space of the field theory
so the unitary representation of the instant or light-front kinematic subgroup of the Poincaré group on the asymptotic
space maps on to the dynamical unitary representation of the kinematic subgroup on the field-theory Hilbert space
without changing the scattering operator.

A theorem due to Ekstein [45] gives necessary and sufficient conditions for unitary transformations on a Hilbert
space to preserve the scattering operator. This result assumes the scattering is formulated in terms of wave operators
defined as strong limits. In the two-Hilbert space formulation Ekstein’s condition is the requirement that if unitary
transformation is applied to the mapping from the asymptotic Hilbert space to the field theory Hilbert space, it is
asymptotically “equivalent” to the original mapping (see eq. (34)). This freedom can be exploited to construct the
most general class of S-matrix preserving unitary transformations that are invariant under a kinematic subgroup of
the dynamical representation of the Poincaré group. The proof uses the unitary of the wave operators which only
holds if the vacuum and one-body channels are included in the asymptotic Hilbert space. Ekstein’s condition then
implies that acceptable unitary transformations must leave the vacuum and one-particle states unchanged. When
these unitary transformations are applied to the unitary representation of the Poincaré group on the physical Hilbert
space, they result in two new scattering equivalent representations; with different kinematic subgroups that intertwine
with the kinematic subgroups on the asymptotic Hilbert space.

The only thing that is missing is the absence of a non-interacting representation of the Poincaré group on the
Hilbert space of field theory. In the event that the mapping from the asymptotic space to the field theory Hilbert
space has dense range, and the unitarized mapping gives the same asymptotic condition, then it can be used to map
the unitary representation of the Poincaré group on the asymptotic Hilbert space to a unitary representation of the
Poincaré group on the field theory Hilbert that plays the role of a free-particle dynamics, however this is not a true
free-particle representation because the vacuum is unchanged and the particle masses are physical.

The results can be summarized as follows. The construction assumes a unitary representation of the Poincaré group
on the Hilbert space of the field theory and constructs scattering equivalent representations with light -front and
instant-form kinematic symmetries. One consequence of the construction is that it requires that the transformations
relating these representations leave the vacuum and one-particle states unchanged. Because the one-body states are
eigenstates of the mass operator, there is no mass renormalization. This condition is not compatible with a 1 ↔ 2
vertex interaction in either of these representations.

This paper has three sections and two appendices. Section two summarizes the assumptions used in this work
and discusses a two-Hilbert space formulation of Haag-Ruelle scattering that has kinematically invariant injection
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operators that map an asymptotic many-particle Hilbert space to the Hilbert space of the field theory. Haag-Ruelle
scattering is the natural generalization of the usual formulation of time-dependent scattering theory. The construction
of equivalent instant and light-front representations of the field theory is given in section 3. Section 4 has a summary
of the results and a discussion of the implications. There are two appendices. The first one contains a discussion
of Ekstein’s treatment of scattering equivalences [45] that is used in section 3. The second appendix discusses the
formulation of Haag-Ruelle injection operators with the kinematic symmetry properties that are used in sections two
and three.

II. GENERAL CONSIDERATIONS

This paper examines the relation between light-front and instant-form formulations of quantum field theory from
a more abstract perspective that does not assume that the Hamiltonian can be decomposed as the sum of free
and interacting operators acting on one representation of the Hilbert space. The starting assumptions are typical
assumptions about abstract properties of a quantum field theory. These include:

• The Hilbert space of the field theory is generated by applying bounded functions, F , of smeared field operators
to a unique vacuum vector, denoted by |0〉. The smearing is assumed to be over Schwartz test functions in
four space-time dimensions. It is not assumed that fields restricted to a light-front or fixed-time manifold make
sense. A dense set of vectors, |ψ〉, can be taken to have the form:

|ψ〉 = F |0〉 F =

N∑
n=1

cne
iφn(fn) (2)

where the cn are complex coefficients, the fn are Schwartz functions, φn are field operators and N is finite.

• There is a unitary representation of the Poincaré group, U(Λ, a), on this representation of the Hilbert space
which is given by covariance. In the spinless case the action of U(Λ, a) on states of the form (2) is

U(Λ, a)|ψ〉 =
∑
c

cne
iφ(f ′n)|0〉 f ′n(x) = fn(Λ−1(x− a)). (3)

• The vacuum, |0〉, is Poincaré invariant and normalized to unity:

U(Λ, a)|0〉 = |0〉 〈0|0〉 = 1. (4)

• The unitary representation of the Poincaré group acts like the identity on the vacuum subspace and can be
decomposed into a direct integral of positive-mass positive-energy irreducible representations of the Poincaré
group [2][46] on the orthogonal complement of the vacuum subspace. The mass Casimir operator is assumed to
have point-spectrum eigenstates representing particles of the theory.

• There is a complete set of asymptotically complete Haag-Ruelle 1[41][42][43][44] scattering states.

A characteristic element of Dirac’s forms of dynamics is the notion of a kinematic subgroup. Kinematic subgroups
leave a manifold in Minkowski space, that classically intersects every (massive) particle’s world line once, invariant. In
an instant-form dynamics the invariant manifold is a fixed-time plane, which is preserved under the group generated
by rotations and space translations. In a light-front dynamics the manifold is a hyperplane that is tangent to the
light cone. This is invariant under a seven parameter subgroup of the Poincaré group. These manifolds are prominent
in Dirac’s work; in this work the focus will be on the subgroups of the Poincaré group that leave these manifolds
invariant. These subgroups will be referred to as kinematic subgroups.

For quantum mechanical systems of a finite number of degrees of freedom kinematical and dynamical unitary
representations of the Poincaré group exist in the same representation of the Hilbert space. In the field theoretic
case the representation of the Hilbert space depends on the dynamics, so there is no free dynamics that acts on the
Hilbert space of the theory. This is one of the distinctions with the perturbative approach, which attempts to define
the interacting theory as a perturbation of a free field theory. The incompatibility of these formulations leads to the
infinities that complicate the analysis of the relation between light-front and instant-form treatments of field theory.

The first step in the abstract formulation is to define what is meant by the kinematic subgroup in the absence of
a non-interacting representation of the Poincaré group. The unitary representation of the Poincaré group has a set
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of 10 infinitesimal generators that are self-adjoint operators on the Hilbert space of the field theory satisfying the
Poincaré Lie algebra. This follows because each one is the generator of a unitary one-parameter group. The unitary
representation of the Poincaré group can be decomposed into a direct integral of irreducible representations. In this
work a typical spectral condition is assumed, where the representations that appear in the direct integral are assumed
to be positive-mass positive-energy representations, and the identity on the vacuum subspace.

The direct integral of irreducible representations of the Poincaré group results in a direct integral decomposition of
the Hilbert space into irreducible subspaces or slices. The next step is to choose a basis on each irreducible subspace.
Two choices will be considered in this work. The first basis consists of simultaneous eigenstates of the mass, spin,
linear momentum, and the projection of the canonical spin on the z axis. These are all functions of the infinitesimal
generators of the unitary representation of the Poincaré group. There will also be Poincaré invariant degeneracy
parameters, which can be taken as discrete quantum numbers, since any continuous parameters can be replaced
by a basis of square integrable functions of the continuous degeneracy parameters. The other basis on the same
irreducible subspace consists of simultaneous eigenstates of the mass, spin, the three light-front components of the
four momentum, and the projection of the light-front spin on the z axis. These are also functions of the infinitesimal
generators with the same degeneracy parameters.

These bases can be formally expressed as

|0〉 ∪ {|(m, s, dn)p, µc〉} and |0〉 ∪ {|(m, s, dn)p̃, µf 〉} (5)

where the light-front components of the four momentum are defined by

p̃ = (p · x̂,p · ŷ, p0 + p · ẑ) := (p⊥, p
+). (6)

The variables (6) are eigenvalues of the generators of translations tangent to the light-front hyperplane. The first
basis in (5) will be referred to as the “instant-form” basis and the second basis will be referred to as the “light-front”
basis.

These basis states are related by a unitary change of basis. The change of basis is block diagonal in the direct
integral. The different basis vectors are related by

|(m, s, dn)p, µc〉 =

s∑
µf=−s

|(m, s, dn)p̃(p), µf 〉

√
p+

ωm(p)
Ds
µfµc

[B−1
f (p/m)Bc(p/m)] (7)

which assumes that both bases have delta function normalizations:

〈(m, s, dn)p, µc|(m′, s′, dk)p′, µ′c〉 = δ(p− p′)δss′δµcµ′cδnkδ[m−m
′] (8)

and

〈(m, s, dn)p̃, µf |(m′, s′, dk)p̃′, µ′f 〉 = δ(p+ − p+′)δ(p⊥ − p′⊥)δss′δµfµ′f δnkδ[m−m
′] (9)

where δ[m−m′] is either a Dirac or Kronecker delta function depending on whether m is in the point or continuous
spectrum of the mass operator. Bc(p/m) and Bf (p/m) are SL(2, C) matrices representing a rotationless boost and

a light-front preserving boost from (1, 0, 0, 0) to p/m. The combination B−1
f (p/m)Bc(p/m) is a SU(2) representation

of a Melosh rotation [47] that changes the light-front spin to the canonical spin.
There are similar transformations relating light-front bases corresponding to different orientations of the light front

(i.e. replacing ẑ by some other unit vector n̂). Like (7) they involve a variable change, the square root of a Jacobian
and a momentum-dependent rotation matrix.

The action of U(Λ, a) on each of these irreducible basis states is a consequence of the transformation properties of
the Poincaré generators and the basis choice. For the “instant-form” basis

U(Λ, a)|0〉 = |0〉, (10)

U(Λ, a)|(m, s, dn)p, µ〉 = eia·Λp
s∑

µ′=−s
|(m, s, dn)ΛΛΛp, µ′〉

√
ωm(ΛΛΛp)

ωm(p)
Ds
µ′µ[B−1

c (Λ(p/m))ΛBc(p/m)] (11)

and for the ”light-front” basis.

U(Λ, a)|0〉 = |0〉, (12)
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U(Λ, a)|(m, s, dn)p̃, µ〉 = eia·Λp
s∑

µ′=−s
|(m, s, dn)Λ̃ΛΛp, µ′〉

√
(Λp)+

p+
Ds
µ′µ[B−1

f (Λ(p/m))ΛBf (p/m)]. (13)

These equations define the dynamical unitary representation of the Poincaré group on these two irreducible bases.
The connection of these bases with kinematic subgroups is that the coefficients of the basis functions on the right

hand side of equations (11) and (13) do not depend on the mass eigenvalue m when (Λ, a) is an element of the
kinematic subgroup. For the basis (11) the kinematic subgroup is generated by rotations and spatial translations
while for the basis (13) the kinematic subgroup is the subgroup that leaves the light front hyperplane x+ = x0 +x = 0
invariant.

The next step is to discuss the formulation of scattering theory. A two-Hilbert space representation [48][49], will

be used for this purpose. The starting point is the assumption that the mass operator, M =
√
−p2 has one-particle

eigenstates. In this non-perturbative context one-particle means that the mass operator, M =
√
−p2, has a non-empty

point spectrum. The discrete mass eigenvalues are assumed to be strictly positive. There is no distinction between
elementary and composite particles.

Normalizable one-particle states in the “instant form” basis can be constructed by smearing the irreducible basis
functions with a wave packet:

|ψcg〉 :=

∫
dp

s∑
µ=−s

|(m, s, dn)p, µ〉g(p, µ) (14)

where m is a discrete mass eigenvalue and g(p, µ) is a square integrable wave packet. The corresponding construction
in the “light-front” basis has the form

|ψfg〉 :=

∫
d2p⊥

∫ ∞
0

dp+
s∑

µ=−s
|(m, s, dn)p̃, µ〉g̃(p̃, µ). (15)

These normalizable vectors are linear in the smearing functions and can be represented as elements of the field algebra
applied to the vacuum. This means that they can be expressed as

|ψcg〉 =

s∑
µ=−s

∫
A†m,s,dn(p, µ)|0〉dpg(p, µ) = A†(g)|0〉 (16)

and

|ψfg〉 =

s∑
µ=−s

∫
Ã†m,s,dn(p̃, µ)|0〉dp+d2p⊥g̃(p̃, µ) = Ã†(g̃)|0〉 (17)

These states will be equal if g(p, µ) = 〈(m, s)p, µ|g〉 and g̃(p̃, µ) = 〈(m, s)p̃, µ|g〉 are related by the change of basis
(7).

The operators A†m,s,dn(p, µ) and Ã†m,s,dn(p̃, µ) are functions of the fields that create particles of mass m, spin s,
momentum p and magnetic quantum number µ out of the vacuum. The construction of these operators starting from
operators that couple the vacuum to the one-particle states of the theory is discussed in appendix B.

Since A†m,s,dn(p, µ) and Ã†m,s,dn(p̃, µ) are in the field algebra (after smearing), they can be multiplied. While the
field theory has one-particle states, it does not have free many-particle states, so N repeated application of these
operators, while defined, cannot be interpreted as creating N -particle states out of the vacuum.

The following quantity

A†m1,s1,dn1
(p1, µ1) · · ·A†mk,sk,dnk (pk, µk)|0〉 (18)

can be considered as a mapping from a space of square integrable functions of p1, µ1 · · ·pk, µk to the Hilbert space of
the field theory. Note that while A†(g)|0〉 = Ã†(g̃)|0〉 for g and g̃ related by (7), this is not true for products of these
operators applied to the vacuum. From equation (B17) in appendix B it follows that this mapping has the following
properties

PA†m1,s1,dn1
(p1, µ1) · · ·A†mN ,sN ,dnN (pN , µN )|0〉 =
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N∑
n=1

pnA
†
m1,s1,dn1

(p1, µ1) · · ·A†mN ,sN ,dnN (pN , µN )|0〉 (19)

and

U(R, 0)A†m1,s1,dn1
(p1, µ1) · · ·A†mN ,sN ,dnN (p1, µN )|0〉 =

∑
A†m1,s1,dn1

(Rp1, ν1) · · ·A†mN ,sN ,dnN (RpN , νN )|0〉|0〉
N∏
n=1

Dsn
νnµn(R). (20)

For the mapping in the “light-front” basis the corresponding relations are

P̃Ã†m1,s1,dn1
(p̃1, µ1) · · · Ã†mN ,sN ,dnN (p̃N , µN )|0〉 =

N∑
n=1

p̃nÃ
†
m1,s1,dn1

(p̃1, µ1) · · · Ã†mN ,sN ,dnN (p̃N , µN )|0〉 (21)

U(Bf , 0)Ã†m1,s1,dn1
(p̃1, µ1) · · · Ã†mN ,sN ,dnN (p̃N , µN )|0〉 =

Ã†m1,s1,dn1
(B̃fp1, µ1) · · · Ã†mN ,sN ,dnN (B̃fpN , µN )|0〉

N∏
n=1

√
Bf (pn)+

p+
n

. (22)

U(Rz(φ), 0)Ã†m1,s1,dn1
(p̃1, µ1) · · · Ã†mN ,sN ,dnN (p̃N , µN )|0〉 =

Ã†m1,s1,dn1
(Rz(φ)p̃1, µ1) · · · Ã†mN ,sN ,dnN (R(φ)p̃N , µN )|0〉

N∏
n=1

eiµnφ. (23)

If the Fourier transform of these states is integrated against wave packets that are localized in regions separated by
large space-like separations and the field theory satisfies cluster properties (normally a consequence of uniqueness of
the vacuum) then the expectation is that the resulting vectors look like states of N asymptotically separated particles

when they are used in inner products [44][50]. The interpretation of the operators A†m,s,dn and Ã†m,s,dn is that they
asymptotically behave like creation operators .

A scattering channel α is associated with a finite collection of particles asymptotically. It could correspond to the
state of a target and incoming projectile or a collection of particles that are detected in a scattering experiment. The
set of all scattering channels of the theory is denoted by A. In what follows both the vacuum and one-particle states
are included in the collection of channels, A.

Channel injection operators are defined as products of the operators (16) or (17), applied to the vacuum, one for
each particle in a scattering channel α. In the canonical basis they are

Φα(p1, µ1 · · ·pN , µN ) :=
∏
k∈α

A†mk,sk,dnk
(pk, µk)|0〉 (24)

and in the light-front basis they are

Φ̃α(p̃1, µ1 · · · p̃N , µN ) :=
∏
k∈α

Ã†mk,sk,dnk
(p̃k, µk)|0〉. (25)

The order of the product does not matter in the asymptotic region. The asymptotic channel Hilbert space Hα is
the space of square integrable functions of the variables pk, µk or p̃k, µk for k ∈ α. It is interpreted as a space of N
particles of mass mk and spin sk. If any of the particles in the channel are identical then the functions representing
identical Bosons should be symmetrized and those representing identical Fermions should anti-symmetrized. The
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channel injection operators (24) and (25) are interpreted as mappings from the k-particle channel Hilbert space Hα
to the Hilbert space H of the field theory.

The asymptotic unitary representation of the Poincaré group on Hα is defined by treating Hα as a space of N
mutually non-interacting particles of mass mk and spin sk for k ∈ α. This representation is defined by the tensor
product of one-particle irreducible representations in terms of “instant-form” variables

Uα(Λ, a)|p1, µ1, · · ·pk, µk〉 := eia·Λ(
∑
n pn)|ΛΛΛp1, ν1 · · ·ΛΛΛpk, νk〉

k∏
n=1

√
ωmn(ΛΛΛpn)

ωmn(pn)
Ds
νnµn [B−1

c (Λpn/mn)ΛBc(pn/mn)].

(26)
The corresponding expression in terms of “light-front” variables is

Uα(Λ, a)|p̃1, µ1, · · · p̃k, µk〉 := eia·Λ(
∑
n pn)|Λ̃ΛΛp1, ν1 · · · Λ̃ΛΛpk, νk〉

k∏
n=1

√
(Λ̃pn)+

p+
n

Ds
νnµn [B−1

f (Λpn/mn)ΛBf (pn/mn)].

(27)

The states in (26) and (27) are basis vectors in Hα, not H. Since the Hilbert space vectors in the range of Φα or Φ̃α
are not N-particle states it follows that

U(Λ, a)Φα 6= ΦαUα(Λ, a). U(Λ, a)Φ̃α 6= Φ̃αUα(Λ, a). (28)

This is because (B6) does not hold for P 0 due to the p0 integrals in (B9) and (B6) does not hold for P− due to the
p− integrals on (B9) (see appendix B).

When ΛK and aK are elements of the instant-form or light-front kinematic subgroup, it follows from (19-23) that

U(ΛK , aK)Φα = ΦαUα(ΛK , aK) U(ΛK , aK)Φ̃α = Φ̃αUα(ΛK , aK) (29)

because the coefficients of the kinematic transformations are mass independent. The operators Φα and Φ̃α that map
the channel α Hilbert space Hα into the field theory Hilbert space H are Haag-Ruelle [41][42][43] injection operators.

The only difference with the standard choices is that Φα and Φ̃α are designed to have the intertwining properties (29).
In the two-Hilbert space formulation [51][50] channel wave operators Ωα± = Ωα±(H,Φα, Hα) are defined by the

strong limits

lim
t→±∞

‖(Ωα±(H,Φα, Hα)− eiHtΦαe−iHαt)|ψ〉‖ = 0 (30)

or

lim
t→±∞

‖(Ωα±(H, Φ̃α, Hα)− eiHtΦ̃αe−iHαt)|ψ〉‖ = 0. (31)

The wave operators satisfy the intertwining property

U(Λ, a)Ωα±(H,Φα, Hα) = Ωα±(H,Φα, Hα)Uα(Λ, a) U(Λ, a)Ωα±(H, Φ̃α, Hα) = Ωα±(H, Φ̃α, Hα)Uα(Λ, a) (32)

where, unlike (28), (Λ, a) are not restricted to the kinematic subgroup.
The purpose of the injection operators in Haag-Ruelle scattering is to define the asymptotic boundary conditions.

They are constructed so they behave like creation operators in asymptotically separated regions. They replace the
free-particle asymptotic states of ordinary scattering theory by states in the Hilbert spaces of the field theory that
only behave like a system of non-interacting particle in the asymptotic region. The two injection operators defined in
appendix B both have this property. They differ in which variable enforces the one-particle mass shell delta function
when applied the the vacuum. This means that as operators

Ωα±(H,Φα, Hα) = Ωα±(H, Φ̃α, Hα) (33)

if they are evaluated in the same one-particle basis. This identity is equivalent to the requirement

0 = lim
t→±∞

‖eiHt(Φα − Φ̃α)e−iHαt |ψα〉‖ = lim
t→±∞

‖(Φα − Φ̃α)e−iHαt |ψα〉‖ (34)

which is precisely the condition that the injection operators agree asymptotically.
The scattering operator for scattering from channel α to channel β is

Sβ,α : Hα → Hβ := Ω†β+(H,Φβ , Hβ)Ωα−(H,Φα, Hα). (35)
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It follows from the identity (34) that Sαβ is independent of the choice of injection operator. If follows from (32) that

Uβ(Λ, a)Sβ,α = Sβ,αUα(Λ, a). (36)

This can be extended to all channels, A, by defining the asymptotic Hilbert space as the direct sum of all channel
Hilbert spaces Hα for α ∈ A, where A is defined to include the vacuum and one-particle channels as well as the
scattering channels:

HA := ⊕α∈AHα. (37)

The asymptotic unitary representation of the Poincaré group is defined on HA by

UA(Λ, a) = ⊕α∈AUα(Λ, a). (38)

Multi-channel injection operators are defined as the sum of all channel injection operators

ΦA :=
∑
α∈A

Φα or Φ̃A :=
∑
α∈A

Φ̃α (39)

where Φα : Hα → H. These can be used to define multi-channel wave operators

ΩA±(H,ΦA, HA) = Ω̃A±(H, Φ̃A, HA) (40)

by the strong limits

lim
t→±∞

‖(ΩA±(H,ΦA, HA)− eiHtΦAe−iHAt)|ψ〉‖ = 0 (41)

or

lim
t→±∞

‖(ΩA±(H, Φ̃A, HA)− eiHtΦ̃Ae−iHAt)|ψ〉‖ = 0 (42)

where HA :=
∑
α∈AHαΠα and Πα is the projection on the subspaceHα ofHA. The assumed asymptotic completeness

of the scattering theory means that the wave operators (including the vacuum and one-body channels) are unitary
mappings from the asymptotic Hilbert space, HA, to the Hilbert, H, space of the quantum field theory.

With this definition (32) becomes

U(Λ, a)ΩA±(H,ΦA, HA) = ΩA±(H,ΦA, HA)UA(Λ, a) (43)

which also holds with ΦA replaced by Φ̃A.
The multi-channel scattering operator is

S(H,ΦA,HA) = Ω†+(H,ΦA,HA)Ω−(H,ΦA,HA) (44)

where it is defined to be the identity on the vacuum and one-particle subspaces.
Poincaré invariance of the multi-channel scattering operator on HA follows from the intertwining property of the

wave operators (43) [51]

UA(Λ, a)S(H,ΦA,HA) = UA(Λ, a)Ω†+(H,ΦA,HA)Ω−(H,ΦA,HA) =

Ω†+(H,ΦA,HA)U(Λ, a)Ω−(H,ΦA,HA) =

Ω†+(H,ΦA,HA)Ω−(H,ΦA,HA)UA(Λ, a) = S(H,ΦA,HA)UA(Λ, a). (45)

At this point all that has been demonstrated is that the same scattering theory is obtained by using injection
operators that agree asymptotically but intertwine different kinematic subgroups. This will be used in the next
section to construct unitarily equivalent light-front and instant-form representations of the field theory that preserve
the scattering matrix.
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III. CONSTRUCTION

The next step is to use the kinematic symmetries of the injection operators to show that the Hamiltonian H in the
expressions for the wave operators can be replaced by the light front Hamiltonian, P−. The relations

H = P− + P 3 H =
1

2
(P+ + P−) (46)

will be used in what follows. In the first case note because P 3 intertwines with ΦA it follows that

eiHtΦAe
−iHA = ei(P

−+P 3)tΦAe
−i(P−A+P 3

A)t = eiP
−tΦAe

−iP−A t. (47)

Similarly since P+ intertwines with Φ̃A

eiHtΦ̃Ae
−iHA = ei(P

−+P+)t/2Φ̃Ae
−i(P−A+P+

A )t/2 = eiP
−t/2Φ̃Ae

−iP−A t/2. (48)

This means the wave operators constructed using H are identical to the ones using P− with both injection operators.
Combining these results with (40) gives the following identifications

Ω±(H,ΦA, HA) = Ω±(H, Φ̃A, HA) = Ω±(P−,ΦA, P
−
A ) = Ω±(P−, Φ̃A, P

−
A ). (49)

The final step in the construction is to introduce two unitary operators VF and VI that act on field theory Hilbert
space H with the following properties:

VF |0〉 = VI |0〉 = |0〉 (50)

[U(ΛKI , aKI ), VI = 0] [U(ΛKF , aKF ), VF ] = 0 (51)

lim
t→±∞

‖(ΦA − VIΦA)e−iHAt|ψα〉‖ = 0 (52)

lim
t→±∞

‖(Φ̃A − VF Φ̃A)e−iHAt|ψα〉‖ = 0 (53)

where (ΛKI , aKI ) and (ΛKF , aKF ) are in the instant-form and light-front kinematic subgroups respectively. Note that
for equations (52 and 53) to hold the asymptotic Hamiltonian must have a non-trivial absolutely continuous spectrum.
While this is true on the scattering channel subspaces, it is not true for the vacuum or one-particle states. This implies
that in addition to (50) that the unitary operators VI and Vf also act like the identity on the one-particle subspaces.

The next step is to define two new unitary representations of the Poincaré group on the Hilbert space H of the
quantum field theory by:

UF (Λ, a) := VFU(Λ, a)V †F UI(Λ, a) := VIU(Λ, a)V †I (54)

with the corresponding dynamical generators:

HF := VFHV
†
F HI := VIHV

†
I (55)

P−F := VFP
−V †F P−I := VIP

−V †I . (56)

It follows from (51) that

UI(ΛKI , aKI ) = U(ΛKI , aKI ) UF (ΛKF , aKF ) := U(ΛKF , aKF ) (57)

where (ΛKI , aKI ) is an instant-form kinematic Poincaré transformation and (ΛKF , aKF ) is a front-form kinematic
transformation.

In Appendix A it is shown [45] that as a consequence of (52) and (53) that

Ω±(HI ,ΦA, HA) = VIΩ±(H,ΦA, HA) (58)
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and

Ω±(HF , Φ̃A, HA) = VFΩ±(HF , Φ̃A, HA). (59)

Taken together with (49) gives:

Ω±(HI ,ΦA, HA) = VIΩ±(H,ΦA, HA) = VIΩ±(H, Φ̃A, HA) = VIΩ±(P−, Φ̃A, P
−
A ) = VIV

†
FΩ±(P−F , Φ̃A, P

−
A ). (60)

Since (60) holds for the same VIV
†
f for both time limits it follows that

S(HI ,ΦA, Hα) = Ω†+(HI ,ΦA, HA)Ω−(HI ,ΦA, HA) =

Ω†+(HF , Φ̃A, HA)VFV
†
I VIV

†
FΩ−(HF , Φ̃A, HA) =

Ω†+(P−F , Φ̃A, P
−
A )Ω−(P−F , Φ̃A, P

−
A ) =

S(P−F , Φ̃A, P
−
A ). (61)

This means both representations of the dynamics result in the same scattering operators on the asymptotic Hilbert
space. Next consider the two unitary representations of the Poincaré group, UI(Λ, a) and UF (Λ, a) defined above.
For the first one the operators {P, s, sz} are mutually commuting self-adjoint functions of the instant-form kinematic

generators of the representation UI(Λ, a). For the second one the operators {P̃, szf } are mutually commuting self-
adjoint functions of the front-form kinematic generators of the representation UF (Λ, a).

It is possible to construct a basis for UI(Λ, a) consisting of the eigenvalues of {P, s, sz} and some additional
kinematically invariant commuting observables xI . Similarly it is possible to construct a basis for UF (Λ, a) consisting

of the eigenvalues of {P̃, szF } and some additional kinematically invariant commuting observables xF .
It follows that in these bases wave functions have the form

〈p, s, µ, xI |ψ〉 or 〈p̃, µ, xF |ψ〉. (62)

Matrix elements of the dynamical operators are non-trivial matrices in the ′′x′′ variables:

〈p, s, µ, xI |HI |p′, s′, µ′, x′I〉 = δ(p− p′)δss′δµµ′〈xI‖HI(P, s)‖x′I〉 (63)

and

〈p̃, µ, xF |P−F |p̃
′, µ′, x′F 〉 = δ(p̃− p̃′)δµµ′〈xF ‖P−F (P̃, µ)‖x′F 〉. (64)

The eigenvalue problems for the dynamical operators have the forms∑∫
〈xI‖HI(P, s)‖x′I〉dx′I〈p, s, µ, xI |ψ〉 = E(P, s)〈p, s, µ, xI |ψ〉 (65)

and ∑∫
〈xF ‖P−F (P̃, µ)‖x′F 〉dx′F 〈p̃, µ, x′F |ψ〉 = P−(P̃, µ)〈p̃, µ, xF |ψ〉. (66)

The matrices 〈xI‖HI(P, s)‖x′I〉 or 〈xF ‖P−F (P̃, µ)‖x′F 〉must be diagonalized in this basis in order to compute dynamical
Poincaré transformations. On the other hand kinematic transformations can be computed by applying the inverse
transformation to basis vectors:

〈p, s, µ, xI |UI(R,a)|ψ〉 = 〈ψ|U†I (R,a)|p, s, µ, xI〉∗ =

eia·p〈R−1p, s, ν, xI |ψ〉Ds
µν(R). (67)

Similarly in the light-front case for light-front preserving boosts and translations:

〈p̃, µ, xF |UF (ΛKF , aKF )|ψ〉 = 〈ψ|U†F (ΛKF , aKF )|p̃, µ, xF 〉∗ =
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eiã·p̃〈Λ̃ΛΛ
−1

k p, µ, xF |ψ〉

√
(Λ−1

k p)+

p+
(68)

and for rotations about the z axis

〈p̃, µ, xF |UF (Rz(φ), 0)ψ〉 = 〈ψ|U†F (Rz(φ))|p̃, µ, xF 〉∗ =

〈R̃z(φ)−1p, µ, xF |ψ〉siµφ. (69)

Equation (67) shows that UI(Λ, a) has an instant form kinematic subgroup while equations (68) and (69) show
that UF (Λ, a) has a light-front kinematic subgroup. In addition the two representation are related by a unitary
transformation that preserves the vacuum and one particle states:

UF (Λ, a) = VFV
†
I UI(Λ, a)VIV

†
f (70)

|0〉F = VFV
†
I |0〉I = |0〉I . (71)

If follows from (61) that both representations give the same unitary scattering operators on the asymptotic Hilbert
space HA. In addition because VI and Vf are kinematically invariant (51), the injection operators satisfy

UI(ΛKI , aKI)ΦA = ΦAUA(ΛKI , aKI) (72)

for the instant form kinematic subgroup and

UF (ΛKF , aKF )Φ̃A = Φ̃AUA(ΛKF , aKF ) (73)

for the light-front kinematic subgroup.
The result can be summarized by noting that it is possible to choose bases in the field theory Hilbert space

that transforms covariantly under either kinematic subgroup. In both cases a free dynamics is not assumed. The
two representations are related by S-matrix preserving unitary transformations. Both representation have the same
vacuum and one particle subspaces. There are no bare particles or production vertices in these representations.

Finally note that if the range of Φ̃ is all of H and

W := (Φ̃AΦ̃†A)−1/2Φ̃A (74)

satisfies

lim
t→±∞

‖(W − Φ̃A)e−iHAt|ψα〉‖ = 0 (75)

then it is a kinematically invariant unitary mapping from HA to H and U0(Λ, a) = WUA(Λ, a)W † defines a consistent
“free dynamics” on H that satisfies

UI(ΛKI , aKI) = U0(ΛKI , aKI) (76)

with a similar relation in the light-front case.

IV. ANALYSIS AND CONCLUSIONS

This work demonstrated the equivalence of formulations of quantum field theories with light-front and instant-form
kinematic symmetries. It differs from most approaches to this problem because it is completely non-perturbative. This
results in a number of differences with approaches that assume the existence of both a free and interacting unitary
representation of the Poincaré group on the Hilbert space representation of the field theory. The problem with this
assumption is that in a local field theory the free and dynamical unitary representations of the Poincaré group act on
inequivalent representations of the Hilbert space. This requires re-thinking about the meaning of instant and front-
form dynamics. In this approach, kinematic Poincaré transformations can be performed without diagonalizing the
mass operator. Both the light front and instant representations are unitarily equivalent and give the same multichannel
scattering operators. Some of the differences are (1) there are no true multi-particle states in the field theory; that
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notion only makes sense asymptotically. This also means that there is no Fock space and no “quantization” (2) the
fields are not restricted to an instant or light front hyperplane (3) there is no free-field dynamics (4) there are no zero
modes (5) there is one vacuum, and all of the particles are physical. The advantage of starting with the Hilbert space
representation of the interacting theory is that all of the issues with renormalization are defined away.

This work provides one way to understand Dirac’s forms of dynamics in a non-perturbative setting. This approach
assumed the existence of local quantum field theory with all of the expected properties. Using this assumption
unitarily equivalent representations with the same scattering operators were constructed. Bases that transformed
covariantly with respect to light-front and instant-form kinematic subgroups where constructed for each of these
equivalent representations of the dynamics. Kinematic Poincaré transformations on these wave functions could be
computed without diagonalizing the dynamical operators. One aspect of the these representations of the dynamics is
that they both act irreducibly on the vacuum and one-particle states. This means that the 0 and 1 body solutions are
basis vectors in both bases. Both representations give the same Poincaré invariant scattering operator. The Haag-
Ruelle injection operators that are used to formulate the scattering asymptotic conditions in both cases intertwine
with corresponding kinematic subgroups. If the injection operators have full range on the Hilbert space of the field
theory there is the analog of a free dynamics on the Hilbert of the field theory, it has the same vacuum as the full theory
and the particles all have physical masses (no mass renormalization). The construction of equivalent instant-form and
light-front unitary representations of the Poincaré group is essentially identical to the corresponding construction in
the finite number of degree of freedom case [3][4][52][53]. In that case, when there is production, the particles all have
their physical masses and there are no vertex interactions that can change masses [54]. The simplest interactions that
change particle number are 2↔ 3 interactions.

While the representations discussed in this analysis are not useful for applications, the results support the conclusions
of most of the quoted references that the two formulations of the theory are equivalent. The vacuum is the same
in both representations. While the vacuum is kinematically invariant, it is also rotationally invariant, which is an
additional constraint on the vacuum in the perturbative case.

Appendix A: Scattering equivalences

The two-Hilbert space multi-channel wave operators are defined by the strong limits where the ΦA are two-Hilbert
space injection operators that map the asymptotic Hilbert space HA to the Hilbert space H of the quantum field
theory:

Ω±(H,ΦA, HA) = s− lim
t→±∞

eiHtΦAe
−iHAt. (A1)

The wave operators are assumed to exist and be Poincaré invariant in the sense

U(Λ, a)Ω†±(H,ΦA, HA) = Ω†±(H,ΦA, HA)UA(Λ, a). (A2)

where UA(Λ, a) is the natural representation of the Poincaré group on HA that has the form of a direct sum of
tensor products of irreducible representations. The set of channels A is assumed to include the vacuum channel,
and one-particle channels in addition to multi-particle scattering channels. The wave operators are assumed to be
asymptotically complete unitary mappings from asymptotic Hilbert space HA to the Hilbert space H of the field
theory.

The scattering operator is defined by

S(H,Φ, HA) = Ω†+(H,ΦA, HA)Ω−(H,ΦA, HA). (A3)

Consider two identical scattering operators based on different Hamiltonian’s

S(H,ΦA, HA) = S(H ′,Φ′A, HA) (A4)

It follows from the definitions and unitarity of the wave operators that

W := Ω+(H ′,Φ′A, HA)Ω†+(H,ΦA, HA) = Ω−(H ′,Φ′A, HA)Ω†−(H,ΦA, HA) (A5)

is a unitary operator on H. The identification of the scattering operators (A4) means that W is the same for the
incoming (t→ +∞) or outgoing (t→ −∞) multi-channel wave operator. It follows that

WΩ±(H,ΦA, HA) = Ω±(H ′,Φ′A, HA). (A6)
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In addition, the intertwining property of the wave operators [51],

WH ′ = Ω±(H,ΦA, HA)Ω†±(H ′,Φ′A, HA)H ′ = Ω±(H,ΦA, HA)HAΩ†±(H ′,Φ′A, HA)

= HΩ±(H,ΦA, HA)Ω†±(H ′,Φ′A, HA) = HW (A7)

means that the two Hamiltonians are related by the unitary transformation W .
It follows that

Ω−(H ′,Φ′A, HA) = WΩ−(H,ΦA, HA) =

Ω−(WHW †,WΦA, HA) = Ω−(H ′,WΦA, HA). (A8)

Taking the difference of the right and left side of equation (A8) gives

0 = lim
t→±∞

‖eiH
′t(Φ′A −WΦA)e−iHAt|ψ〉‖. (A9)

The unitarity of gives eiH
′t

0 = lim
t→±∞

‖(Φ′A −WΦA)e−iHAt|ψ〉‖. (A10)

That this condition holds for both time limits is important.
Next consider the converse. Assume that W is a unitary operator satisfying H ′ = WHW †, and the scattering

operators

S(H,Φ, HA) = Ω†+(H,ΦA, HA)Ω−(H,ΦA, HA) (A11)

S(H ′,Φ′A, HA) = Ω†+(H ′,Φ′A, HA)Ω−(H ′,Φ′A, HA) (A12)

both exist. If W satisfies (A10) for both time limits then the S matrices are identical

S(H ′,Φ′A, HA) = S(H,ΦA, HA). (A13)

The proof follows from

Ω±(H ′,Φ′A, HA) = Ω±(WHW †,Φ′A, HA) = WΩ±(H,W †Φ′A, HA) =

WΩ±(H,W †(Φ′A −WΦA︸ ︷︷ ︸
→0

+WΦA), HA) = WΩ±(H,ΦA), HA). (A14)

It then follows that

S(H ′,Φ′A, HA) = Ω†+(H ′,Φ′A, HA)Ω−(H ′,Φ′A, HA) =

Ω†+(H,ΦA, HA)W †WΩ−(H,ΦA, HA) = S(H,ΦA, HA). (A15)

Note that unitary equivalence is not a sufficient condition for S-matrix equivalence. This is not hard to understand
in the case of ordinary quantum mechanics, where two Hamiltonian’s with short-range repulsive interactions have the
same spectrum (so they are unitarily equivalent) but generally have different S-matrix elements or phase shifts.

The conclusion of this section is that unitary operators W that satisfy the asymptotic condition (A10) can be used
to relate Hamiltonians that have the same scattering matrix. This asymptotic condition means that W does not
disturb the asymptotic structure of the states that define the asymptotic condition.

The above condition applies to both quantum mechanics and quantum field theory assuming that the have asymp-
totically complete scattering operators. Equation (A10) requires that W leaves the one-particle states unchanged.
The field theory generalization of multi-particle scattering is the Haag-Ruelle formulation of scattering which involves
strong limits used in this appendix.
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Appendix B: Two Hilbert space injection operators

This appendix discusses the construction of injection operators from operators in the field algebra. The starting
point is to let B be a function of the fields that creates a one-body state out of the vacuum. This means that the
completeness sum

〈0|B†B|0〉 =
∑
n

〈0|B†|n〉〈n|B|0〉 (B1)

has one-body intermediate states (here one-body means states with discrete positive mass eigenvalues - there is no
distinction between elementary and composite one-body states). For simplicity it is assumed that the one-body
spectrum is non-degenerate, which means each one-particle state has a different mass, and each one-body mass
eigenstate has a given spin.

To isolate the operators that create the one-body states use space-time translations to define the operator valued
distributions

B(x) := e−iP ·xBe−iP ·x = U†(I, x)BU(I, x) (B2)

where Pµ is the four momentum operator. It follows from (B2) that

∂B(x)

∂xµ
= −i[Pµ, B(x)]. (B3)

The next step is to compute the Fourier transform of the operator density B(x):

B̂(q) :=

∫
d4x

(2π)2
eiq·xB(x). (B4)

Multiplying both sides of (B3) by eiq·x

(2π)2 and integrating over d4x by parts, assuming that B(x) is an operator valued

distribution, gives

− i[Pµ, B̂(q)] = −iqµB̂(q) (B5)

or

[Pµ, B̂(q)] = qµB̂(q). (B6)

It follows from (B6) that B̂(q)|0〉 is either 0 or an eigenstate of the four momentum with eigenvalue qµ:

PµB̂(q)|0〉 = B̂(q)Pµ|0〉+ qµB̂(q)|0〉 = qµB̂(q)|0〉. (B7)

Let m be a discrete mass eigenvalue of M =
√
−P 2 and let s denote the spin of the particle of mass m. Next let

h(q) be a smooth Lorentz invariant function of compact support in q2 that is 1 when q2 = −m2 and m > 0, and
identically 0 on the rest of the spectrum of intermediate states in (B1) and define

A†(q) := B̂(q)h(q). (B8)

Also define the operators:

A†(q) :=

∫
A†(q)dq0 and Ã†(q̃) :=

∫
A(q)dq−/2. (B9)

Because h(q) is localized these operators are distributions in the three momentum or light-front components of the four
momentum. When these are applied to the vacuum they create one-particle states of mass m. Since by assumption,
there is a unique spin s associated with each discrete mass eigenvalue, the particle created out of the vacuum also has
spin s.

Because of the integrals over q0 or q− it follows that (B6) must be replaced by

[P, A†(q)] = qA†(q). [P̃, Ã†(q̃)] = q̃Ã†(q̃) (B10)
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which when applied to the vacuum becomes

PA†(q)|0〉 = qA†(q)|0〉 P̃Ã†(q̃)|0〉 = q̃Ã†(q̃)|0〉. (B11)

This means that A†(q) creates a one-particle state with momentum q and mass m and spin s out of the vacuum.
Similarly

P̃Ã†(q̃)|0〉 = q̃A†(q̃)|0〉. (B12)

creates a one-particle state with light front momentum q and mass m and spin s out of the vacuum.
The next step is to construct operators that create simultaneous eigenstates of mass and spin and magnetic quantum

numbers.
Define the operator

A†m,s(p, µ) :=

∫
SU(2)

U(R, 0)A†(Rp)U†(R, 0)Ds∗
µs(R)dR (B13)

where the integral is over the SU(2) Haar measure and Ds∗
µs(R) is the spin-s SU(2) Wigner function

Ds
µs(R) = 〈s, µ|U(R)|s, s〉. (B14)

It follows from (B13) that

U(R′, 0)A†m,s(p, µ)U†(R′, 0) =

∫
SU(2)

U(R′R, 0)A†(R−1p)U†(R′R, 0)Ds∗
µs(R)dR. (B15)

Changing variables, R′′ = R′R using the invariance of the Haar measure dR = dR′′ for fixed R′ gives

(B15) =

∫
SU(2)

U(R′′, 0)A†(R′′−1R′p)U†(R′′, 0)dR′′Ds∗
µs(R

′−1R′′) =

∫
SU(2)

s∑
ν=−s

U(R′′, 0)A†(R′′−1R′p)U†(R′′, 0)dR′′Ds∗
µν(R′−1)Ds∗

νs(R
′′) =

∫
SU(2)

s∑
ν=−s

U(R′′, 0)A†(R′′−1R′p)U†(R′′, 0)dR′′Ds∗
νs(R

′−1R′′)Ds
νµ(R′) =

s∑
ν=−s

A†(m,j)(R
′p, ν)Ds

νµ(R′). (B16)

When applied to the vacuum (B16) gives

U(R, 0)A†(m,s)(p, µ)|0〉 =

s∑
ν=−s

A†m,s(Rp, ν)|0〉Ds
νµ(R) (B17)

which means that either this vanishes or it transforms like a particle of mass m, spin s, momentum p and magnetic
quantum number µ. The spin in these states created out of the vacuum is the canonical spin. This will vanish if there
are no one-particle intermediate states with mass m and spin s in (B1). While the notation is purposely suggestive,

A†m,s(p, µ) is not a creation operator. In addition, p0 is only equal to
√
p2 +m2 when A†m,s(p, µ) is applied to the

vacuum.
Because rotations do not change the time component, these operators also satisfy

[P, A†(m,s)(q, µ)] =

∫
SU(2)

dR[P, U(R, 0)A†(R−1q)U†(R, 0)]Ds∗
µs(R) =
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SU(2)

dRU(R, 0)[RP, A†(R−1q)]U†(R, 0)Ds∗
µs(R) =

RR−1q

∫
SU(2)

dRU(R, 0)A†(R−1q)U†(R, 0)Ds∗
µs(R) = qA†(m,s)(q, µ). (B18)

The normalization can be chosen so the states created out of the vacuum have the normalization (9).
The construction above cannot be used in the “light-front” case due to the integral over p− in (B9). However in

that case it is enough to project out the magnetic quantum number using a rotation Rz(φ) which leaves p− in (B9)
unchanged. The spin is identified with the highest non-zero weight, s = µmax. In this case equation(B13) is replaced
by

Ã†m,s(p̃, µ) :=

∫ 2π

0

U(Rz(φ), 0)Ã†(Rz(φ)−1p)U†(Rz(φ), 0)e−iµφ
dφ

2π
, (B19)

(B17) and (B18) are replaced by

[P̃, Ã†(m,s)(q̃, µ)] = q̃Ã†(m,s)(q̃, µ), (B20)

U(ΛK , 0)Ã†(m,s)(q̃, µ)U†(ΛK , 0) = Ã†(m,s)(Λ̃kq, µ), (B21)

and

U(Rz(φ), 0)Ã†(m,s)(q̃, µ)U†(Rz(φ), 0) = Ã†(m,s)(Rz(φ)q̃, µ)eiµφ. (B22)

The proof (B20) is essentially the same as the proof of (B18). To show (B22) note that for rotations about the z axis

Bf (p/m)Rz = RzBf (R−1
z p/m) (B23)

where Bf (p/m) is a light front boost. It follows that

U(Bf (p/m), 0)Ã†m,s(q̃, µ)U(Bf (p/m), 0)† =

∫ 2π

0

U(Bf (p/m)Rz(φ), 0)Ã†(Rz(φ)−1q)U†(Bf (p/m)Rz(φ), 0)e−iµφ =

∫ 2π

0

U(Rz(φ)Bf (R−1
z (φ)p/m), 0)Ã†(Rz(φ)−1q)U†(Rz(φ)Bf (R−1

z (φ)p/m), 0)e−iµφ =

∫ 2π

0

U(Rz(φ), 0)U(Bf (R−1
z (φ)p/m), 0)Ã†(Rz(φ)−1q)U(Bf (R−1

z (φ)p/m), 0))†U†(Rz(φ), 0)†e−iµφ =

∫ 2π

0

U(Rz(φ), 0)U(, 0)Ã†(Bf (R−1
z (φ)p/m)Rz(φ)−1q)U†(Rz(φ), 0)†e−iµφ =

∫ 2π

0

U(Rz(φ), 0)U(, 0)Ã†(Rz(φ)−1Bf (p/m)q)U†(Rz(φ), 0)†e−iµφ =

Ã†m,s(B̃f (p/m)q, µ) (B24)

which proves (B21). For (B22) note that

U(Rz(φ
′), 0)Ã†(m,s)(q̃, µ)U†(Rz(φ

′), 0) =



17∫ 2π

0

U(Rz(φ+ φ′), 0)Ã†(Rz(φ)−1p)U†(Rz(φ+ φ′), 0)e−iµφ
dφ

2π
. (B25)

Let φ′′ = φ+ φ′ so (B25)) becomes∫ 2π

0

U(Rz(φ
′′), 0)Ã†(Rz(φ

′′ − φ′)−1p)U†(Rz(φ
′′), 0)e−iµ(φ′′−φ′) dφ

′′

2π

∫ 2π

0

U(Rz(φ
′′), 0)Ã†(Rz(φ

′′)−1Rz(φ
′)p)U†(Rz(φ

′′), 0)e−iµ(φ′′eiφ
′µ) =

Ã†(m,s)(Rz(φ
′)q̃, µ)eiµφ

′
. (B26)

The normalization can be chosen so these states created out of the vacuum have the normalization (9).
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[49] H. Baumgärtel and M. Wollenberg, Mathematical Scattering Theory (Spinger-Verlag, Berlin, 1983).
[50] H. Araki, Mathematical theory of quantum fields (Oxford University Press, 1999).
[51] M. Reed and B. Simon, Methods of Modern mathematical Physics, vol. III Scattering Theory (Academic Press, 1979).
[52] W. N. Polyzou, Ann. Phys. 193, 367 (1989).
[53] W. N. Polyzou, J. Math. Phys. 43, 6024 (2002).
[54] W. N. Polyzou, Phys. Rev. C68, 015202 (2003), nucl-th/0302023.

https://link.aps.org/doi/10.1103/PhysRev.117.1590

	Introduction
	General considerations
	Construction
	Analysis and Conclusions
	Scattering equivalences
	Two Hilbert space injection operators
	References

