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Wavelet methods in the relativistic three-body problem
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We discuss the use of wavelet bases to solve the relativistic three-body problem in momentum space. We
address the treatment of the moving singularities that appear in the relativistic three-body problem. Wavelet bases
can be used to transform momentum-space scattering integral equations into an approximate system of linear
equations with a sparse matrix. This has the potential to reduce the size of realistic three-body calculations with
minimal loss of accuracy. The wavelet method leads to a clean interaction-independent treatment of the scattering
singularities that does not require any subtractions.
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I. INTRODUCTION

This is the third paper [1,2] in a series of investigations
designed to explore the potential advantages of using wavelet
numerical analysis to solve scattering problems. Our long-
term goal is to apply these methods to solve the relativistic
three-body problem.

Commercially, wavelets are used to convert raw digitized
photographic images to compressed JPEG files [3]. In this
application the data compression leads to a large savings in
storage space with a minimal loss of information. The com-
pression involves expanding the raw digital image in a wavelet
basis and setting the smaller expansion coefficients to zero. The
kernel of a scattering integral equation and a raw digital image
can both be approximated by rectangular arrays of numbers
that describe structures with several scales. This suggests that
the bases used to compress digital images could be used to
generate accurate sparse-matrix approximations to the kernel.

The ability to construct numerically exact solutions to
the quantum-mechanical three-body problem coupled with
the ability to accurately measure complete sets of experi-
mental observables constrains the form of the three-nucleon
Hamiltonian. These constraints have resulted in the con-
struction of realistic model nucleon-nucleon interactions
[4–6]. When these interactions are used in the many-nucleon
Hamiltonian, the resulting dynamical model provides a good
quantitative description of low-energy nuclear physics [7].

The state of the art in few-body computations has improved
to the point where numerically exact scattering calculations at
energy and momentum transfers of hundreds of mega-electron-
volts have been performed [8]. Higher-energy calculations
are possible. As in the low-energy case, for higher-energy
reactions the structure of Hamiltonians can be constrained
by the consistency of the few-body calculations with precise
measurements of complete sets of experimental observables.

The success of the few-body approach to low-energy
nuclear physics is a consequence of (1) knowing the relevant
degrees of freedom (nucleons), (2) working with the most
general Hamiltonians involving these degrees of freedom
that are consistent with the symmetries of the system
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(Galilean invariance), and (3) understanding the relation
between the few- and the many-body problems (cluster
properties). To extend this success to reactions involving
higher-energy scales, (1) the relevant degrees of freedom
may have to include explicit mesonic or subnucleonic de-
grees of freedom, (2) Galilean invariance must be replaced
with Poincaré invariance, and (3) cluster properties must be
maintained.

Each of the required extensions of low-energy nuclear
dynamics is nontrivial, and progress has been made on all three
problems [8–13]. The purpose of this paper is to focus on how
to use wavelet numerical analysis to treat the type of moving
singularities that appear in the Poincaré invariant three-body
problem. Although the scope of this paper is limited to three-
nucleon models with no explicit mesonic or subnucleonic
degrees of freedom and S-matrix cluster properties [14],
the formulation and advantage of methods discussed in this
paper are straightforward to extend to systems with explicit
mesonic degrees of freedom and stronger forms of cluster
properties [13]. These methods can also be used to solve the
nonrelativistic three-body problem. Moving singularities are a
generic feature of the dynamical equations in all of these cases.

Relativistic few-body equations are naturally formulated
in momentum space. Relativistic kinematic factors, Wigner
rotations, and Melosh rotations are all multiplication operators
in momentum space. The compactness of the iterated Faddeev-
Lovelace kernel implies that the kernel of the integral equations
can be uniformly approximated by a finite matrix, resulting in
a finite linear system. In the momentum representation these
linear systems have large dense matrices, which increase in size
with increasing energy and momentum transfer. It is desirable
to be able to perform accurate calculations at energy and
momentum scales at which subnuclear degrees of freedom are
relevant. At these scales a relativistic treatment is required and
advances in computational efficiency are needed to perform
realistic calculations. The ability of the wavelet transform
to efficiently transform a dense matrix to an approximate
sparse matrix suggests that wavelet methods can provide a
powerful tool for improving the efficiency of both relativistic
and nonrelativistic few-body computations.

The advantages of using wavelet numerical analysis to solve
momentum-space scattering integral equations were investi-
gated in Refs. [1,2]. These papers used wavelet numerical
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analysis to solve the Lippmann-Schwinger equation for a
system of two nucleons interacting with a Malfliet Tjon V
potential [15,16] by use of partial-wave expansions [1] and
direct integration [2]. In both applications the kernel of the
integral equation was accurately approximated by a sparse
matrix, which resulted in accurate approximate solutions. The
success of these applications indicates that wavelet numerical
analysis will have similar advantages when applied to the
relativistic three-body problem.

The feature of the three-body problem that is not present in
the two-body applications is moving singularities. The method
used to treat fixed singularities in Refs. [1,2] is not applicable
to problems with moving singularities. The purpose of this
paper is to illustrate how to apply wavelet numerical analysis
to treat the type of moving singularities that appear in the
relativistic three-body problem.

II. OVERVIEW—WAVELET NUMERICAL ANALYSIS

In this section we give a brief introduction to the use
of wavelets in scattering calculations. This is because few-
body scattering problems require a specialized application of
wavelets that is not discussed extensively in the literature.

The applications in Refs. [1,2] used Daubechies’ wavelets.
The Daubechies’ wavelets are orthonormal basis functions
with compact support, and the results of Refs. [1,2] indicate
that the Daubechies’ wavelets are suitable for scattering
calculations.

Daubechies’ wavelets [17,18] are discussed in many texts
on wavelets [19–22]. They are fractal functions that have
complex structures on all scales. Because the basis functions
have structure on all scales, numerical applications with
wavelets require a different approach to numerical analysis;
hence we use the term wavelet numerical analysis.

We use the Daubechies’ wavelets because they are a dense
orthonormal set of compactly supported functions with the
property that finite linear combinations can locally pointwise
represent low-degree polynomials.

Wavelet bases are generated from two functions by use of
translations and unitary scale transformations. These functions
are called the scaling function and the mother wavelet. The
scaling function φ(x) is the solution of the linear renormaliza-
tion group equation:

Dφ(x) =
2K−1∑
l=0

hlT
lφ(x), (1)

with normalization ∫ ∞

−∞
φ(x)dx = 1. (2)

Equation (1) is called the scaling equation.
In Eq. (1) D is the unitary scaling operator,

Df (x) ≡ 1√
2
f

(x

2

)
, (3)

which stretches the support of the function by a factor of 2.
The operator T is the unitary unit translation operator:

Tf (x) = f (x − 1). (4)

TABLE I. Daubechies’ K = 3 scaling coefficients.

hl K = 3

h0 (1 + √
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√
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√
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√

5 + 2
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10)/16
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√

10 − 2
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10)/16
√
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h4 (5 + √
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√
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10)/16
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h5 (1 + √
10 −
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5 + 2

√
10)/16

√
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The coefficients hl are real numbers that determine the
properties of the scaling function. K is a positive integer. The
calculations in Refs. [1,2] used Daubechies’ K = 3 wavelets.
The reason for this choice is discussed later. For the K = 3
Daubechies’ wavelets, the six scaling coefficients hl are given
in Table I.

The fractal structure of φ(x) is a consequence of Eq. (1)
that shows that the scaling function on a given scale is a finite
linear combination of translates of the same function on half
the scale.

The scaling equation implies that the scaling coefficients hl

satisfy

2K−1∑
l=0

hl =
√

2, (5)

and the solution φ(x) of Eq. (1) has support on the interval
[0, 2K − 1] [23].

The unit translates of the scaling function are orthonormal,

(T mφ, T nφ) = δmn, (6)

provided the scaling coefficients satisfy the additional con-
straints

2K−1∑
l=0

hlhl−2m = δm0. (7)

The scaling function φ(x) is continuous (for K > 1) and can
be computed exactly at all dyadic rationals by use of Eqs. (1)
and (2). This method is used to compute the Daubechies’
K = 3 scaling function plotted in Fig. 1.
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FIG. 1. Daubechies’ K = 3 scaling function.
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The subspace of square integrable functions on the real line
that is spanned by integer translates of the scaling function
T nφ(x) is the subspace V0:

V0 ≡
{

f (x) =
∞∑

n=−∞
fnT

nφ(x)|
∞∑

n=−∞
|fn|2 < ∞

}
. (8)

Application of powers of the scaling operator Dk to V0

defines subspaces Vk with coarser resolution (k > 0) or finer
resolution (k < 0):

Vk ≡ DkV0. (9)

We call the spaceVk the approximation space with resolution k.
The resolution determines the size of the smallest features that
can be approximated by functions in Vk .

The scaling functions

φkn(x) ≡ DkT nφ(x) = 1

2k/2
φ

( x

2k
− n

)
(10)

are an orthonormal basis for Vk . The support of φkn(x) is
[2kn, 2k(n + 2K − 1)].

The scaling equation implies the inclusions

Vk ⊃ Vk+1. (11)

The orthogonal compliment of Vk+1 in Vk is denoted by Wk+1:

Vk = Vk+1 ⊕ Wk+1. (12)

Orthonormal basis functions ψkn(x) for the subspaces Wk

are elements of Vk−1 defined by

ψkn(x) = DkT nψ(x), (13)

ψ(x) =
2K−1∑
l=0

glD
−1T lφ(x), (14)

where

gl = (−)lh2K−l−1. (15)

The subspaces Wk are called the wavelet spaces, and the
basis functions ψkn are called wavelets. The support of ψkn(x)
is identical to the support of φkn(x). Because the wavelets
are finite linear combinations scaling functions, they are also
fractal functions.

The function ψ(x) = ψ00(x) is called the mother wavelet;
the Daubechies’ K = 3 mother wavelet is shown in Fig. 2.
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FIG. 2. Daubechies’ K = 3 mother wavelet.

The coefficients hl for the Daubechies’ K wavelets are
determined by Eqs. (5) and (7) and the requirement that
the mother wavelet be locally orthogonal to low-degree
polynomials:∫ ∞

−∞
ψ(x)xndx = 0; n = 0, 1, . . . , K − 1. (16)

It follows that ψkm(x) is locally orthogonal to all polynomials
of degree K − 1. Equation (16) can be expressed directly in
terms of the scaling coefficients:

2K−1∑
l=0

lkgl =
2K−1∑
l=0

lk(−)lh2K−1−l = 0, k = 0 · · · K − 1. (17)

For any K > 0, conditions (5), (7), and (17) determine the
coefficients hl up to reflection:

hl → h′
l ≡ h2K−1−l . (18)

The entries in Table I are the solutions of these equations for
K = 3. The Daubechies’ wavelets have the property that, as
k → −∞ (infinitely fine resolution), the space Vk becomes all
of L2(R).

Decomposition (12) implies that

Vk = Wk+1 ⊕ Wk+2 · · ·Wk+m−1 ⊕ Wk+m ⊕ Vk+m (19)

for any m > 0. The identification of these spaces means that
functions in the approximation space Vk can be expanded as
linear combinations of the scaling basis functions of resolution
k or equivalently as linear combinations of the scaling basis
functions of a coarser resolution k′ = k + m and wavelet
basis functions of all resolutions from k + 1 to k + m. The
orthogonal transformation that relates these orthonormal bases
is called the wavelet transform. For N basis elements, the
wavelet transform can be computed in O(N ) steps, which
is faster than a fast Fourier transform.

If k → −∞ with l = m + k finite, equivalence (19) means
that the basis functions on the right-hand side of Eq. (19)
become a basis for L2(R). Because the wavelet basis functions
ψkn(x) are locally orthogonal to degree K − 1 polynomials
and only a finite number of the scaling basis functions φln(x)
are nonzero at any x, it follows that finite linear combinations
of φln(x) must be able to locally pointwise represent degree
K − 1 polynomials. This holds for any l.

Thus, for the Daubechies’ K = 3 wavelets, finite linear
combinations of the scaling basis functions φkn(x) can locally
pointwise represent polynomials of degree two, whereas the
wavelet basis functions ψkn(x) are orthogonal to degree-two
polynomials.

Equation (19) implies that the projection Pk of a function
f (x) on Vk can be represented by

Pkf (x) =
∑

n

anφkn(x), an =
∫

f (x)φkn(x)dx, (20)

or, equivalently,

Pkf (x) =
∑

n

bnφk+m,n(x) +
k+m∑

k′=k+1

∑
n

ck′nψk′,n, (21)

bn =
∫

f (x)φk+m,n(x)dx, ckn =
∫

f (x)ψkn(x)dx. (22)
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For a sufficiently fine resolution (large − k) the scaling
basis functions φkn(x) have small support and integrate to
the n-independent constant 2k/2. If f (x) varies slowly on the
support of the φkn(x) [intervals of width (2K − 1)2k], then
the expansion coefficients an are well approximated by an
evaluation of f (x) at any point in the support of φkn(x) and
multiplication by 2k/2. This implies that the scaling function
basis coefficients an are well approximated, up to a fixed
multiplicative constant, by a sampling of the original function
at points separated by 2k . These coefficients play the role of the
raw image in a digital photograph. They provide an accurate,
but inefficient, approximation of the function f (x).

In representation (21), if f (x) can be accurately approx-
imated by a polynomial of degree K − 1 on the support of
ψkn(x), then ckn ≈ 0. This means that if f (x) can be well
approximated by a low-degree local polynomial on intervals
of width (2K − 1)2k , then the coefficients ckn will be small
and the function can be accurately approximated if these
coefficients are replaced with zero. The mean square error of
this approximation is the sum of the squares of the discarded
coefficients, which can be controlled by the selection of a
maximum size of the discarded coefficients. Even though most
of the basis functions in representation (21) are orthogonal
to low-degree polynomials, the equivalence between repre-
sentations (20) and (21) means that representation (21) can
still locally pointwise represent low-degree polynomials. In
addition, when the inverse of the wavelet transform is applied
to the approximate expansion, an approximation to f (x) in the
scaling function basis is obtained.

In representation (21), the coefficients bn give a coarse
description of the function and the coefficients ckn add the
details on finer scales.

The scaling equation and normalization condition can be
used to derive exact expressions for the moments

〈xm〉φkn
≡

∫
φkn(x)xmdx, (23)

and partial moments of the scaling function

〈xm〉φkn[l,l′] ≡
∫ 2k l′

2k l

φkn(x)xm, n � l, l′ � 2K−1+ n, (24)

in terms of the scaling coefficients hl . Explicit expressions for
the moments and partial moments appear in Refs. [1,2,23].

For the Daubechies’ K wavelets with K > 1, the second
moment of the scaling function is the square of the first
moment. This means that for K = 3 the first moment provides
a single quadrature point that will integrate the scaling function
times any second-degree polynomial exactly:∫

φ(x)(a + bx + cx2)dx = a + b〈x〉φ + c〈x〉2
φ. (25)

This is called the one-point quadrature. Translating and rescal-
ing leads to one-point quadratures for all of the scaling basis
functions φkn(x). This is a good approximation whenever the
function being integrated can be accurately approximated as a
degree-two polynomial on the support of φkn(x). The choice
of K = 3 Daubechies’ wavelets in Refs. [1,2] is motivated
by their ability to locally pointwise represent second-degree

polynomials and to exactly integrate these local polynomials
with a one-point quadrature.

In Refs. [1,2,23], the moments and the scaling equation are
used to compute the singular integrals

Lk±
n ≡

∫
dx

φkn(x)

x ± iε
, (26)

to any predetermined precision.
In the applications [1,2], the integral equation is approxi-

mated by projection onto an approximation space Vk with the
finest resolution k dictated by the problem. This projection can
be computed efficiently in scaling basis (20) by use of one-
point quadrature (25) and explicit integrals (26). The resulting
matrix equation is transformed by the wavelet transform into
an equivalent system in wavelet basis (21). In the transformed
basis the kernel of the integral equation decomposes into the
sum of a sparse matrix and a small matrix. The kernel is
approximated by the setting of matrix elements of the kernel
that are smaller than a threshold value to zero. This results in
a sparse-matrix approximation. The resulting linear system is
solved by use of sparse-matrix iterative techniques, such as the
complex biconjugate gradient method [24,25] used in Ref. [2].
This solution is transformed back to the scaling function
representation, by use of the inverse wavelet transform, and
the resulting solution is inserted back in the integral equation
to construct an interpolated solution [26].

The only wavelet information used in these applications is
the wavelet transform and moments of the scaling function.
These can both be expressed directly in terms of the scaling
coefficients hl in Table I. The basis functions never have to be
computed. This is because integrals against smooth functions
can be done with the one-point quadrature and the singular
integrals can be expressed in terms of integrals (26). One can
evaluate the solution at any point by inserting the numerical
expansion in the right-hand side of the integral equation,
eliminating the basis function in the expansion by using the
one-point quadrature and integrals (26).

References [1,2] demonstrate that all of these steps work as
expected. These references also discuss technical issues that
arise because of the treatment of end points when the equations
are transformed to a finite interval, as well as the need to
condition the kernel matrix in two variable integral equations.

III. DYNAMICAL EQUATIONS

The general structure of the Faddeev-Lovelace [9,10,14]
equations in a relativistic quantum theory with three particles
of mass m is

X(p,q) = Dx(p,q) +
∫ ∞

0

Kxx(p, q;p′, q ′, z)dp′dq ′

z − e1(p′, q ′) − e2(q ′)
X(p′, q ′)

+
∫ ∞

0

Kxy(p, q; q ′, z)dq ′

z − eb(q ′) − e2(q ′)
Y (q ′), (27)

Y (q) = Dy(q) +
∫ ∞

0

Kyx(q; p′, q ′, z)dp′dq ′

z − e1(p′, q ′) − e2(q ′)
X(p′, q ′)

+
∫ ∞

0

Kyy(q; q ′, z)dq ′

z − eb(q ′) − e2(q ′)
Y (q ′), (28)
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where

e1(p, q) =
√

4p2 + 4m2 + q2, e2(q) =
√

m2 + q2, (29)

eb =
√

m2
b + q2. (30)

These equations assume one two-body bound state with mass
mb. The quantities X, Y,K , and D have many channel indices.
The quantity K is the smooth part of the kernel. The precise
structure of the kernel and driving terms of Eqs. (27) and (28)
is given by Eqs. (7.71) and (7.72) of Ref. [9].

The energy denominators in the coupled set of equations
come from the spectral representation of the 2 + 1 resolvent
operators in the kernel of the equations. This form of the
equations is dictated by the structure of the interaction term in
relativistic Hamiltonian dynamics [9,10]. Although the forms
of the singularities in Eqs. (27) and (28) differ from the way that
they occur in the conventional treatment of the nonrelativistic
three-body problem, the nonrelativistic three-body equations
can also be put in a similar form [27,28].

The denominators that follow Kxy and Kyy can be treated
by use of the methods discussed in Ref. [1]. The denominators
that follow Kxx and Kyx involve moving singularities. The
methods used in [1] cannot be applied to moving singularities.
The purpose of this paper is to discuss the treatment of these
moving singularities by use of wavelet numerical analysis.

To use wavelet methods it is advantageous to transform
these energy denominators to a form in which functions
of the momentum, rather than the energy, are additive.
This transformation facilitates the treatment of the moving
singularity. Note that e1 > e2 for all values of p and q. If
E > 0, then E + e1(p, q) − e2(q) > 0. It follows that one can
transform the singular denominator,

1

E + i0+ − e1(p, q) − e2(q)
, (31)

to a more useful form by multiplying the numerator and
denominator by the nonzero function E + e1(p, q) − e2(q).
This leads to the equivalent expression

1

E + i0+ − e1 − e2

= E + e1 − e2

E2 + e2
2 − 2Ee2 − e2

1 + i0+(E + e1 − e2)

= E + e1 − e2

E2 − 3m2 − 2E
√

q2 + m2 − 4p2 + i0+ , (32)

which has the advantage in that it separates the p and q
dependence. In the nonrelativistic case, the p and q dependence
is already separate.

The next step is to change variables,

x = η4p2, y = η2E(
√

q2 + m2 − m), (33)

and define

z′ = η[(E − m)2 − 4m2]. (34)

The parameter η sets a scale and can be used to fine tune z′
so it is a dyadic rational of the form n/2−k . The method that

we use to evaluate the singular integrals requires that z′ be a
dyadic rational.

A similar variable change can be used to treat the part of
the equation with the fixed singularity:

w = (e2(q) + eb(q) − mb − m)η′,
(35)

z′′ = (E − m − mb)η′.

Substitutions (33), (34), and (36) lead to the following
equivalent equations:

X̄(x, y) = D̄x(x, y) +
∫ ∞

0

K̄xx(x, y; x ′, y ′)dx ′dy ′

z′ − x ′ − y ′ + i0+ X̄(x ′, y ′)

+
∫ ∞

0

K̄xy(x, y; , w′)dw′

z′′ − w′ + i0+ Ȳ (w′), (36)

Ȳ (w) = D̄y(w) +
∫ ∞

0

K̄yx(w; x ′, y ′)dx ′dy ′

z′ − x ′ − y ′ + i0+ X̄(x ′′, y ′′)

+
∫ ∞

0

K̄yy(w; , w′)dw′

z′′ − w′ + i0+ Ȳ (w′), (37)

where

X̄(x, y) = X[p(x), q(y)], Ȳ (w) = Y [q(w)], (38)

D̄x(x, y) = Dx[p(x), q(y)], D̄y(w) = Dy[q(w)], (39)

K̄xx(x, y; x ′, y ′)
= ηKxx(p(x), q(y); p(x ′), q(y ′), z)

× (E + e1[p(x ′), q(y ′)] − e2[q(y ′)])
∣∣∣∣ dp

dx ′
dq

dy ′

∣∣∣∣ , (40)

K̄xy(x, y; w) = η′Kxy(p(x), q(y); q(w), z) ×
∣∣∣∣ dq

dw

∣∣∣∣ , (41)

K̄yx(w; x, y)

= ηKyx[q(w); p(x), q(y), z]

× (E + e1[p(x), q(y)] − e2[q(y)])

∣∣∣∣dpdx

dq

dy

∣∣∣∣ , (42)

K̄yy(w; w′) = η′Kyy(q(w); q(w′), z′′) ×
∣∣∣∣ dq

dw′

∣∣∣∣ . (43)

Approximations are derived by use of projection methods.
We seek a solution X̄ in the x and y variables on the
approximation space Vk ⊗ Vk and Ȳ in the w variables on Vk .
We obtain approximate equations by projecting the smooth
part of the kernel and the driving on this space. We use the
following approximations:

X̄(x, y) ≈
∑
mn

φkm(x)φkn(y)X̄m,n, (44)

Ȳ (w) ≈
∑
m

φkm(w)Ȳm, (45)

D̄x(x, y) ≈
∑
mn

φkm(x)φkn(y)D̄m,n, (46)

D̄y(w) ≈
∑
mn

φkm(w)D̄m, (47)

K̄xx(x, y; x ′, y ′)

≈
∑

mnm′n′
φkm(x)φkn(y)K̄m,n;m′,n′φkm′(x ′)φkn′(y ′), (48)

024003-5



FATIH BULUT AND W. N. POLYZOU PHYSICAL REVIEW C 73, 024003 (2006)

K̄xy(x, y; w) ≈
∑
mnl

φkm(x)φkn(y)K̄m,n;lφkl(w), (49)

K̄yx(x, y; x ′,y ′) ≈
∑
mm′n′

φkm(w)K̄m;m′,n′φkm′(x ′)φkn′(y ′), (50)

K̄yx(w; x, y) ≈
∑
mnl

φkl(w)K̄l;mnφkm(x)φkn(y), (51)

where

D̄m,n ≡ 2kD̄x(xm, xn), D̄m ≡ 2k/2D̄y(xm), (52)

K̄m,n;m′,n′ ≡ 22kK̄xx(xm, xn; xm′ , xn′ ), (53)

K̄m;m′,n′ ≡ 23k/2K̄yx(xm; xm′ , xn′ ), (54)

K̄m,n;m′ ≡ 23k/2K̄xy(xm, xn; xm′ ), (55)

K̄m;m′ ≡ 2kK̄yy(xm; xm′ ) (56)

are evaluated at the one-point quadrature points associated
with φkm(x):

xm = 2k(〈x〉φ + m), 〈x〉φ = 1√
2

2K−1∑
l=1

lhl. (57)

The one-point quadrature formula reduces the projection to
the evaluation of the kernel or driving terms at a point.

To cleanly separate the contribution from the singular
integral and the dynamics it is useful to replace the product of
the expansion of the solution and the expansion of the smooth
part of the kernel with a single expansion of the product of
these expressions. This is equivalent to the approximation

φkm(x)φkn(x) ≈
∑

l

I k
mnlφkl(x). (58)

Although one can make the error in this approximation small
as desired by choosing a sufficiently fine resolution, there is
normally no need to increase the resolution.

Because the Daunechies’ K = 3 basis functions can locally
pointwise represent second-degree polynomials, the product
of two expansions in these basis functions can, at best,
locally pointwise represent fourth-degree polynomials. To test
this approximation, we compare the expansion of x4 with
the Daubechies’ K = 3 basis functions to the product of
expansions of x2 by using Daubechies’ K = 3 wavelets at
a fixed resolution k. We write

x2 =
∑

n

x2
nφkn(x), (59)

which gives

x4 =
∑
mn

x2
mx2

nφkm(x)φkn(x). (60)

The expansion coefficients x2
n in Eq. (60) are the squares of the

one-point quadrature points [Eq. (57)]. With these coefficients,
expression (60) is exact for the Daubechies’ K = 3 wavelets.

We approximate x4 by using approximation (58) in Eq. (60).
The expansion coefficients

cl =
∫

x4φkl(x)dx =
∑
mn

x2
mx2

nI
k
mnl (61)

TABLE II. Test of double expansion (63).

x x4
∑

x2
mx2

nImnkφk

−1.000000 × 101 1.000000 × 104 1.000000 × 104

−9.000000 6.561000 × 103 6.561000 × 103

−8.000000 4.096000 × 103 4.096000 × 103

−7.000000 2.401000 × 103 2.401000 × 103

−6.000000 1.296000 × 103 1.296000 × 103

−5.000000 6.250000 × 102 6.250002 × 102

−4.000000 2.560000 × 102 2.560002 × 102

−3.000000 8.100000 × 101 8.100015 × 101

−2.000000 1.600000 × 101 1.600010 × 101

−1.500000 5.062500 5.062574
−1.000000 1.000000 1.000050
−5.000000 × 10−1 6.250000 × 10−2 6.252593 × 10−2

−3.750000 × 10−1 1.977539 × 10−2 1.979528 × 10−2

−2.500000 × 10−1 3.906250 × 10−3 3.920094 × 10−3

−1.250000 × 10−1 2.441406 × 10−4 2.519414 × 10−4

0.000000 0.000000 1.757732 × 10−6

1.250000 × 10−1 2.441406 × 10−4 2.398553 × 10−4

2.500000 × 10−1 3.906250 × 10−3 3.895922 × 10−3

3.750000 × 10−1 1.977539 × 10−2 1.975902 × 10−2

5.000000 × 10−1 6.250000 × 10−2 6.247759 × 10−2

1.000000 1.000000 9.999534 × 10−1

2.000000 1.600000 × 101 1.599991 × 101

3.000000 8.100000 × 101 8.099986 × 101

4.000000 2.560000 × 102 2.559998 × 102

5.000000 6.250000 × 102 6.249998 × 102

6.000000 1.296000 × 103 1.296000 × 103

7.000000 2.401000 × 103 2.401000 × 103

8.000000 4.096000 × 103 4.096000 × 103

9.000000 6.561000 × 103 6.561000 × 103

1.000000 × 101 1.000000 × 104 1.000000 × 104

can be expressed in terms of the integrals

I k
lmn ≡

∫
φkl(x)φkm(x)φkn(x)dx, (62)

which are computed exactly in Sec. IV. The resulting approx-
imation is

x4 ≈
∑
mnl

x2
mx2

nI
k
mnlφkl(x). (63)

The φkl(x) are evaluated at dyadic rationals to eliminate
the error in computing the scaling basis functions. The only
source of error is approximation (63). Table II compares the
right- and left-hand sides of approximation (63) for resolution
k = −5.

At this resolution (k = −5) the expansion is essentially
exact, except near x = 0, where x4 has three vanishing
derivatives. The accuracy near the critical point, x = 0, can be
improved by use of a higher resolution; however, a degenerate
(three vanishing derivatives) critical point is not generic.

This additional approximation gives

K̄xx(x, y; x ′, y ′)X̄(x ′, y ′)

≈
∑

φkm(x)φkn(y)K̄m,n;m′,n′I k
n′n′′n′′′I

k
m′m′′m′′′

× X̄m′′,n′′φkm′′′(x ′)φkn′′′ (y ′) (64)
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and similar expressions for K̄yx(w; x ′, y ′)X̄(x ′, y ′), K̄xy(x, y;
w′)Ȳ (w′), and K̄yy(w; w′)Ȳ (w′). Even though this introduces
two additional sums, most of the terms are zero because
I k
m,m′,m′′ = 0 unless |m − m′|, |m′ − m′′|, and |m′′ − m| are all

less than 2K − 1. In Sec. IV we show that the integrals I k
mm′m′′

can all be computed analytically by using the scaling equation.
With these approximations, the dynamical equations reduce

to the following algebraic system:

X̄m,n = D̄m,n +
∑

K̄m,n;m′,n′I k
m′′′m′m′′I

k
n′′′n′n′′J

k
m′′′,n′′′ (z)X̄m′′,n′′

+
∑

K̄m,n;m′I k
m′′′m′m′′L

k
m′′′ (z)Ȳm′′, (65)

Ȳm = D̄m +
∑

K̄m;m′,n′I k
m′′′m′m′′I

k
n′′′n′n′′J

k
m′′′,n′′′ (z)X̄m′′,n′′

+
∑

K̄m;m′I k
m′′′m′m′′L

k
m′′′ (z)Ȳm′′, (66)

where

J k
m,n(z) ≡

∫ ∞

0
dxdy

φkm(x)φkn(y)

z − x − y + i0+ , (67)

Lk
m(z) ≡

∫ ∞

0
dx

φkm(x)

z − x + i0+ . (68)

Equations (65) and (66) separate the smooth part of the physics
input in D̄ and K̄ from the singular part of this equation, con-
tained in the integrals J k

mn(z) and Lk
m(z). Although the

construction of the smooth kernel in the relativistic case
is considerably more complicated than in the nonrelativistic
case [9,10,14], given the driving term and smooth kernel, one
can calculate the projections K̄m,n;m′,n′ and D̄m,n(x ′, y ′) by
evaluating the exact driving term and kernel at the one-point
quadrature point for each φkm(x). This reduces a Galerkin
projection to a simple function evaluation.

In the next section we discuss the evaluation of the integrals

I k
l,m,n and J k

m,n(z) (69)

that appear in Eqs. (65) and (66). The computation of
the integrals Lk

m(z) is discussed in Ref. [1]. The integrals
I k
l,m,n, J

k
m,n(z), and Lk

m(z) can be evaluated and stored before
calculation. They are the wavelet input to the calculation. They
replace all of the integrations in the integral equations and they
are independent of the choice of dynamical model. The physics
input is contained in the matrices K̄ and D̄. Equations (65) and
(66) give a clean and stable separation of the physics and the
treatment of the moving singularity, which is contained in the
integrals J k

m,n(z).
Equations (65) and (66) are an infinite set of equations.

They can be reduced to a finite set by the inclusion of high-
momentum cutoffs or transformation to a finite interval. The
treatment of end points in the evaluations of K̄ and D̄ is
identical to the treatment used in Refs. [1,2], in which partial
moments of the scaling function are used to construct simple
quadratures that exactly integrate the product of the scaling
function and degree K − 1 polynomials over a subinterval of
the support of the scaling function [29–31]. The treatment of
end points in the evaluation of Im

nk and Jm,n(z) is discussed in
Sec. IV.

Even with the reduction to a finite set of equations, the
system of equations is large. It can be reduced by performing
a wavelet transform on the scaling function basis. This can be

done with the method used in Refs. [2,24], which maps the
interval to a circle to treat end points. This does not change the
final result because the resulting transformation is still a finite
orthogonal transformation.

The next step is to discard the small matrix elements in the
transformed kernel and to solve the resulting equation.

As discovered in Ref. [2], the treatment of the end points
leads to an ill-conditioned matrix. This is because the right tail
of the scaling function is small (see Fig. 1). Some of the overlap
integrals with support containing the left end point replace
the orthogonality integrals by integrals of products of scaling
functions over an interval in which the product is small. This
can be fixed by use of the conditioning method that was used
in Ref. [2]. The resulting conditioned equations are stable and
can be accurately solved by use of sparse-matrix techniques.

The resulting solution can be transformed back to the scal-
ing function basis. An interpolated solution is then constructed
from the solution X̄m,n(x, y) of the algebraic equations by use
of the Sloan interpolation method [26]:

X̄(x, y) = D̄x(x, y)

+
∑

K̄m′,n′ (x, y)I k
m′′′m′m′′I

k
n′′′n′n′′J

k
m′′′,n′′′ (z)X̄m′′,n′′

+
∑

K̄m′(x, y)I k
m′′′m′m′′L

k
m′′′ (z)Ȳm′′, (70)

Ȳ (w) = D̄y(w) +
∑

K̄m′,n′(w)I k
m′′′m′m′′I

k
n′′′n′n′′J

k
m′′′,n′′′ (z)X̄m′′,n′′

+
∑

K̄m′(w)I k
m′′′m′m′′L

k
m′′′ (z)Ȳm′′ , (71)

where

K̄m′,n′ (x, y) ≡ 2kK̄xx(x, y; xm′ , xn′ ), (72)

K̄m′,n′ (w) ≡ 2kK̄yx(w; xm′ , xn′ ), (73)

K̄m′(x, y) ≡ 2k/2K̄xy(x, y; xm′ ), (74)

K̄m′(w) ≡ 2k/2K̄yy(w; xm′ ). (75)

The basis functions never have to be evaluated to compute the
input to Eqs. (65), (66), (70), and (71). These equations, along
with the methods for computing integrals (69), are the main
results of this paper.

IV. EVALUATION OF INTEGRALS

In this section we use scaling equation (1) and normaliza-
tion condition (2) to evaluate the integrals I k

l,n,m and J k
mn(z)

that appear in Eqs. (65) and (66). These integrals are defined
in Eqs. (62) and (67).

The evaluation of these integrals involves the following
steps:

(i) Expressing the scale k integrals in terms of the scale k = 0
integrals.

(ii) Using the scaling equation and the normalization con-
dition to derive a finite set of linear equations for the
corresponding integrals on the infinite interval; solving
the equations.

(iii) Using the scaling equation and support conditions to
construct a finite set of linear equations relating the
integrals on the semi-infinite interval to those on the
infinite interval; solving the equations.
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The first step is to express the scale k integrals in terms of
the scale 0 integrals. Using definition (10) in Eqs. (62) and
(67) we obtain the relations

I k
l,n,m = 2−k/2I 0

l,n,m, (76)

J k
mn(z) = J 0

mn(2−kz). (77)

In applications, k is a negative integer so we can choose 2−kz

as an integer, which is equivalent to choosing z to be a dyadic
rational. We can do this for any E by adjusting the parameter
η in Eqs. (33). As a result, it is enough to evaluate J 0

m,n(l) and
I 0
l,m,n for l, m, n integers. In what follows, we define

Il,m,n ≡ I 0
l,m,n, (78)

Jm,n(k) ≡ J 0
m,n(k). (79)

Both Il,n,m and Jm,n(k) involve integrals over the half-
infinite interval. The second step of our calculation is to first
evaluate the corresponding integrals over the infinite interval:

Īl,n,m =
∫ ∞

−∞
φ(x − l)φ(x − n)φ(x − m)dx, (80)

J̄m,n(k) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

φ(x − m)φ(y − n)

k − x − y + i0+ . (81)

These integrals are easier to compute because of the simplified
boundary conditions.

We do steps (2) and (3) first for the integrals Il,m,n and then
for the integrals Jmn(k).

To compute the integrals Īl,m,n defined in definition (80),
note that this definition implies that

Īl,m,n = Ī0,m−l,n−l , (82)

which allows us to express Īl,m,n in terms of Īn,m, defined by

Īm,n = I0,m,n =
∫ ∞

−∞
dxφ(x)φ(x − m)φ(x − n). (83)

Because the support of φ(x) is contained in the interval
[0, 2K − 1], there are only a finite number of nonzero values of
Īm,n. These have −2K + 2 � m, n � 2K − 2, and |m − n| <

2K − 1. For K = 3 there are 81 Īm,n with −4 � m, n � 4.
Sixty-one of these terms are nonzero.

We can derive linear equations that relate these integrals by
using the scaling equation in the form

φ(x) =
√

2
2K−1∑
l=0

hlφ(2x − l). (84)

Using Eq. (84) in definition (83) gives the scaling equation for
the integrals Īmn:

Īm,n =
√

2
2K−1∑

lm,ln,lk=0

hlkhlmhln Ī2m+lm−lk ,2n+ln−lk . (85)

These are homogeneous equations relating the nonzero values
of Īm,n. An additional inhomogeneous equation is needed to
solve for the nonzero values of Īm,n. The needed equation
follows from normalization condition (2) and the identity∑

n

φ(x − n) = 1, (86)

which, when used in Eq. (83), gives the inhomogeneous
equations

2K−2∑
m=−2K+2

Īm,n = δn0. (87)

Equations (85) and (87) are a finite system of (4K − 3)
(4K − 3) linear equations that can be solved for the nonzero
values of Īmn. The result of these calculations of Īmn with
K = 3 are given in Table III. The computed values of Īmn can
be used in Eq. (82) to obtain Īl,m,n for all l, m, and n.

The last step is to use Īl,m,n to compute Il,m,n. The support
of the scaling functions implies that if any of l, m, or n are

TABLE III. Īmn, K = 3 overlap integrals (83).

m n Īmn m n Īmn

−4 −4 1.160637 × 10−7 1 0 1.469238 × 10−1

−3 −4 9.788805 × 10−7 2 0 7.027929 × 10−3

−2 −4 −2.811543 × 10−6 3 0 2.025919 × 10−4

−1 −4 6.184412 × 10−6 4 0 1.160637 × 10−7

0 −4 −4.467813 × 10−6 −4 1 0.000000
1 −4 0.000000 −3 1 6.184412 × 10−6

2 −4 0.000000 −2 1 1.159627 × 10−3

3 −4 0.000000 −1 1 −3.047012 × 10−2

4 −4 0.000000 0 1 1.469238 × 10−1

−4 −3 9.788805 × 10−7 1 1 −8.660587 × 10−2

−3 −3 2.025919 × 10−4 2 1 −3.047012 × 10−2

−2 −3 −5.444572 × 10−4 3 1 −5.444572 × 10−4

−1 −3 1.159627 × 10−3 4 1 9.788805 × 10−7

0 −3 −8.249248 × 10−4 −4 2 0.000000
1 −3 6.184412 × 10−6 −3 2 0.000000
2 −3 0.000000 −2 2 −2.811543 × 10−6

3 −3 0.000000 −1 2 −5.444572 × 10−4

4 −3 0.000000 0 2 7.027929 × 10−3

−4 −2 −2.811543 × 10−6 1 2 −3.047012 × 10−2

−3 −2 −5.444572 × 10−4 2 2 2.283264 × 10−2

−2 −2 7.027929 × 10−3 3 2 1.159627 × 10−3

−1 −2 −3.047012 × 10−2 4 2 −2.811543 × 10−6

0 −2 2.283264 × 10−2 −4 3 0.000000
1 −2 1.159627 × 10−3 −3 3 0.000000
2 −2 −2.811543 × 10−6 −2 3 0.000000
3 −2 0.000000 −1 3 9.788805 × 10−7

4 −2 0.000000 0 3 2.025919 × 10−4

−4 −1 6.184412 × 10−6 1 3 −5.444572 × 10−4

−3 −1 1.159627 × 10−3 2 3 1.159627 × 10−3

−2 −1 −3.047012 × 10−2 3 3 −8.249248 × 10−4

−1 −1 1.469238 × 10−1 4 3 6.184412 × 10−6

0 −1 −8.660587 × 10−2 −4 4 0.000000
1 −1 −3.047012 × 10−2 −3 4 0.000000
2 −1 −5.444572 × 10−4 −2 4 0.000000
3 −1 9.788805 × 10−7 −1 4 0.000000
4 −1 0.000000 0 4 1.160637 × 10−7

−4 0 −4.467813 × 10−6 1 4 9.788805 × 10−7

−3 0 −8.249248 × 10−4 2 4 −2.811543 × 10−6

−2 0 2.283264 × 10−2 3 4 6.184412 × 10−6

−1 0 −8.660587 × 10−2 4 4 −4.467813 × 10−6

0 0 9.104482 × 10−1
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TABLE IV. Imnl , K = 3 overlap integrals (91).

m n l Imnl m n l Imnl

−4 −4 −4 4.152357 × 10−9 −2 −4 −4 −5.085054 × 10−7

−4 −4 −3 1.155617 × 10−7 −2 −4 −3 −1.218375 × 10−5

−4 −4 −2 −5.085054 × 10−7 −2 −4 −2 5.118615 × 10−5

−4 −4 −1 1.750639 × 10−6 −2 −4 −1 −1.700711 × 10−4

−4 −3 −4 1.155617 × 10−7 −2 −3 −4 −1.218375 × 10−5

−4 −3 −3 2.879737 × 10−6 −2 −3 −3 −4.066737 × 10−4

−4 −3 −2 −1.218375 × 10−5 −2 −3 −2 1.869754 × 10−3

−4 −3 −1 4.070309 × 10−5 −2 −3 −1 −6.559712 × 10−3

−4 −2 −4 −5.085054 × 10−7 −2 −2 −4 5.118615 × 10−5

−4 −2 −3 −1.218375 × 10−5 −2 −2 −3 1.869754 × 10−3

−4 −2 −2 5.118615 × 10−5 −2 −2 −2 −8.932389 × 10−3

−4 −2 −1 −1.700711 × 10−4 −2 −2 −1 3.218428 × 10−2

−4 −1 −4 1.750639 × 10−6 −2 −1 −4 −1.700711 × 10−4

−4 −1 −3 4.070309 × 10−5 −2 −1 −3 −6.559712 × 10−3

−4 −1 −2 −1.700711 × 10−4 −2 −1 −2 3.218428 × 10−2

−4 −1 −1 5.627612 × 10−4 −2 −1 −1 −1.177691 × 10−1

−3 −4 −4 1.155617 × 10−7 −1 −4 −4 1.750639 × 10−6

−3 −4 −3 2.879737 × 10−6 −1 −4 −3 4.070309 × 10−5

−3 −4 −2 −1.218375 × 10−5 −1 −4 −2 −1.700711 × 10−4

−3 −4 −1 4.070309 × 10−5 −1 −4 −1 5.627612 × 10−4

−3 −3 −4 2.879737 × 10−6 −1 −3 −4 4.070309 × 10−5

−3 −3 −3 8.614462 × 10−5 −1 −3 −3 1.454880 × 10−3

−3 −3 −2 −4.066737 × 10−4 −1 −3 −2 −6.559712 × 10−3

−3 −3 −1 1.454880 × 10−3 −1 −3 −1 2.270045 × 10−2

−3 −2 −4 −1.218375 × 10−5 −1 −2 −4 −1.700711 × 10−4

−3 −2 −3 −4.066737 × 10−4 −1 −2 −3 −6.559712 × 10−3

−3 −2 −2 1.869754 × 10−3 −1 −2 −2 3.218428 × 10−2

−3 −2 −1 −6.559712 × 10−3 −1 −2 −1 −1.177691 × 10−1

−3 −1 −4 4.070309 × 10−5 −1 −1 −4 5.627612 × 10−4

−3 −1 −3 1.454880 × 10−3 −1 −1 −3 2.270045 × 10−2

−3 −1 −2 −6.559712 × 10−3 −1 −1 −2 −1.177691 × 10−1

−3 −1 −1 2.270045 × 10−2 −1 −1 −1 4.437037 × 10−1

nonnegative, then

Il,m,n = Īl,m,n, (88)

and if any of l, m, or n are less than −2K + 2, then

Il,m,n = 0. (89)

The nontrivial values of Il,m,n correspond to the case that the
indices l, m, and n satisfy

− 2K + 2 � l, m, n � − 1. (90)

To calculate the remaining nonzero values of Ilmn, first
observe that using Eq. (84) in Eq. (62) gives scaling equations
for Ik,m,n:

Ik,m,n =
√

2
∑

hlkhlmhlnI2k+lk ,2m+lm,2n+ln . (91)

These equations are not homogeneous equations because when
any of the indices on the right-hand side of the equation
are nonnegative, Ik,m,n = Īk,m,n = Īm−k,n−k , which is known
input. This linear system can be solved for the nontrivial
values of Ik,m,n associated with the values of k,m, n satisfying
−2K + 2 � k,m, n � − 1. For K = 3 there are 64 values

of k,m, n satisfying −4 � k,m, n � − 1. The results of this
calculation for the K = 3 case are given in Table IV.

All of the overlap integrals I k
lmn that appear in Eqs. (65)

and (66) can be expressed directly in terms of the values in the
tables by use of relations (76), (88), and (89). The integrals in
the tables can be computed once and stored.

Next we calculate the integrals Jmn(l). We first compute
J̄mn(l) defined in Eq. (81). With a change of variables, J̄mn(l)
can be expressed in terms of a quantity with a single integer
index,

J̄mn(k) =
∫ ∞

−∞
dx ′

∫ ∞

−∞
dy ′ φ(x ′)φ(y ′)

k − m − n − x ′ − y ′ + i0+

= J̄k−m−n, (92)

with

J̄n ≡
∫ ∞

−∞
dx

∫ ∞

−∞
dy

φ(x)φ(y)

n − x − y + i0+ . (93)

The support [0, 2K − 1] of the scaling function implies that
in this integral x + y ranges from 0 to 4K − 2. This means
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that for |n| > (4K − 2) the series

J̄n = 1

n

∞∑
k=0

∫ ∞

−∞
dx

∫ ∞

−∞
dy

1

nk
(x + y)kφ(x)φ(y) (94)

converges. Using the binomial theorem, we can express the
integrals in this series in terms of the known moments
[Eq. (23)] [1] of the scaling function

J̄n =
∞∑

m=0

m∑
k=0

1

nm+1

m!

k!(m − k)!
〈xk〉〈xm−k〉. (95)

If J̄n(N ) is the approximation we define by summing the first
N terms of series (95), it follows that

|J̄n − J̄n(N )| <

[
(4K − 2)

|n|
]N+1 (2K − 1)2

|n − 4K + 2|φ
2
max, (96)

where φmax is the maximum value (<1.5 for K = 3) of the
scaling function. For |n|  4K − 2 this error can be made as
small as machine accuracy for modest values of N.

Thus, for large |n|, one can compute the integrals J̄n

efficiently and accurately by truncating the sum in Eq. (95).
To compute the J̄n for smaller values of n, note that the J̄n

for different values of n are related by scaling equation (84),
which, when used in Eq. (93), gives linear scaling equations
for J̄n:

J̄n =
∑
ll′

hlhl′ J̄2n−l−l′ . (97)

Equation (97) can be used to calculate J̄n recursively with J̄m

used for large |m| used as input. This recursion can be used to
step up in negative n until n = −1 and down in positive n until
n = 4K − 1. This provides an efficient and accurate method
for calculating all of the J̄n for n < 0 and n > 4K − 2.

The remaining values, 0 � n � 4K − 2, correspond to cases
in which the denominator of the singular integral of Eq. (93)
vanishes on the support of the integrand.

Scaling relations (97) are still satisfied for these values of n,
giving 4K − 1 equations relating the unknown J̄0 · · · J̄4K−2 to
the known values of J̄n for n < 0 and n > 4K − 2. Unlike
the equations for Īlmn, these equations cannot be linearly
independent because they do not specify the treatment of the
singular integral. One more equation is needed.

One can derive the desired equation by observing that the
integral J̄n can be expressed in terms of the autocorrelation
function [32–34]�(x) of the scaling function as

J̄n = −
∫ ∞

−∞

�(y)

y − n − i0+ dy, (98)

where

�(x) ≡
∫ ∞

−∞
φ(x − y)φ(y)dy. (99)

This is the key result that is needed to apply wavelet numerical
analysis to problems with moving singularities. The properties∫

φ(x)dx = 1, 1 =
∑

n

φ(x + n) (100)
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FIG. 3. Daubechies’ K = 3 autocorrelation function.

of the scaling function imply that the autocorrelation function
satisfies ∫

�(x)dx = 1, 1 =
∑

n

�(x + n) (101)

and has support on [0, 4K − 2]. The autocorrelation function
is plotted in Fig. 3.

Using Eq. (101) in Eq. (98) gives the additional linear
constraint on the integrals J̄n:

− iπ = −
∫ m

−m

dx

x − i0+

= −
∑

n

∫ m

−m

dx
�(x + n)

x − i0+

= −
∑

n

∫ n+m

n−m

dx
�(x)

x − n − i0+ , (102)

which holds for any m. Replacing −iπ on the left-hand side of
Eq. (102) with zero gives the principal value; by +iπ it gives
the limit on the other side of the real line.

If m > 4K − 2, Eq. (102) can be expressed as

− iπ =
m∑

n=−m

J̄n +
m+4K−3∑
n=m+1

∫ 4K−2

n−m

�(x)

n − x + i0+ dx

+
−m+4K−3∑
n=−m+1

∫ n+m

0

�(x)

n − x + i0+ dx. (103)

For |n| > 4K − 2 the boundary integrals∫ 4K−2

n−m

�(x)

n − x + i0+ dx =
∫ ∞

n−m

�(x)

n − x + i0+ dx, (104)

∫ n+m

0

�(x)

n − x + i0+ dx =
∫ n+m

−∞

�(x)

n − x + i0+ dx (105)

can be expanded in a convergent power series in terms of
partial moments of the autocorrelation functions∫ 4K−2

n−m

�(x)

n − x + i0+ dx = 1

n

∞∑
k=0

1

nk

∫ ∞

n−m

�(x)xkdx, (106)

∫ n+m

0

�(x)

n − x + i0+ dx = 1

n

∞∑
k=0

1

nk

∫ n−m

−∞
�(x)xkdx. (107)
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TABLE V. Imnl , K = 3 singular integrals (93).

m J

0 −6.400535 × 10−1 +i0.000000
1 −1.570288 −i7.088321 × 0−1

2 6.615596 × 10−1 −i2.966393
3 1.719674 +i6.560028 × 10−1

4 6.721642 × 10−2 −i1.554882 × 10−1

5 3.595012 × 10−1 +i3.858342 × 10−2

6 2.261977 × 10−1 −i5.023224 × 10−3

7 1.853414 × 10−1 −i4.383938 × 10−4

8 1.569998 × 10−1 −i3.586652 × 10−6

9 1.357112 × 10−1 −i4.424016 × 10−9

10 1.195044 × 10−1 +i0.000000

The error after the series in Eq. (106) or (107) is truncated
after N terms is bounded by(

4K − 2

n

)N+1 4K − 2

n − 4K + 2
�max, (108)

where �max < 1 (for K = 3) is the maximum value of
the autocorrelation function. It is easy to compute these
quantities to machine accuracy. The partial moments of the
autocorrelation function in Eqs. (106) and (107), which are
needed as input to Eq. (103), can be computed analytically.
This calculation is discussed in the appendix.

Equations (97) and (103) can be solved for J̄n for
0 � n � 4K − 2 in terms of left-hand side of Eq. (103), the
partial moments of the autocorrelation function, and the
integrals for |n| > 4K − 2. The results of these calculations
are the nine complex numbers in Table V. When combined with
Eq. (95), these results give us an efficient means to evaluate
J̄m for all m. The solution for the principal value is given by
the real values in Table V, and the conjugate of the values in
the table gives the singular integral approaching the real line
from the upper half-plane.

The last step is to compute the singular integrals Jmn(k) that
appear in integral equations (65) and (66). To evaluate these
quantities, first we note that Jmn(k) is symmetric in m and n,
so we can that assume m � n. For n � 0 we can express Jmn(k)
in terms of J̄n:

Jmn(k) = J̄k−m−n. (109)

When either m or n is less than −2K + 2 then

Jmn(k) = 0. (110)

The nontrivial values of Jmn(k) correspond to m nonnegative
and −2K + 2 � n � − 1, and both −2K + 2 � n,m � − 1.
This still includes an infinite number of integrals because k
can take any value.

We discuss the treatment of m nonnegative and −2K +
2 � m � − 1 separately. When m is nonnegative the integral
becomes

Jmn(k) = Jn(k − m), (111)

where

Jn(m) ≡
∫ ∞

0
dx

∫ ∞

−∞
dy

φ(x − n)φ(y)

m − x − y + i0+ . (112)

Because in this case n is within 2K − 2 of zero, for large |m|
we can compute this in terms of moments (23) and partial
moments (24) of the scaling function by using the series
method:

Jn(m) =
∑

l

1

(m − n)l+1

l∑
k=0

〈xk〉φ[−n,2K−1]〈xl−k〉φ. (113)

The error made by keeping N terms in the l sum is bounded by(
2K − 1

m − n

)N+1 (2K − 1)2

m − n − 2K + 1
(φmax)2, (114)

which one can make as small as desired by choosing a large
enough m.

Using Eq. (84) in Eq. (112) gives

Jn(m) =
2K−1∑
l=0

2K−1∑
l′=0

hlhl′J2n+l(2m − l′), (115)

which relates these integrals for different values of m and n.
Equation (115) can be used to recursively step down from
large values of |m| to m = −1 from below and m = 2K from
above. Some terms in this recursion will be complex because
they involve the integrals J̄n for 1 � n � 4K − 3.

The values of Jn(m) that cannot be computed directly from
the moments or by the recursion have −2K + 2 � n � − 1 and
0 � m � 2K − 1. We can compute these by treating Eq. (115)
as a system of linear equations for the unknown Jn(m)′s. This
works because the terms in Eq. (115) include some of the
previously computed integrals. The results of this calculation
are shown in Table VI.

TABLE VI. Jm(n), K = 3 singular integrals (112).

m n J

−4 0 −5.270534 × 10−5 +i0.000000
−4 1 1.328492 × 10−4 −i1.360295 × 10−3

−4 2 4.129155 × 10−4 +i3.906821 × 10−4

4 3 −9.487772 × 10−5 −i9.892161 × 10−5

−4 4 3.178448 × 10−6 −i1.800341 × 10−6

−4 5 1.039698 × 10−7 −i6.117942 × 10−9

−3 0 −4.625359 × 10−3 +i0.000000
−3 1 −2.620525 × 10−3 −i5.640861 × 10−2

−3 2 2.569291 × 10−2 +i1.368533 × 10−2

−3 3 −2.507103 × 10−4 −i2.505784 × 10−3

−3 4 −1.189214 × 10−3 −i3.325919 × 10−4

−3 5 8.403857 × 10−5 +i4.945118 × 10−6

−2 0 5.719523 × 10−2 +i0.000000
−2 1 8.006177 × 10−2 +i3.624922 × 10−1

−2 2 −2.606313 × 10−1 −i7.778517 × 10−2

−2 3 3.145142 × 10−2 +i2.488590 × 10−2

−2 4 −1.188904 × 10−2 −i5.439550 × 10−3

−2 5 −9.599595 × 10−3 −i4.332178 × 10−4

−1 0 −2.730099 × 10−1 +i0.000000
−1 1 −4.302964 × 10−1 −i1.483101
−1 2 1.269047 +i2.936519 × 10−1

−1 3 −2.565108 × 10−1 −i9.893945 × 10−2

−1 4 1.173431 × 10−1 +i4.010587 × 10−2

−1 5 4.476128 × 10−2 −i5.054775 × 10−3
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What remains are the Jmn(k) when both m and n fall between
−2K + 2 and −1. In this case, when |k| is large, Jmn(k) can
be expressed in the form of a convergent power series in terms
of moments and partial moments of the scaling function. The
scaling equations can be used to step up or down in k until k
is between 0 and 2K − 1; in addition they can also be used to
solve for cases in which

− 2K + 2 � m, n � − 1, 0 � k � 2K − 1. (116)

In a normal application the value k represents the on-shell
energy. It will be large if there are a lot of basis functions
with support on either side of the on-shell point. Although
Jmn(k) can be calculated at points (116) from the values known
from scaling equation (115), these points do not arise in most
applications.

This completes the computation of the singular integrals
that appear in Eq. (65). Although the computation is tedious,
it is both stable and straightforward.

V. CONCLUSION

In this paper we discussed the application of wavelet
numerical analysis to the relativistic three-body problem. The
method starts by making variable changes in the relativistic
Faddeev-Lovelace equations so that the moving scattering
singularity has simple scaling properties.

The next step is to project the equation in the transformed
variables on a finite resolution subspace of the three-body
Hilbert space. We compute the matrix representation of the
integral equation in this approximation space by evaluating the
driving terms and smooth part of the kernel at the one-point
quadrature points. Additional integrals involving the singular
part of the kernel over the basis functions are needed to
compute the full kernel. These integrals can be calculated
either exactly or with precisely controlled errors by use of
scaling equation (1) and normalization condition (2). Methods
for computing all of the required integrals are discussed in
detail in Sec. IV and the appendix. Explicit values of the
required integrals are computed and appear in Tables III–VI.
The physics input is in the driving term and smooth part of the
kernel. The integrals over the singular part of the kernel are
independent of the dynamics.

The resulting system of equations in the high-resolution
basis, although easy to compute, is large. The wavelet
transform can then be applied to the kernel and driving terms
of Eqs. (65) and (66) to transform the representations of the
kernel and driving term in the high-resolution scaling basis to
representations in a basis consisting of low-resolution scaling
functions and wavelet basis functions with resolutions that fall
between the high-resolution and the low-resolution basis. The
transformation to this new basis takes O(N ) steps. In the new
basis the kernel can naturally be expressed as the sum of a
sparse matrix and a small matrix. The key approximation is to
replace the small part of the kernel with zero. One can control
the size of the error made in this approximation by changing
the threshold size for discarding matrix elements.

The sparse matrix can be solved by use of sparse-matrix
techniques. In Ref. [2] Kessler et al. did this by first condi-
tioning the matrix and then by using the complex biconjugate

gradient method. The resulting solution was transformed back
to the scaling basis by use of the inverse wavelet transform.
The approximation was improved when the resulting matrix
solution was substituted back into the original Eq. [26]. The
step has the added benefit, as seen in Eqs. (70) and (71),
that the basis functions never have to be calculated. The key
result that was needed to calculate integrals associated with
the moving singularities is the observation by Beylkin [32] and
Beylkin and Saito [33,34] that integrals of scaling functions
over moving singularities can be expressed as integrals of
the autocorrelation function of the scaling function over a
fixed singularity. This leads to a practical and stable method
for computing the integrals. The methods do not require
subtractions or careful choices of quadrature points; for the
Daubechies’ K = 3 basis they are reduced to solving a
system of 11 linear equations. The required properties of the
autocorrelation function are derived in the appendix.

The research in Refs. [1,2] demonstrated that the wavelet
method led to sparse-matrix approximations, resulting in
negligible errors. The structure of the kernel in the relativistic
three-body case indicates that the wavelet method will lead
to accurate sparse-matrix approximations to the relativistic
Faddeev-Lovelace equations.

The increase in efficiency in this method is due to the saving
in computational effort in going from solving a large dense
set of linear equations to an approximately equivalent set of
equations with a sparse matrix. The wavelet method will lead
to a significant savings in computational effort for a large
system. The method presented in this paper still starts with
a large matrix. Additional savings would be possible if the
matrix elements could be computed directly in the wavelet
basis because the small matrix elements could be discarded
without being stored. Development of an efficient method for
such a direct calculation is an open problem.

Our conclusion is that wavelet numerical analysis can
be used to accurately approximate the relativistic Faddeev-
Lovelace equations by a linear system of equations with a
sparse kernel matrix.
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APPENDIX A

The autocorrelation function of the scaling function is
defined by

�(x) =
∫ ∞

−∞
φ(x − y)φ(y)dy. (A1)

Because the support of the scaling function is [0, 2K − 1], the
autocorrelation function has support [0, 4K − 2].

Using scaling equation (84) for the scaling function in
definition (A1) of the autocorrelation function leads to the
scaling equation for the autocorrelation function:

�(x) =
∑

l

∑
l′

hlhl′�(2x − l′ − l). (A2)
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TABLE VII. Daubechies’ K = 3
autocorrelation scaling coefficients.

a0 7.825529 × 10−2

a1 3.796160 × 10−1

a2 6.767361 × 10−1

a3 4.612557 × 10−1

a4 −4.471656 × 10−2

a5 −1.687321 × 10−1

a6 −2.481571 × 10−3

a7 3.922363 × 10−2

a8 −1.563883 × 10−3

a9 −4.256471 × 10−3

a10 8.774429 × 10−4

If we define

al = 1√
2

min(l,2K−1)∑
l′=0

hl−l′hl′ , 0 � l � 4K − 2, (A3)

Eq. (A2) can be put in the same form as that of Eq. (1):

D�(x) =
4K−2∑
l=0

alT
l�(x). (A4)

The scaling coefficients ak for the Daubechies’ K = 3 auto-
correlation function are given in Table VII.

Normalization condition (1) of the scaling function can be
used in definition (A1) of the autocorrelation function to derive
the normalization condition:∫

�(x)dx = 1. (A5)

Scaling equation (A2) and normalization condition (A5)
can be used calculate moments and partial moments of the
autocorrelation function. To calculate the moments of the
autocorrelation function, use

〈xk〉� =
∫

�(x)xkdx, (A6)

〈xk〉� = 1

2k+1/2

∑
l

al

k∑
n=0

k!

n!(k − n)!
ln−k〈xn〉�. (A7)

TABLE VIII. Daubechies’ K = 3
autocorrelation moments.

〈x0〉� 1.000000
〈x1〉� 1.634802
〈x2〉� 2.672579
〈x3〉� 4.167773
〈x4〉� 5.825913
〈x5〉� 6.817542
〈x6〉� 8.807917
〈x7〉� 4.055470 × 101

〈x8〉� 2.899550 × 102

〈x9〉� 1.695851 × 103

〈x10〉� 8.321402 × 103

Moving the n = k term to the left-hand side of the equation
gives recursion relation

〈xk〉� ≡ 1

2k − 1

1√
2

∑
l

al

k∑
n=1

k!

n!(k − n)!
ln〈xk−n〉�. (A8)

The recursion is started with normalization condition (A5).
The lowest moments are tabulated in Table VIII.

The partial moments of the autocorrelation function satisfy
the scaling equation

〈xk〉�,[m,∞] ≡
∫ ∞

m

�(x)xkdx

=
∑

l

al

k∑
n=0

√
2

2k+1

k!

n!(k − n)!
lm〈xk−m〉�,[2m−l,∞].

(A9)

When m � 4K − 2, these partial moments become ordinary
moments whereas when m � 0 they vanish. This gives us a
linear system for partial moments in terms of the full moments
and lower partial moments. These equations can be solved
recursively. Partial moments corresponding to more general
intervals can be computed by subtraction:

〈xk〉�,[m,n] = 〈xk〉�,[m,∞] − 〈xk〉�,[n,∞]. (A10)
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1994).

[20] H. L. Resnikoff and R. O. Wells, Wavelet Analysis: The Scalable
Structure of Information (Springer-Verlag, New York, 1998).

[21] G. Strang, SIAM Rev. 31, 4, 614 (1989).
[22] O. Bratelli and P. Jorgensen, Wavelets Through a Look-

ing Glass, The World of the Spectrum (Birkhäuser, Boston,
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