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Abstract

In this paper we study the relativistic quantum mechanical interpreta-

tion of the solution of the inhomogeneous Euclidean Bethe-Salpeter equa-

tion. Our goal is to determine conditions on the input to the Euclidean

Bethe-Salpeter equation so the solution can be used to construct a model

Hilbert space and a dynamical unitary representation of the Poincaré

group. We prove three theorems that relate the stability of this construc-

tion to properties of the kernel and driving term of the Bethe-Salpeter

equation. The most interesting result is that the positivity of the Hilbert

space norm in the non-interacting theory is not stable with respect to

Euclidean covariant perturbations defined by Bethe-Salpeter kernels. The

long-term goal of this work is to understand which model Euclidean Green

functions preserve the underlying relativistic quantum theory of the orig-

inal field theory. Understanding the constraints imposed on the Green

functions by the existence of an underlying relativistic quantum theory

is an important consideration for formulating field-theory motivated rela-

tivistic quantum models.

1 Introduction

The purpose of this paper is to investigate the conditions for field-theory mo-
tivated calculations based on covariant Euclidean Green functions to be inter-
preted as relativistic quantum mechanical theories. The problem is to use the
Euclidean Green functions to construct a model Hilbert space and the dynam-
ical unitary representation of the Poincaré group on this space [1]. There are
two long-term goals of this research. The first goal is to understand which
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field-theory motivated calculations can be interpreted as relativistic quantum
theories. The second goal is to learn how to formulate phenomenological rela-
tivistic Euclidean quantum models which have a clear connection to an under-
lying quantum field theory.

This paper focuses on Euclidean rather than Minkowski Green functions for
two reasons. First, Euclidean Green functions are used extensively in applica-
tions, including lattice discretizations of quantum field theories [2], perturbative
quantum field theory, and in the Schwinger-Dyson equations [3]. The second
reason for considering Euclidean Green functions is that they are directly related
to the underlying relativistic quantum theory.

The relation of Euclidean Green functions to relativistic quantum theory is
discussed in the literature on axiomatic field theory. A readable summary of this
relationship can be found in section 1.3 of [2]. More complete treatments appear
in the original literature [4],[5], [6]. Reference [4] contains a clear statement of
assumptions needed to reconstruct a relativistic quantum theory from a collec-
tion of Euclidean Green functions. Reference [5] contains a concise alternative
treatment in terms of Euclidean generating functionals.

This paper investigates the quantum mechanical interpretation of the inho-
mogeneous Euclidean Bethe-Salpeter equation. This is the simplest model where
the relation to an underlying relativistic quantum theory can be addressed. In
addition, it is an important tool for making field-theory motivated models of
two-body systems. The input to the Bethe-Salpeter equation consists of the
Bethe-Salpeter kernel and the two-point Euclidean Green function. In appli-
cations this input is unknown and has to be modeled. A reasonable goal is to
find conditions on the model input that are sufficient to construct a relativis-
tic quantum mechanical two-body model. Even this modest goal turns out to
be a non-trivial problem. In this paper we prove three theorems that address
the relation of the phenomenological input to the existence of an underlying
relativistic quantum theory.

The first two theorems establish an interesting result, which is that if the
driving term of the inhomogeneous Bethe-Salpeter equation for the Green func-
tions is constructed from the free Euclidean Green functions, and the four-point
Green function is constructed by solving the Bethe-Salpeter equation with a
small Euclidean covariant kernel, the positivity of the resulting Hilbert space
norm is unstable with respect to small variations in the kernel. This was con-
trary to our expectation that a sufficiently small Euclidean covariant kernel
would always preserve the underlying quantum mechanical interpretation of the
non-interacting system. The third theorem shows that the instability proof
breaks down if the free two-point function is replaced by a more realistic two-
point function that has a Källén-Lehmann weight with a continuous component
to its mass spectrum.
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2 Background

The Euclidean formulation of quantum field theory plays a central role in this
paper. This section contains a summary of the relationship between Euclidean
quantum field theory, relativistic quantum mechanics, and Minkowski Green
functions. While all of this material can be found in the literature, the focus in
this section is on aspects of these relationships which are needed to formulate
relativistic quantum mechanical models which are not local field theories.

There are three classes of generalized functions that are important in this pa-
per. The first class are the Wightman functions, which are vacuum expectation
values of products of local field operators:

Wn(x1, · · · , xn) := 〈0|φ1(x1) · · ·φn(xn)|0〉. (1)

The second class of generalized functions are the Minkowski Green functions,
which are time-ordered vacuum expectation values of products of local field
operators

Gn(x1, · · · , xn) := 〈0|T (φ1(x1) · · ·φn(xn))|0〉. (2)

The third class of generalized functions are the Schwinger functions, or Eu-
clidean Green functions, which will be defined later as analytic continuations of
the Minkowski Green functions or Wightman functions.

The transformation properties of the Wightman functions and Minkowski
Green functions are needed to construct unitary representations of the Poincaré
group. The Wightman and Minkowski Green functions are Poincaré covari-
ant. For the Wightman function this is a consequence of the transformation
properties of the fields and the invariance of the vacuum. For the Minkowski
Green functions locality is also needed to ensure the Poincaré invariance of the
time-ordered product of fields.

The symmetry group for the fields is inhomogeneous SL(2, C). The group
SL(2, C) is the covering group for the Lorentz group. The SL(2, C) matrices
±Λ are related to the Lorentz transformation Λµ

ν by

Λµ
ν =

1

2
Tr

(

Λσµ(Λ∗)tσν

)

, (3)

where σµ = (I, ~σ) and ~σ are the Pauli matrices.
Covariant fields are multicomponent operator densities that transform as

finite dimensional representations, D(Λ,Λ∗), of SL(2, C):

U(Λ, a)φ(x)U †(Λ, a) = φ(Λx + a)D(Λ,Λ∗). (4)

where Λ is an element of SL(2, C) and Λx + a is a short-hand notation for
Λµ

νx
ν + aµ. In SL(2, C) the Λ and Λ∗ define inequivalent representations

and both are needed to construct the irreducible representations of the Lorentz
group and the corresponding representations of the four-dimensional orthogonal
group.
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The resulting covariance properties of the Wightman functions and Minkowski
Green functions are

Wn(x1, · · · , xn) = Wn(Λx1 + a, · · · ,Λxn + a)

n
∏

i=1

Di(Λ,Λ
∗) (5)

and

Gn(x1, · · · , xn) = Gn(Λx1 + a, · · · ,Λxn + a)
n

∏

i=1

Di(Λ,Λ
∗), (6)

respectively.
The Hilbert space and dynamical unitary representation of the Poincaré

group [1] of the field theory is determined by the Wightman functions. This
is illustrated with the following example of a vector obtained by applying the
product of smeared field operators to the physical vacuum:

|Ψ〉 := φ(f)φ(g)|0〉 φ(f) :=

∫

d4xφ(x)f(x) (7)

where there is an implied sum over the components of f and φ. The Hilbert
space scalar product of |Ψ〉 and |Ψ〉′ is related to a four-point Wightman function
by

〈Ψ|Ψ′〉 :=
∫

dxdx′dydy′g∗(x′)f∗(y′)W (x′, y′; y, x)f ′(y)g′(x) (8)

where
W (x′, y′; y, x) := 〈0|φ†2(x′)φ†1(y′)φ1(y)φ2(x)|0〉. (9)

It is normally assumed that polynomials in the fields evaluated on Schwartz
test functions applied to the vacuum are a dense set of vectors in the Hilbert
space. Schwartz functions [7] [8] are infinitely differentiable functions which de-
crease faster than any inverse polynomial. Continuous multilinear functionals
on products of Schwartz functions are tempered distributions. All of the gener-
alized functions in this paper are assumed to be tempered distributions. This is
a mild assumption which ensures the analytic properties that are traditionally
assumed in quantum field theories.

The scalar product of vectors constructed by applying more complex poly-
nomials of smeared fields applied to the vacuum can also be expressed in terms
of Wightman functions.

The transformation properties of the state (7) follow from the covariance (4)
of the fields

U(Λ, a)|Ψ〉 = φ1(D1(Λ,Λ
∗)f ′)φ2(D2(Λ,Λ

∗)g′)|0〉 (10)

where f ′(x) = f(Λ−1(x− a)) and g′(x) = g(Λ−1(x− a)).
The Poincaré invariance of the Hilbert space scalar product

〈U(Λ, a)Ψ|U(Λ, a)Ψ′〉 = 〈Ψ|Ψ′〉 (11)
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follows if the test functions have the transformation property

U(Λ, a)f(x) = D(Λ,Λ∗)f(Λ−1(x − a)). (12)

This illustrates how the covariance of the Wightman functions leads to a uni-
tary representation of the Poincaré group on the Hilbert Space defined by the
Wightman functions.

The structure of the Hilbert space scalar product in (8) is not limited to
relativistic quantum field theory; it is the general form of the Hilbert-space
scalar product in any relativistic quantum theory where the Poincaré group is
implemented by manifestly covariant [9] transformations of test functions like
f and g. This suggests the possibility of formulating “approximations” to the
underlying field theory that remain relativistic quantum theories.

The construction of the relativistic quantum dynamics defined by generaliza-
tions of (8),(10) and (12,) can be compared to the familiar textbook construction
of Fock space Poincaré generators based on Noether’s theorem. The Noether’s
theorem construction is limited to free fields. The introduction of an interaction
leads to “generators” that are not densely defined operators on the Fock space.
They do not have self-adjoint extensions and attempts to regularize these “gen-
erators” so they become self-adjoint operators invariably lead to violations of
the commutation relations. The Wightman-function construction agrees with
the textbook construction for free fields, and it is not limited to perturbation
theory or Lagrangian field theory for interacting systems.

While the Wightman functions determine the quantum interpretation of the
field theory, they are difficult to use in models because they do not have inverses.
This is apparent from the structure of the Fourier transform of the two-point
Wightman function of a scalar field theory, which is, up to a constant, the
product of a mass-shell delta function and a positive energy Heaviside function.
In spite of their role in defining the underlying quantum theory, Wightman
functions have not been extensively used in practical applications.

The Minkowski Green functions have the advantage that as Green func-
tions, they are expected to have inverses, which make it possible to derive useful
equations, like the Bethe-Salpeter equation. The disadvantage of these Green
functions is that they are not directly related to the underlying quantum the-
ory. Their connection to a quantum theory is that for each time-ordering the
Minkowski Green function agrees with the Wightman function whose fields have
the same order as the Minkowski times. The quantum theory can be recovered
if there is enough analyticity to reconstruct the Wightman functions from the
limited information contained in the Minkowski Green function.

In quantum field theories the Euclidean Green functions or Schwinger func-
tions are related to the Wightman functions and Minkowski Green functions by
analytic continuation. Schwinger functions are important because (1) they exist
under mild conditions (2) they can be used to directly construct the underlying
relativistic quantum theory and (3) they are expected to have inverses. The
original use of analytic continuation of the Fourier transforms of the Minkowski
Green functions to imaginary energies is due to Dyson [10], who used the an-
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alytic continuation as a tool to study ultraviolet divergences in perturbation
theory.

In 1958 Schwinger [11] used the spectral condition of the physical interme-
diate states and Poincaré covariance to show that the n-point Minkowski Green
functions of a quantum field theory can be analytically continued to imaginary
times:

Sn(x1, · · · , xn) := lim
φ:0→π/2

= Gn(~x1, e
−iφt1, · · · , ~xn, e

−iφtn). (13)

In equation (13) and the remainder of this paper x = (x0, ~x) denotes a real
Minkowski four vector and x = (x0,~x) denotes a real Euclidean four vector. The
components of these vectors are related by

xk := (x0,~xk) = (−ix0
k, ~xk) xk := (x0, ~xk) = (ix0

k,~xk). (14)

This analytic continuation (13) defines the Schwinger functions for non-
coincident times, ti 6= tj . The existence of this analytic continuation is based
on a multi-variable generalization [12] of the Payley-Wiener-type theorem that
states that

f̃(t− t′) :=

∫

dEf(E)e−iE(t−t′) (15)

can be analytically continued to the lower-half (t−t′)-plane if f(E) is a tempered
distribution with support for positive energies. In the definition (13) the order
of the Euclidean times is the same as the order of the Minkowski times in
the Minkowski Green functions. The covariance properties of the Schwinger
functions Sn are not apparent from the definition (13) and will be discussed
separately.

The Fourier representation of Gn(x1, · · · , xn) can be used to extend the
analytic continuation in (13) to complex (xi − xi+1) with −(xi − xi+1) ∈ R4 +
iV+, where V+ is the open future-pointing light cone. On this domain the real
part of ipi · (xi − xi+1) is negative when pi is time-like with positive energy,
which ensures the analyticity. This domain is called the tube in the literature
[13]. In principle each time ordering of the Minkowski Green function has a
different analytic continuation. The different analytic continuations are defined
on disjoint domains characterized by different Euclidean time orderings. Also,
because for each time ordering the Minkowski Green function is equal to the
Wightman function with the fields ordered in the same order as the times,
each analytic continuation is the analytic continuation of a different Wightman
function.

Since the Wightman functions transform covariantly with respect to a finite
dimensional representation of the Lorentz group, (5), the complexification of
the covariance condition can be used to extend the domain of analyticity from
the tube to the domain generated from the tube by complex Lorentz transfor-
mations, called the extended tube [13].

This extension is done using the complex Lorentz group. Complex Lorentz
transformations are complex linear transformations that leave the Minkowski
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line element invariant. In the appendix it is shown that the most general com-
plex Lorentz transformation connected to the identity has the representation

Λ(A,B)µ
ν =

1

2
Tr(AσµB

tσν) = Λµ
ν(A,B) (16)

where A and B are independent SL(2, C) transformations. The covering group
of the complex Lorentz groups is SL(2, C)×SL(2, C). Real Lorentz transforma-
tions are obtained by taking A = B∗ = Λ. The connection with Euclidean co-
variance follows because four-dimensional complex orthogonal transformations
have a representation similar to (16),

Eµ
ν(A,B) =

1

2
Tr(Aσ̃µB

tσ̃†
ν) (17)

where σ̃µ = (iσ0, ~σ). In the Euclidean case real O(4) transformations have
A,B ∈ SU(2). It follows from (16) and (17) that the covering group of the
complex orthogonal group in four dimensions is also SL(2, C)×SL(2, C). Com-
plex covariance can be used to extend the analytic continuation to all points
x′i = Λ(A,B)−1(xi −a) that can be reached from points in the tube by complex
Lorentz transformations using

Wn(x′1, · · · , x′n) =

Wn(x1, · · · , xn)

n
∏

i=1

Di(Λ(A,B)) (18)

which is consistent with real Lorentz covariance when A = Λ = B∗ and with
real Euclidean covariance when A,B ∈ SU(2). Restricting to real Euclidean
points in the extended tube and letting A,B ∈ SU(2) leads to real Euclidean
invariance of each of the n! analytic continuations.

In quantum field theory the n! analytic continuations are defined on common
domains consisting of open sets of real Minkowski space-like separated points
called Jost points [13]. If the Wightman functions are constructed from local
fields the analytic continuations have to be identical on the Jost points be-
cause the order of the fields is irrelevant (up to sign for fermions) on space-like
separated points. The result is a that all of the n! analytic continuations are
part of a single-valued Euclidean covariant Green function with transformation
properties

Sn(x′1, · · · , x′n) =

Sn(x1, · · · , xn)

n
∏

i=1

Di(Λ(A,B)) (19)

with xµ′ = E(A,B)µ
νxν + aµ. This defines what we mean by Euclidean covari-

ance.
The real Euclidean transformation properties of the Schwinger functions are

obtained from those of the corresponding Wightman functions by replacing the
pair (Λ,Λ∗) by the SU(2) matrices (A,B):

D(Λ,Λ∗) → D(A,B) (20)
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An important property of the Schwinger functions is that they can be used
to directly formulate the underlying quantum theory. This was first done in
1973 by Nelson [14], who also related the Schwinger functions to moments of
a Euclidean functional integral. A more useful construction was given during
the same year by Osterwalder and Schrader[4][6]. Fröhlich [5] gave an elegant
reformulation of the Osterwalder-Schrader construction in terms of Euclidean
generating functionals. In [4] Osterwalder and Schrader identified properties of
Schwinger functions that are sufficient to reconstruct the underlying relativis-
tic quantum field theory. They exploited the relation between the Schwinger
functions and the Wightman functions, which are the boundary values of the
analytic continuation:

Wn(x1 · · ·xn) = lim
x0
1
>···>x0

n
→0

Sn(~x1, x
0
1 − ix0

1, · · · ,~xn, x
0
n − ix0

n). (21)

There are n! Wightman functions depending on the ordering of the n fields; the
ordering on the Euclidean times in the limit (21) selects the Wightman function
with the fields ordered in the same order as the Euclidean times. In equation
(21) there are no restrictions on the Minkowski times in the resulting Wightman
function. The other n!− 1 Wightman functions are selected by taking the limit
of the Schwinger function with different orderings on the Euclidean times. The
n! Wightman functions agree with n! analytic functions generated by the n!
time orderings of the Minkowski Green functions.

By exploiting this relationship Osterwalder and Schrader were able to find
conditions on the Schwinger functions that are, up to some technical growth
conditions [6], equivalent to the axioms given by Wightman. Furthermore, Os-
terwalder and Schrader were able to identify an independent subset of axioms
[4] that are sufficient to construct the Hilbert space and a unitary representation
of the Poincaré group with four momentum satisfying a spectral condition.

The relevant conditions on the Schwinger functions are that they should be
Euclidean covariant (19) tempered distributions which satisfy a property called
reflection positivity. Reflection positivity will be discussed more completely in
the next section. It is used to construct the physical Hilbert space scalar product
and is most simply illustrated with an example that is analogous to the example
(8). In the Osterwalder Schrader approach the scalar product (8) is replaced by

〈Ψ|Ψ′〉 =

∫

dxdx′dydy′g∗(θx′)f∗(θy′)S(x′, y′; y, x)f ′(y)g′(x) (22)

where f(x), g(x) are functions of four Euclidean space-time variables with dis-
joint positive-Euclidean-time support for 0 < y0 < a < x0 < b < ∞ and
θx = (−x0,~x) is the Euclidean time-reversal operator. Here a and b are constants
that serve to separate the Euclidean time support of f and g. This sesquilinear
form is the physical Hilbert space scalar product in the Osterwalder Schrader
formalism. In field theories the ordering on the support of the Euclidean times
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is equivalent to choosing an order of the fields in the Wightman functions. Re-
flection positivity requires that (22) is non-negative when |Ψ〉 = |Ψ′〉. Like the
Wightman case there are generalizations of (22) to more complicated states.
The surprising feature of (22) is the physical Hilbert space can be directly de-

fined in terms of the Schwinger functions, with no need to transform back to the

Minkowski formulation of the Hilbert space based on Wightman functions.
In the next section we discuss how the Euclidean covariance of reflection

positive Schwinger functions can be used to construct a unitary representation
of the Poincaré group on the Hilbert space defined by the scalar product (22).

This paper is concerned with a relativistic quantum theory which is not nec-
essarily a local quantum field theory. In applications where locality is relaxed,
assumptions need to be made about the relationship between the Wightman
functions, the Minkowski Green functions, and the Schwinger functions. In
the absence of locality the n! Wightman functions are no longer required to
be related. The Minkowski Green function does not necessarily have a single
valued analytic continuation. To proceed it is useful to assign a fundamental
significance to one of the three classes of generalized functions and use this to
formulate a quantum theory.

In this paper we always assume that the model Schwinger functions have a
more fundamental status. The model Schwinger functions are taken to be single
valued tempered distributions which satisfy the covariance condition (19). This
requirement is motivated by the observation that most of the models of interest
lead to single-valued Euclidean covariant Schwinger functions. For example,
models generated from Euclidean generating functionals and approximations
to Euclidean path integrals naturally lead to single valued Euclidean covariant
model Schwinger functions.

Since the model Schwinger functions will not have all of the properties of
the Schwinger functions of a local field theory, the relation to model Minkowski
Green functions and model Wightman functions cannot be expected to be iden-
tical to the relationship found in local field theories. The most important re-
quirement is that the model Schwinger functions will also be assumed to have
enough reflection positivity to build a relativistic quantum theory with the de-
sired particle content. The precise formulation of this condition will be discussed
in sections three and four.

The focus of this paper is properties of two- and four-point Euclidean Green
functions. Reflection positivity imposes conditions on the two and four-point
function for them to be part of a system of Schwinger functions that define the
Hilbert-space scalar product of a relativistic quantum theory.

The Bethe-Salpeter equation can be understood by considering the cluster
property of the four-point Schwinger function, which has the form

S = S0 + St (23)

where S0 is a sum of products of two-point Schwinger functions and St is the
truncated four-point Schwinger function. If S and S0 can also be understood
as Green functions in the traditional sense, i.e. as kernels of integral operators
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with inverses, then it is possible to define the Bethe-Salpeter Kernel:

K = S−1
0 StS

−1. (24)

When K 6= 0 the four-point Schwinger function S is generated by solving the
inhomogeneous Euclidean Bethe-Salpeter equation

S = S0 + S0KS (25)

given a Bethe-Salpeter kernel K.
In quantum field theory S, K, and S0 are only known formally and the

Bethe-Salpeter equation is a constraint that relates these three quantities. In
order to make this into a solvable equation two modifications are normally
made. First, S0 is replaced by the S0 of a free field theory. The virtue of this
“approximation” is that the resulting S0 is known. Second, the Bethe-Salpeter
kernel K is modeled, using either perturbative methods or theoretically and/or
experimentally motivated phenomenological methods. The cluster properties
(23) suggest that the kernel should be a short-ranged operator.

In this paper we examine the following stability question. Let K be a suf-
ficiently small, Euclidean covariant, model Bethe-Salpeter kernel and let S0 be
the Schwinger function of an underlying relativistic quantum theory. Is the so-
lution, S, of the Euclidean Bethe-Salpeter equation (25) the S of a relativistic
quantum theory? In the absence of such a stability, arbitrarily small uncer-
tainties in the model Bethe-Salpeter Kernel could lead to a theory that is no
longer a relativistic quantum theory. In this paper we show that for the spe-
cial case that S0 is the Schwinger function of a free field theory that S can fail
to satisfy the constraints imposed by reflection positivity for arbitrarily small
Euclidean-covariant kernels K. While this result does not apply to the exact
Bethe-Salpeter equation, where S0 is not the free S0, many applications of the
Bethe-Salpeter equation “approximate” S0 by the free S0.

In the next section we summarize the structure of a Euclidean Relativistic
quantum theory. We define reflection positivity and review how it is used to
construct the physical Hilbert space of the theory and the relativistic quantum
dynamics. We identify necessary conditions for reflection positivity that we use
to study four-point Schwinger functions in section five. The construction of a
free-particle dynamics is illustrated in section four. In section five we show that
the necessary conditions for reflection positivity, which are derived in section
three, can be violated for arbitrarily small Bethe-Salpeter kernels when S0 is the
S0 of a free-field theory. We also prove a result that suggests that the instability
may not appear in the exact Bethe-Salpeter equation. The implications of this
result are discussed in section six.

3 Euclidean Relativistic Quantum Mechanics

In this section we give a short description of Euclidean relativistic quantum
theory. We review how a collection of Euclidean-invariant reflection-positive

10



Schwinger functions are used to construct the physical Hilbert space and the
dynamical unitary representation of the Poincaré group of a relativistic quantum
theory. A readable description of the main elements of this construction can
can be found in [2]. Mathematical treatments of this construction can be found
in [4][6][5] [15]. Self-adjointness of the boost generators can be established using
the methods discussed in [16][17][18].

For the purpose of illustration we consider the case of Schwinger functions
for a scalar field. We discuss the spin 1/2 case in section three.

A relativistic quantum theory is defined by a unitary representation of the
Poincaré group [1] acting on the physical Hilbert space with four-momentum
generators that have a spectrum in the future-pointing light cone.

As discussed in section two the physical Hilbert space of Euclidean relativis-
tic quantum mechanics is defined by constructing an inner product on a nice
set of vectors; limits are used to complete the Hilbert space. As in the Wight-
man case, the Euclidean Green functions are assumed to yield finite results
when integrated against Schwartz test functions [7] of 4N Euclidean space-time
variables.

Let S be the space of finite sequences of Schwartz test functions in different
numbers of Euclidean space-time variables:

〈x|f〉 := {f0, f1(x11), f2(x21, x22), · · · , fk(xk1, · · · , xkk)} (26)

where fl(xl1, · · · , xll) is a Schwartz function in l Euclidean space-time variables.
These functions are the Euclidean replacements for the functions f and g that
appear in the Minkowski scalar product (8).

To construct the physical Hilbert space Osterwalder and Schrader [4] intro-
duce the subspace S> of S, where each of the functions fl has support for an
ordered set of positive Euclidean times, x0

ll > · · · > x0
l1 > 0 . The projection on

S> is denoted by Π>. The space S> is natural for two reasons. First, each Eu-
clidean time-ordering defines a scalar product that is equal to the corresponding
Minkowski scalar product defined in terms of the Wightman function with the
fields ordered in the same order as the Euclidean times. Second, the ordering
has a well-defined Minkowski limit if the Wightman functions are consistent
with requirements imposed by the spectral condition.

The Euclidean time-reversal operator Θ on S is defined by

〈x|Θf〉 := {f0, f1(θx11), f2(θx21, θx22), · · · , fk(θxk1, · · · , θxkk)}. (27)

where θ(x0,~x) := (−x0,~x).
Given a collection of Euclidean-covariant Schwinger functions

{Sn(x1, · · · , xn)}, (28)

which are tempered distributions, and test functions f, g ∈ S>, Osterwalder and
Schrader define the quadratic form

(Θf, Sg) = (f,ΘSg) :=
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∑

m,n

∫

d4x1 · · · d4xm+nf
∗
m(θxm, · · · , θx1)Sm+n(x1, · · · , xm+n)gn(xm+1, · · · , xm+n).

(29)
The support conditions on the functions f and g select the part of the Schwinger
function that has a given Wightman function as the boundary value of an ana-
lytic function.

The relation f ∼ g if and only if

(Θ(f − g), S(f − g)) = 0. (30)

defines an equivalence relation on S>. The functions f ∈ S> can be put into dis-
joint equivalence classes with respect to this equivalence relation; the equivalence
class containing f ∈ S> is denoted by [f ]∼. The equivalence class containing
zero is denoted by [0]∼. The equivalence relation is S dependent.

The sesquilinear form (29) is well-defined on equivalence classes:

〈[f ]∼|[g]∼〉 = (Θf, Sg) (31)

where f and g are any representatives of [f ]∼ and [g]∼ respectively.
Reflection positivity is the condition that

‖[f ]∼‖2 := 〈[f ]∼|[f ]∼〉 = (Θf, Sf) ≥ 0 (32)

and vanishes only for [f ]∼ = [0]∼.
A dense set of vectors in the physical Hilbert space is the space of equivalence

classes of functions [f ]∼ ∈ S> . The physical Hilbert-space inner product of two
vectors is given by (31), where the inner product can be evaluated using any
f ∈ [f ]∼ and g ∈ [g]∼. The physical Hilbert space is obtained by completing
the space of equivalence classes in the norm defined by (32).

This defines the physical Hilbert space directly in terms of the Schwinger
functions. Reflection positivity is equivalent to the statement that vectors in the

physical Hilbert space have positive length.
The involution, Θ, on the Euclidean space serves as a “conjugation oper-

ator”. We will show how this “conjugation” converts a representation of a
subgroup of the complex Euclidean group into a unitary representation of the
Poincaré group.

A necessary condition for reflection positivity is that it holds on subspaces of
S>. This ensures that vectors restricted to subspaces also have positive length.
The subspaces of most relevance to the Bethe-Salpeter equation are subspaces
generated by equivalence classes containing positive-time functions of one or
two Euclidean space-time variables. Reflection positivity implies the following
constraints on the two- and four-point Schwinger functions

∫

d4x1d
4x2f

∗
1 (θx1)S2(x1, x2)f1(x2) ≥ 0. (33)

∫

d4x1 · · · d4x4f
∗
2 (θx2, θx1)S4(x1, x2, x3, x4)f2(x3, x4) ≥ 0 (34)
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The relevant observation is that the two- and four-point Schwinger functions
must define a positive scalar product on the subspaces defined above. We test
these conditions in section four.

To complete the construction of a relativistic quantum theory we need to
construct a unitary representation of the Poincaré group on the physical Hilbert
space.

The Poincaré group is a subgroup of the complex Poincaré group, which
also contains the real orthogonal group in four space-time dimensions. The
infinitesimal generators of Euclidean transformations and Poincaré transforma-
tions are related by complex multiplication. Euclidean time-translations and
rotations in Euclidean space-time planes correspond to Poincaré time trans-
lations with imaginary times, and rotationless Lorentz boosts with imaginary
rapidity, respectively. While these finite transformations are unitary with re-
spect to a Euclidean scalar product, they are Hermitian with respect to the
physical scalar product (31). This is the reason that the Θ appears in the defi-
nition of the physical scalar product. The identity of the complex Lorentz group
and complex O(4) is discussed in the appendix.

The infinitesimal forms of spatial translation, rotations, Euclidean time
translations, and Euclidean space-time rotations are used to identify the in-
finitesimal generators of the Poincaré group. The operators H, ~P , ~J and ~B
satisfy the commutation relations of the Poincaré Lie algebra:

〈x|H |f〉 :=

{0, ∂

∂x0
11

f1(x11),

(

∂

∂x0
21

+
∂

∂x0
22

)

f2(x21, x22), · · ·} (35)

〈x|~P |f〉 :=

{0,−i ∂

∂ ~x11
f1(x11),−i

(

∂

∂ ~x21
+

∂

∂ ~x22

)

f2(x21, x22), · · ·} (36)

〈x| ~J |f〉 :=

{0,−i~x11 ×
∂

∂~x11
f1(x11),−i

(

~x21 ×
∂

∂~x21
+~x22 ×

∂

∂~x22

)

f2(x21, x22), · · ·} (37)

〈x| ~B|f〉 :=

{0,
(

~x11
∂

∂x0
11

− x0
11

∂

∂~x11

)

f1(x11),

(

~x21
∂

∂x0
21

− x0
21

∂

∂~x21
+~x22

∂

∂x0
22

− x0
22

∂

∂~x22

)

f2(x21, x22), · · ·}. (38)

Elementary computations show that these operators are Hermitian with respect
to the physical scalar product (31). The Poincaré commutation relations im-
ply that these operators are the Hamiltonian, linear momentum operators, the
angular momentum operators, and the rotationless Lorentz-boost generators.

13



For both H and ~B the Hermiticity follows because Θ changes the sign of the
Euclidean time.

When the model-Schwinger functions are covariant, rather than invariant,
and the discrete “field” indices transform with respect to a finite-dimensional
irreducible representation D(A,B) of SL(2, C) × SL(2, C) then the expression
for the rotation and Lorentz boost generators need to be modified

(

−i~x11 ×
∂

∂~x11

)

→
(

−i~x11 ×
∂

∂~x11
+ ~Σ

)

(39)

(

~x11
∂

∂x0
11

− x0
11

∂

∂~x11

)

→
(

~x11
∂

∂x0
11

− x0
11

∂

∂~x11
+ ~B

)

(40)

where
~Σ = i~∇φD(e

−i

2
~σ·~φ, e

i

2
~σt·~φ)aa′ (41)

and
~B = ~∇ρD(e

−i

2
~σ·~ρ, e

−i

2
~σt·~ρ)aa′ (42)

where the derivatives are evaluated at φ = ρ = 0 and ~σt is the transpose of ~σ.
We have glossed over two technical points. First, the Euclidean time trans-

lations and Euclidean space-time rotations that were used to construct H and
~B do not map S> to S>. For the time translations this is addressed by con-
sidering only future pointing Euclidean time translations, which do map S> to
S>. Reflection positivity can be used to show that this defines a contractive
Hermitian semigroup. Stone’s theorem for contractive Hermitian semigroups
[19] guarantees that H is a self-adjoint operator on the physical Hilbert space.
The contractive nature of the semigroup also implies that the Hamiltonian sat-
isfies the spectral condition. For the Lorentz transformations this is addressed
by restricting the domain of the transformations to successively larger positive-

time convex cones, ∆x
0

∆|~x| < tan(φ), in S> that map into S> for rotations through

sufficiently small angles, φ′, φ+ φ′ < π/2. Self-adjointness of the generators on
the physical Hilbert space is established by showing that these restricted trans-
formations are symmetric local semigroups [16][17][18], which necessarily have
self-adjoint generators.

The second technicality is that it is necessary to establish that the formal
operators are well defined on the equivalence classes that define Hilbert space
vectors. This is done by working on suitable domains of functions and integrat-
ing by parts. Specifically if f ∈ [0]∼ and X : S> → S>:

([g],ΘS[Xf ]) = (g,ΘSXf) = (Xg,ΘSf) = ([Xg],ΘS[f ]) = 0 (43)

which shows f ∈ [0]∼ implies Xf ∈ [0]∼, where X can be any of the operators,
~P , ~J, ~B or H .

The result of this construction is a physical Hilbert space and a set of ten self-
adjoint operators that satisfy the Poincaré commutation relations. This shows
how a collection of Euclidean-covariant, reflection-positive model Schwinger
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functions can be used to directly define a relativistic quantum dynamics satis-
fying the spectral condition. Note that all of the computations were performed
using only Euclidean space-time variables; the corresponding model Wightman
functions are not needed.

Particle exchange symmetry and microscopic locality put additional con-
straints on model Schwinger functions, but these additional constraints do not
impact our stability analysis.

4 One-Particle Systems:

Since this Euclidean formulation of the relativistic quantum theory is abstract
and possibly unfamiliar, in this section we show how it leads to familiar results
for the case of a free particle of mass m.

The two-point Schwinger function for a free field of mass m is

S2(x − y) :=
1

(2π)4

∫

d4p

p2 +m2
eip·(x−y). (44)

We first demonstrate that S2(x − y) is reflection positive [20]. Let f(x)
be any positive-time function of one Euclidean space-time variable. Reflection
positivity requires (32)

(f,ΘS2f) :=

∫

d4xd4yf(x)S2(θx − y)f(y) ≥ 0 (45)

for all f(x) with positive Euclidean time support.
To demonstrate the inequality (45) note

(f,ΘS2f)

=
1

(2π)4

∫

d4xd4yd4pf(x)
eip·(θx−y)

p2 +m2
f(y)

=
1

(2π)4

∫

d4xd4yd4pf(x)
e−ip0·(x0+y0)+i~p·(~x−~y)

(p0 + iωm(~p ))(p0 − iωm(~p ))
f(y) (46)

where
ωm(~p) :=

√

m2 + ~p · ~p. (47)

The p0 integral is computed using the residue theorem. The positivity of the
Euclidean times means that the contour in the p0 integral should be closed in
the lower half p0-plane. The result of the contour integral is

1

2

∫

d3p
|g(~p)|2
ωm(~p )

≥ 0 (48)

where

g(~p) :=
1

(2π)3/2

∫

d4yf(y)e−ωm(~p)y0−i~p·~y. (49)
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This is the standard Lorentz invariant scalar product for a particle of mass m,
with momentum space wave function g(~p).

The expressions for the Poincaré generators in (35-38) act on the functions
f , or more properly equivalences classes [f ]∼. Using these covariant forms of
the generators in equation (49) leads to equivalent forms of the generators as
operators acting on the wave functions g(~p):

H = ωm(~p) (50)

~P = ~p. (51)

~J = i~∇p × ~p (52)

~B = iωm
~∇p. (53)

These are the familiar forms of the single particle Poincaré generators in the
representation with the scalar product (48).

Similar results can be obtained for the case of spin 1/2 particles. For spin
1/2 particles the Euclidean two-point Green function is

S2(x − y) :=
1

(2π)4

∫

d4p
m− p · γe

p2 +m2
eip·(x−y) (54)

where
iγ0e = γ0 = −γ0; γi

e = γi. (55)

In this case, because the Minkowski Green function is normally defined with
a Dirac conjugate field rather than a Hilbert space adjoint, the γ0 needs to
be eliminated from S2 to get the continuation to the Wightman function that
serves as the kernel of the Hilbert space scalar product. This can be achieved
by introducing γ0 as the spinor part of the Θ operator:

(f,Θγ0S2f)

=
1

(2π)4

∫

d4xd4yd4pf(x) eip·(Θx−y)γ0m− p · γe

p2 +m2
f(y)

=

∫

d3pg†(~p)
Λ+(p)

(2π)3
g(~p) (56)

where

Λ+(p) :=
ωm(~p) + γ0~γ · ~p−mγ0

2ωm(~p)
(57)

is the positive energy Dirac projector and

g(~p) :=

∫

d4x e−ωm(~p)x0−i~p·~xf(x) (58)

as before, except in this case f(x) is a four-component covariant wave function.
Note that

Λ+(p) =
χ(p)χ†(p)

2ωm(~p)
(59)
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is a Hermitian matrix with

χ(p) =
√
mγ0um(~p) (60)

where um(~p) a Dirac u-spinor. The function χ(p) is a 2× 4 matrix that satisfies
the intertwining relation

Λχ(p) = χ(Λp)Rw(Λ, p) (61)

where Rw(Λ, p) is a Wigner rotation. This matrix intertwines Dirac spinor rep-
resentations of the Lorentz group with positive-mass positive-energy irreducible
representation of the Poincare group.

If we define

ψ(p) :=
1

(2π)3/2
χ†(p)g(~p) (62)

the scalar product

〈ψ|ψ〉 :=

∫

d3p

2ωm(~p)
ψ†(~p)ψ(~p) (63)

has the standard form of a mass m, spin 1/2 irreducible representation of the
Poincaré group. Note that two component spinors characteristic of spin 1/2
positive mass irreducible representations of the Poincaré group arise from the
factorization (59).

The intertwining relations (61) imply that when the generators (35-38) are
transformed to act on the Poincaré irreducible wave functions ψ(p) that the
generators take on the standard forms

~B = iωm
~∇p +

1

m+ ωm(p)
~p×~j (64)

~J = i~∇p × ~p +~j (65)

where ~j is the canonical spin operator that acts on the two-dimensional range
of χ

~Σχ(p) = χ(p)~jc (66)

where ~Σ is defined by (41).
This shows how the abstract Euclidean formulation of the relativistic quan-

tum dynamics associated with a set of model Schwinger functions given in sec-
tion three leads to the standard Minkowski description of the dynamics of a
single particle in terms of irreducible representations of the Poincaré group.

Since the many-point Schwinger functions for a system of free particles are
made up out of sums of tensor products of two-point functions, this result implies
reflection positivity for the full set of free-particle Schwinger functions.
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5 Stability

In this section we investigate the stability of reflection positivity. This is the
main result in this paper. Our analysis is limited to the necessary conditions
for reflection positivity given by equations (34) and (33).

To gain some insight into the problem we first consider a toy 2 × 2 ma-
trix model. We use this model to check stability of reflection positivity in the
simplest possible case.

The problem is to consider a model of the inhomogeneous Euclidean Bethe-
Salpeter equation

S = S0 + S0KS (67)

where S0 is positive and reflection positive. Note that while the positivity of
S is not required, for Schwinger functions of scalar fields it is used to derive
bounds needed to prove the spectral condition [20]. What are the restrictions
on K that preserve these properties?

To motivate the matrix model consider the quadratic form (f,ΘSf) and
model f by a constant fc times δ(~x)δ(x0 − t) with t positive. We also consider
the time reflected point t′ = θt = −t. We treat f as a column vector with
the upper component corresponding to the value of f = fc at Euclidean time
t and the lower component corresponding to the value f = 0 at the Euclidean
time-reversed point θt = −t.

In this model we define

Π> :=

(

I 0
0 0

)

(68)

and

Θ :=

(

0 I
I 0

)

. (69)

The quadratic form becomes

(f,ΘSf) = (fc, 0)

(

0 I
I 0

) (

s(~0, 0) s(~0, 2t)

s(~0,−2t) s(~0, 0)

) (

fc

0

)

= f2
c s(~0,−2t)

(70)
where (fc, 0) represents a row vector. In this case reflection positivity on this
one-dimensional subspace, analogous to (34), requires that s(~0,−2t) > 0.

We write this in a more abstract form by defining

s0 :=

(

s011 s012
s021 s022

)

=

(

s(~0, 0) s(~0, 2t)

s(~0,−2t) s(~0, 0)

)

. (71)

In this notation reflection positivity means

Π>ΘS0Π> =

(

s021 0
0 0

)

≥ 0 (72)

or s021 > 0. Euclidean invariance requires

s0 = Θs0Θ (73)
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which implies that s0ij are real and satisfy s011 = s022 and s012 = s021. It is
straightforward to show the requirements of positivity and reflection positivity
in this model are satisfied if

s011 > s012 > 0 (74)

which means that the matrix S0 must have positive elements with the diagonal
ones being larger than the off-diagonal ones. This condition must hold for any
2 × 2 sub-matrix associated with times ±t. For larger matrices it is only a
necessary condition; however this suggest that in the general case there is a
growth condition limiting the size of off diagonal elements relative to diagonal
elements.

The next step is to add a perturbation using a kernel K. In this case we
model the Bethe-Salpeter kernel K by an “Euclidean” invariant 2×2 Hermitian
matrix. If

K =

(

k11 k21

k12 k22

)

(75)

Hermiticity and Euclidean invariance require that K is real, and k11 = k22 and
k12 = k21. This means that “kernels” K can be parameterized by vectors in the
two-dimensional (k11, k12) plane. The equation for S is

(

s11 s21
s12 s22

)

=

(

s011 s012
s012 s011

)

+

(

s011 s012
s012 s011

) (

k11 k12

k12 k11

) (

s11 s21
s12 s22

)

.

(76)
This equation can be solved for S and the conditions for positivity and reflection
positivity are found to be:

k11 + k12 <
1

s011 + s012
(77)

k11 <
s011

det(S0)
=

s011
s2011 − s2012

(78)

k12 > − s012
det(S0)

= − s012
s2011 − s2012

. (79)

The important property of these inequalities is that they define a region that
contains an open set containing the origin in the (k11, k12) plane. This means
that reflection positivity is preserved in this model for sufficiently small Bethe-
Salpeter kernels. In this trivial model the reflection positivity condition is stable
with respect to small variations about the unperturbed system. This simple
construction provides clues about the key elements of a general stability con-
struction.

The next step is to consider the actual inhomogeneous Euclidean Bethe-
Salpeter equation. Abstractly we still have the operators Π>, Θ, S0, S, and K.
Euclidean covariance requires

[Θ, S] = [Θ,K] = [Θ, S0] = 0. (80)
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Under the conditions that S0 has an inverse the operator T is defined by

T = S−1
0 + S−1

0 SS−1
0 . (81)

This can be used to write S in the solved form

S = S0 + S0TS0. (82)

It follows from (25) and (82) that the Bethe-Salpeter T -operator can be deter-
mined directly by solving the equation

T = K +KS0T. (83)

If the Källén-Lehmann representation of the two-point function has a mass gap
and the Euclidean norm of K is sufficiently small this equation has a unique
solution.

If f ∈ S> is a function of two Euclidean space-time variables then the
(norm)2 of the vector [f ]∼ in the interacting theory is given by

‖[f ]∼‖2 = (ΘΠ>f, (S0 + S0TS0)Π>f). (84)

This can be written in the form

‖[f ]∼‖2 = (Π>f, (ΘS0 + S0ΘTS0)Π>f) (85)

where we have used the Euclidean invariance of S0. Equation (34) requires

that this form is non-negative if it is interpreted as the norm of a vector in an
underlying quantum theory. The main results of the paper are contained in
three theorems.
Theorem 1: If f 6= 0 satisfies

(Π>f,ΘS0Π>f) = 0 (86)

then there are arbitrarily small Euclidean covariant Bethe-Salpeter kernels that
violate reflection positivity of S.

To prove Theorem 1 note that (86) implies that the surviving contribution
to equation (84) is

‖[f ]∼‖2 = (Π>f, SΠ>f) = (S0Π>f, (ΘT )S0Π>f). (87)

Let
χ = S0Π>f (88)

which gives
‖[f ]∼‖2 = (Π>f,ΘSΠ>f) = (χ,ΘTχ). (89)

Note that χ is not an element of S>. Since the free S0 is invertible on the
full Euclidean space, χ is not zero. An arbitrarily small ΘT with Euclidean
covariant T can be chosen to have non-zero matrix elements on the subspace
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spanned by the χ’s. This quantity must be non-negative for this to represent
the square of the Hilbert-space norm in the interacting theory.

We are concerned with the stability of the sign of (89) for sufficiently small
T . If this expression is negative we get a violation of the necessary condition
(34) for reflection positivity; if it is positive, then T → −T gives a negative
result, independent of the size of the perturbation T . Note that T → −T is
equivalent to K → K− where K− is the solution to the integral equation

K− = −K + 2KS0K−. (90)

This will be small if K, considered as an operator, has a sufficiently small
Euclidean norm. This completes the proof of Theorem 1.

This is the stability problem that is the key cause for concern in this paper.
The reason that the problem did not appear in the 2×2 matrix model is because
the “unperturbed model” was implicitly constructed to have no null space.

The following theorems show that the condition for the instability to occur is
satisfied if S0 is constructed out of free two-point Schwinger functions. They also
show that the exact two-point Schwinger functions do not have this property.

Theorem 2: The null equivalence class of S0 , [0]∼, contains an infinite number
of functions if S0 is the Schwinger function of a free field theory:

Theorem 3: The null equivalence class of S0 , [0]∼, contains no non-zero
functions if S0 has a Källén-Lehmann weight with an absolutely continuous
component of its mass spectrum.

To prove these theorems we note that the general form of the two-point
Schwinger function for a scalar field theory is given by its Källén-Lehmann
representation

S0(x − x′) =
1

(2π)2

∫

d4pdmρ(m)
eip0(t−t

′)+i~p·(~x−~x′)

p2 +m2
. (91)

A function f(~x, t) with positive-time support is in the null equivalence class of
S0 on the range of Π> if and only if

(f,ΘS0f) = 0. (92)

To see what this means note that

(f,ΘS0f) =

∫

f∗(~x,−t)
1

(2π)2

∫

d4pdmρ(m)p
eip0(t−t

′)−i~p·(~x−~x′)

(p0 − iωm(~p ))(p0 + iωm(~p ))
f(~x′, t′)d4xd4x′.

(93)
Direct calculation of this gives

(f,ΘS0f) =

∫

d3pdmρ(m)

∣

∣

∣

∣

∣

∫

dtf̃(~p, t)
2πe−ωm(~p)t

√

ωm(~p)

∣

∣

∣

∣

∣

2

(94)
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where

f̃(~p, t) :=
1

(2π)3/2

∫

d3xei~p·~xf(~x, t). (95)

This will vanish if and only if

∫

dtf̃(~p, t)
2πe−ωm(~p)t

√

ωm(~p)
= 0 (96)

for all values of ~p and all m in the spectrum of the Källén-Lehmann weight,
ρ(m), of the two-point function. A necessary and sufficient condition for f to
represent a function in the null equivalence class of S0 is

I =

∫

dtf̃(~p, t)e−ωm(~p)t = 0 (97)

for all ~p and all m in the spectrum of the Källén-Lehmann weight.
We first consider the free field case where there is only a single mass (ρ(m) =

δ(m −m0)). We show how to construct a large class of functions f̃(~p, t) with
support on compact positive Euclidean time intervals [a, b], 0 < a < b < ∞, in
the null equivalence class of S0. Let χ(t) be a Schwartz function with support
on [a, b] satisfying the normalization condition

∫ b

a

dtχ(t) = 1, (98)

let g̃(~p)ebωm(p) be a Schwartz function of ~p and let

h(~p) :=

∫

dte−ωm(~p)tχ(t). (99)

Define
f̃(~p, t) := χ(t)g̃(~p) × [1 − eωm(p)th(~p)]. (100)

By construction f̃(~p, t) is a non-trivial function with compact positive-time sup-
port on [a, b] satisfying (f,ΘS0f) = 0.

In the Euclidean Bethe-Salpeter equation S0 is a sum of products of two-
point Schwinger functions. From the discussion above, if the individual Schwinger
functions have single masses then it is possible to find functions with support in
any compact positive time interval that are in the null equivalence class of S0.
Choosing products of functions with disjoint positive time support it is possible
to find functions in the range of Π> that are in the null equivalence class of the
tensor product of two ΘS0’s.

On the other hand it is clear that ΘS0f is non-zero since for g = Θf

(g,ΘS0f) = (f, S0f) =
1

(2π)4

∫

d4pd4xd4yf∗(~x, tx)
eip·(x−y)

p2 +m2
f(~y, ty) =

∫

d4p
|f̂(~p, p0)|2
p2 +m2

> 0, (101)
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where f̂(~p, p0) is the four dimensional Fourier transform of f(~x, tx). This implies
that for any f in the null equivalence class of S0 there are functions g with no
support restrictions that satisfy

(g,ΘS0f) 6= 0. (102)

If there are exchange contributions to the Green functions, we have

([f1]∼[f2]∼,ΘS0[f1]∼[f2]∼) =

([f1]∼,ΘS01[f1]∼)([f2]∼,ΘS01[f2]∼) + ([f1]∼,ΘS01[f2]∼)([f2]∼,ΘS01[f1]∼)
(103)

which is zero if [f1]∼ = [f2]∼ = [0]∼.
It follows that if S0 is the S0 of a free field that Π>ΘS0Π> has a non-trivial

null space on the range of Π>. This completes the proof of Theorem 2.
The analysis above also applies to the spin 1/2 case because the t dependence

in (97) and (58) is identical.
This shows that solutions of the Euclidean Bethe-Salpeter equation formu-

lated with a free S0 are not reflection-positivity stable with respect to small
perturbations. This means one can alway find arbitrarily small Bethe-Salpeter
kernels that make ‖[f ]∼‖2 = ([f ]∼,ΘS[f ]∼) < 0, which violates reflection posi-
tivity.

Since the two-point functions that appear in the exact Bethe-Salpeter equa-
tion of a local field theory are not generally sums of products of free Schwinger
functions, it is worth investigating if these more realistic two-point functions
have a non-trivial null equivalences classes. Theorem 3 addresses this question.

To prove Theorem 3 fix ~p. The condition for f̃(~p, t) to be in the null equiv-
alence class of S0 is (97).

If f̃(~p, t) is a Schwartz function in t with support for positive t then for fixed
~p

F (z) :=

∫

dtf̃(~p, t)e−zt (104)

is an analytic function for <(z) > 0. Asm varies continuously in the spectrum of
the Källén-Lehmann weight z = ωm(~p) = z(m) traces out a real interval in the
domain of analyticity of F (z), where F (z(m)) = 0. Since F (z) is analytic in the
right half plane, it must be identically zero on the entire domain of analyticity.
If f̃(~p, t) is a Schwartz function in t for fixed ~p this is continuous on the boundary
as y → 0. It follows that

∫

dtf̃(~p, t)e−iyt = lim
x→0+

F (x+ iy) = 0 (105)

which means that the Fourier transform of f̃(~p, t) in t is identically zero. This
same argument can be applied to each ~p. This proof can be extended to the
case that f̃(~p, t) is a tempered distribution in t [21].

Since this can be done for any ~p it follows that there are no non-zero functions
in the null equivalence class of S0 if the spectrum of Källén-Lehmann weight has
any absolutely continuous component. This completes the proof of Theorem 3.
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This is an encouraging result that leaves open the possibility that a stability
result might be possible if the Bethe-Salpeter equation is formulated with a
more realistic two-point function in the driving term.

6 Conclusion

In this paper we proved that the solution of the Euclidean Bethe-Salpeter equa-
tion

S = S0 + S0KS (106)

with S0 a free field Schwinger function can violate reflection positivity for ar-
bitrarily small Euclidean covariant kernels K. When reflection positivity is vi-
olated, the standard axiomatic construction of the physical Hilbert space leads
to a pathological inner product with negative (norm)2 vectors, making it im-
possible to give the theory a quantum mechanical interpretation.

The basis of the instability is simple to understand. In quantum field theory
the quantum mechanical scalar product can be expressed directly in terms of
the Schwinger functions as

〈f |g〉 := (Π>f,ΘSΠ>g). (107)

The Schwinger function can be expressed using a cluster expansion as the sum
of a linked term and unlinked term

S = S0 + S0TS0 (108)

where T is Euclidean covariant. The Euclidean Bethe-Salpeter equation gener-
ates the linked terms in terms of the Bethe-Salpeter kernel, K. If a test function
f in the range of Π> satisfies (Π>f,ΘS0Π>f) = 0 then the expression for the
square of the norm of the corresponding vector is

‖f‖2 := (Π>f, S0ΘTS0Π>f) = (S0Π>f,ΘTS0Π>f). (109)

If we pick an arbitrary Euclidean covariant T satisfying ‖T‖e < ε that makes
the above expression non-zero, then either the (norm)2 is negative or it can be
made negative by changing the sign of T . In either case we end up with an
instability for an arbitrarily small perturbation T . Similar remarks apply to the
kernel K.

The existence of the instability depends on the existence of functions of
Euclidean space-time variables with Euclidean-time support in the range of Π>

that satisfy (f,ΘS0f) = 0. We exhibited a large class of these functions for the
case that S0 is the S0 of a free field theory. Conversely, we argued that there are
no such functions when the Källén-Lehmann weight of the two-point function
includes a continuous mass spectrum. This suggests that the instability only
impacts model Bethe-Salpeter equations where the driving term is replaced by
the free S0
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The problems with the sign of the Hilbert space norm are unrelated to sign
problems that sometimes occur with the normalization of Bethe-Salpeter ampli-
tudes [22]. The signs associated with the Bethe-Salpeter normalization condition
are directly related to the normalization of the Green function, however they
say nothing about the underlying Hilbert space of the theory.

Negative norms can appear in gauge theories. In the case of gauge theories
negative norms arise because the space generated by applying polynomials of
the field operators to the vacuum includes unphysical degrees of freedom. The
problem identified in this paper occurs in models of theories where polynomials
in the fields applied to the vacuum only generate physical states. Thus the
negative norms identified in this paper are associated with vectors that should
represent physical states. An investigation of the analogous stability question
in a gauge theory is beyond the scope of this paper.

Another question is whether the constraint of Euclidean covariance is the
appropriate minimal constraint on the model Bethe-Salpeter kernels. We were
unable to identify other generic constraints which are motivated by the structure
of local quantum field that would prevent the instability.

Our interest in this instability arose from attempts to construct a robust class
of relativistic quantum models based on solutions of a Euclidean Bethe-Salpeter
equation with the driving term being the S0 of a free field theory. One goal
was to identify a class of model Euclidean-Bethe Salpeter kernels, for example
small, Euclidean-covariant separable kernels, that could be used to construct
relativistic quantum models, under the assumption that the resulting model
model-Schwinger functions have the same relation to the underlying quantum
theory as the exact Schwinger functions. The identification of the instability in
this paper shows that this problem has no solution if the kernels are allowed
to be arbitrary Euclidean covariant kernels with sufficiently small Euclidean
norms.

This work suggests that an interesting problem is to investigate the more
realistic case, where the weight of the Källén-Lehmann representation of the two-
point function has a non-empty absolutely continuous spectrum. The absence
of a null space suggest that it might be possible to generalize the analysis of the
matrix model to to find bounds on the kernel, expressed in terms of S0, that
might lead to stability. A result of this type would provide useful restrictions on
model Bethe-Salpeter kernels that ensure a relativistic quantum interpretation.

The authors have benefited from useful discussions with P.E.T. Jorgensen,
F. Coester, M. Fuda and D. Phillips.
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Appendix: The Complex Euclidean/Lorentz Group

The complex Lorentz group [13] and complex O(4) are the same group.
The covering group of both groups is SL(2, C) × SL(2, C). To illustrate this
connection let x be a real Lorentz four vector. Let

σµ = (I, σ1, σ2, σ3) (110)

be the 2× 2 identity matrix and the three 2× 2 Pauli spin matrices. Define the
Hermitian 2 × 2 matrix

X := xµσµ =

(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)

. (111)

This definition implies:

xµ =
1

2
Tr[σ†

µX ]. (112)

The determinant of the matrix X ,

det(X) = −x · x = (x0)2 − ~x · ~x, (113)

is the Lorentz invariant length of x. Also note that for real x, X† = X .
The set of non-trivial linear transformations that preserve both det(X) and

X = X† have the form:
X ′ = ΛXΛ† (114)

where Λ is any complex 2×2 matrix with det(Λ) = 1. These matrices have a 2 to
1 correspondence with the real Lorentz transformations continuously connected
to the identity:

Λµ
ν :=

1

2
Tr[σµΛσνΛ†] (115)

with Λ and −Λ corresponding to the same real Lorentz transformation. This
can be derived by multiplying (114) by σµ and taking the trace using the trace
formula (112). Rotations correspond to the case that Λ is unitary while rota-
tionless boosts correspond to the case the Λ is a positive matrix.

Including indices on X → Xab the transformation properties are

X ′
ab = Λa

a′ ⊗ (Λ∗)b
b′Xa′b′ . (116)

This shows that a four vector transforms covariantly with respect to Λ ⊗
Λ∗. For a general complex Λ, Λ and Λ∗ define inequivalent representations of
SL(2, C); they cannot be related by a similarity transformation. These are the
fundamental representation of SL(2, C) and are the building blocks of all (finite
dimensional) spinor and tensor representations of the Lorentz group.
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In a similar manner let x be a real Euclidean four vector. Let

σeµ = (iI, σ1, σ2, σ3) (117)

and

X := xµσeµ =

(

ix0 + x3 x1 − ix2

x1 + ix2 ix0 − x3

)

. (118)

This can be inverted using multiplication by the Pauli matrices and taking
traces:

xµ =
1

2
Tr(σ†

eµX). (119)

Note that
det(X) = −x · x = −(x0)2 −~x ·~x (120)

which is (−) the Euclidean invariant (length)2 of x. Also note for real x that
X = −σ2X

∗σ2.
This condition is preserved for

X′ = AXBt (121)

provided both A and B are unitary. In terms of the individual Euclidean com-
ponents

Eµ
ν = E(A,B)µ

ν :=
1

2
Tr[σ†

eµAσeνB
t]. (122)

This can be derived by multiplying (121) by σ†
eµ and taking the trace using the

trace formula (119).
Including indices on the X → Xab then the transformation properties are

Xab → X′
ab = Aa

a′ ⊗Bb
b′Xa′b′ . (123)

This shows that a Euclidean four vector transforms covariantly with respect to
A×B.

The restrictions X ′ = AXA† with det(A) = 1 and X′ = AXBt with A and
B unitary are designed to keep the components of the Minkowski or Euclidean
four vectors real. For A and B arbitrary complex 2× 2 matrices with det(A) =
det(B) = 1 the invariant length (Minkowski or Euclidean) is still preserved.
What changes is that the individual components of the vectors are complex.
The complex transformations that act on Lorentz or Euclidean four vectors are

Λ(A,B)µ
ν :=

1

2
Tr[σµAσνB

t] (124)

and

E(A,B)µ
ν :=

1

2
Tr[σ†

eµAσeνB
t]. (125)

These two representation differ by a similarity transformation that multiplies
Minkowski time by i to get the Euclidean time. This means the any four vec-
tor has Euclidean and Minkowski components, xµ and xµ respectively. Under
SL(2, C) × SL(2, C) they transform like

xµ → x′µ = Λ(A,B)µ
νx

ν (126)
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or equivalently
xµ → x′µ = E(A,B)µ

νxν . (127)

The Lie algebra of the Lorentz group can be derived by considering the appro-
priate infinitesimal complex Euclidean transformations

Transformation properties of Euclidean Green functions can be determined
by the transformation properties of the corresponding Minkowski functions by
replacing the fundamental representations (Λ,Λ∗) by the pair of SU(2) matrices
(A,B).

In applications it is important to understand the transformation properties
of tensor and spinor quantities with respect to Euclidean transformations, given
a knowledge of the transformation properties of the corresponding Minkowski
quantities. In general the transition is made from the finite dimensional repre-
sentation D(Λ,Λ∗) of the Lorentz group to the finite dimensional representation
D(A,B) of the four dimensional orthogonal group by making the replacements
Λ → A and Λ∗ → B.
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