
Application of wavelets to singular integral scattering equations

B. M. Kessler,∗ G. L. Payne, and W. N. Polyzou
Department of Physics and Astronomy,

The University of Iowa

Iowa City, IA 52242

(Dated: July 23, 2004)

The use of orthonormal wavelet basis functions for solving singular integral scattering equations
is investigated. It is shown that these basis functions lead to sparse matrix equations which can
be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient
method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms
is demonstrated by solving the two-body T-matrix equation without partial wave projection. The
resulting matrix equation which is characteristic of multiparticle integral scattering equations is
found to provide an efficient method for obtaining accurate approximate solutions to the integral
equation. These results indicate that wavelet transforms may provide a useful tool for studying
few-body systems.
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I. INTRODUCTION

Few-body systems provide a useful tool for studying
the dynamics of hadronic systems. The combination of
short-ranged interactions and finite density means that
the dynamics of complex hadronic systems can be un-
derstood by studying the dynamics of few-degree of free-
dom sub-systems. Few-body systems are simple enough
to perform nearly complete high-precision measurements
and to perform ab-initio calculations that are exact to
within the experimental precision. This clean connec-
tion between theory and experiment has led to an ex-
cellent understanding of two-body interactions in low-
energy nuclear physics, and a good understanding of the
three-body interactions.

Our knowledge of low-energy hadronic dynamics is
largely due to the interplay between experimental and
computational advances. A complete understanding of
even the simplest few-hadron system requires measure-
ments of a complete set of spin observables which have
small cross sections and require state of the art detectors.
At the same time, the model calculations with realistic
interactions are limited by computer speed and memory.
In addition the equations are either singular or have com-
plicated boundary conditions which require specialized
numerical treatments.

One of the most interesting energy scales is the one
where the natural choice of few-body degrees of freedom
changes from nucleons and mesons to sub-nucleon de-
grees of freedom. The QCD string tension or nucleon size
suggest that the relevant scale for the onset of this transi-
tion is about a GeV. A consistent dynamics of hadrons or
sub-nuclear particles on this scale must be relativistic; a
Galilean invariant theory cannot simultaneously preserve
momentum conservation in the lab and center of momen-
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tum frames if the initial and final reaction products have
different masses. Relativistic dynamical models are most
naturally formulated in momentum space. This is due
to the presence of momentum-dependent Wigner and/or
Melosh rotations as well as square roots that appear in
the relationship between energy and momentum.

Non-relativistic few-body calculations formulated in
configuration space with local potentials have the ad-
vantage that the matrices obtained after discretizing the
dynamical equations are banded, thus reducing the size
of the numerical calculations. Equivalent momentum-
space calculations lead to dense matrices of comparable
dimensions. In addition, the embedding of the two-body
interactions in the three-body Hilbert space leads to non-
localities. Realistic relativistic three-body calculations
are just beginning to be solved [1, 2]. Numerical meth-
ods that can reduce the size of these calculations could
make relativistic calculations of realistic systems more
tractable.

In this paper we explore the use of wavelet basis func-
tions to reduce the size of momentum space scattering
calculations. The resulting linear system can be accu-
rately approximated by a linear system with a sparse
kernel. It is our contention that the use of this sparse
kernel results in a reduction in the size of the numerical
calculation that is comparable to the corresponding con-
figuration space calculations. The advantage is that the
wavelet methods can be applied in momentum space and
are not limited to local interactions.

The long-term goal is to apply wavelet methods to
solve the relativistic three-body problem. In a previ-
ous paper [3], we tested this method to solve the non-
relativistic Lippmann-Schwinger equation with a Malfliet
Tjon V potential. In this test problem, the s-wave K-
matrix was computed. The wavelet method led to a sig-
nificant reduction in the size of the problem. We found
that 96% of the matrix elements of the kernel of the in-
tegral equation could be eliminated leading to an error
of only a few parts in a million.
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The success of wavelet method in [3] suggests that the
method should be tested on a more complicated problem.
In this paper, we test the wavelet method on the same
problem without using partial waves. This leads to a sin-
gular two-variable integral equation, which has the same
number of continuous variables as the three-body Fad-
deev equations with partial waves. It is simpler than the
full three-body calculation, but is a much larger calcula-
tion than was needed in Ref. [3]. In addition, computa-
tions that employ conventional methods [4] are available
for comparison. In solving this problem it is necessary
to address issues involving the storage and computations
with large matrices.

One well known use of wavelets is in the data compres-
sion algorithm used in JPEG files [5]. Our motivation
for applying wavelet methods to scattering problems is
based on the observation that both a digital photograph
and a discretized kernel of an integral equation are two-
dimensional arrays of numbers. If wavelets can reduce
the size of a digital image, they should have a similar
effect on the size of the kernel of an integral equation.

Given the utility of wavelets in digital data processing,
it is natural to ask why they have not been used ex-
tensively in numerical computations in scattering. One
possible reason is because there is a non-trivial learning
curve that must be overcome for a successful application
to singular integral equations. A relevant feature is that
the basis functions have a fractal structure; they are solu-
tions to a linear renormalization group equation and thus
have structure on all scales. Numerical techniques that
exploit the local smoothness of functions do not work ef-
fectively with functions that have structure on all scales.

In [3], we concluded that these limitations could be
overcome by exploiting the renormalization group trans-
formation properties of the basis functions in numeri-
cal computations. These equations were used to com-
pute moments of the basis functions with polynomials.
These moments were used to construct efficient quadra-
ture methods for evaluating overlap integrals. In addi-
tion, these moments could be combined with the renor-
malization group equations to perform accurate calcula-
tions of the types of singular integrals that appear in scat-
tering problems. A key conclusion of [3] was that wavelet
methods provide an accurate and effective method for
solving the scattering equations. In addition, the ex-
pected reduction in the size of the numerical problem
could be achieved with minimal loss of precision.

There are many kinds of wavelets. In [3] we found
that the Daubechies-3 [6] wavelets proved to be the most
useful for our calculations. Numerical methods based on
wavelets utilize the existence of two orthogonal bases for
a model space. The two bases are related by an orthog-
onal transformation. The first basis, called the father
function basis, samples the data by averaging on small
scales. It is the numerical equivalent of a raw digital pho-
tograph. The orthogonal transformation is generated by
filtering the coefficients of the father function basis into
equal numbers of high and low frequency parts. The high

frequency parts are associated with another type of basis
function known as the mother function. The same filter is
again applied only to the remaining low frequency parts,
which are divided into high and low frequency parts. This
is repeated until there is only one low frequency coeffi-
cient. This orthogonal transformation and its inverse can
be generated with the same type of efficiency as a fast
Fourier transform. The new basis is called the wavelet
basis.

For the Daubechies-3 wavelets, both sets of basis func-
tions have compact support. The support of the father
function basis functions is small and is determined by the
resolution of the model space. The support of the wavelet
basis functions is compact, but occurs on all scales be-
tween the finest resolution and the coarsest resolution.

The father function for the Daubechies-3 wavelets has
the property that a finite linear combination of such func-
tions can locally pointwise represent a polynomial of de-
gree two. Integrals over these polynomials and the scaling
basis functions can be done exactly and efficiently using
a one-point quadrature.

The mother functions have the property that they are
orthogonal to polynomials of degree two. This means
that the expansion coefficient for a given mother basis
function is zero if the function can be well-approximated
by a polynomial on the support of the basis function. It
is for this reason that most of the kernel matrix elements
in this representation are small. Setting these small co-
efficients to zero is the key approximation that leads to
sparse matrices.

Some of the properties that make the Daubechies
wavelets interesting for numerical computations are

• The basis functions have compact support.

• The basis functions are orthonormal.

• The basis functions can pointwise represent poly-
nomials of degree two.

• The wavelet transform automatically identifies the
important basis functions.

• There is a simple one point quadrature rule that is
exact for local polynomials of degree two.

• These are accurate methods for computing the sin-
gular integrals of scattering theory.

• The basis functions never have to be computed.

The above list indicates that wavelet bases have many
advantages in common with spline bases, which have
proven to be very useful in large few-body calculations.
Both the spline and wavelet basis functions have com-
pact support, which allows them to efficiently model local
structures, both provide pointwise representations of low-
degree polynomials, both can be easily integrated using
simple quadrature rules, and both can be accurately in-
tegrated over the scattering singularity. One feature that
distinguishes the wavelet method from the spline method
is that the wavelet transform automatically identifies the
important basis functions that need to be retained. With
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splines, the regions that have a lot of structure and re-
quire extra splines need to be identified by hand. This
is a non-trivial problem in large calculations. The auto-
matic nature of this step is an important advantage of
the wavelet method in large calculations. In addition,
unlike the spline basis functions, the wavelet basis func-
tions are orthogonal, and the one-point quadrature only
requires the evaluation of the driving term or kernel at a
single point to compute matrix elements. This leads to
numerical approximations that combine the efficiency of
the collocation method with the stability of the Galerkin
method.

In the next section we give an overview of the prop-
erties of wavelets that are used in our numerical compu-
tations. Our model problem is defined in section three.
The methods of section two are used in section four to
reduce the scattering integral equation in section three
to an approximate linear system. The transformation to
a sparse-matrix linear system and the methods used to
solve the linear equations are discussed in section five.
The considerations discussed in this section are impor-
tant for realistic applications. The results of the model
calculations are discussed and compared to the results
of partial-wave calculations in section six. Our conclu-
sions are summarized in section seven. The complex bi-
conjugate gradient algorithm that was used to solve the
resulting system of linear equations is outlined in the Ap-
pendix.

II. WAVELET PROPERTIES

In our work, we use Daubechies’ original bases of com-
pactly supported wavelets [6]. In addition to their sim-
plicity, these functions possess many useful properties for
numeric calculations, which are discussed at the end of
this section.

A. General Wavelet Analysis

There are two primal basis functions called the father,
φ, and mother, ψ. The primal father function is defined
as the solution of the homogeneous scaling equation

φ(x) =
√

2

2K−1
∑

l=0

hlφ(2x− l), (1)

with normalization
∫

φ(x)dx = 1. (2)

The primal mother function is defined in terms of the
father by a similar scaling equation,

ψ(x) =
√

2

2K−1
∑

l=0

glφ(2x− l), (3)
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√
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where

gl = (−1)lh2K−1−l. (4)

The parameter K is the order of the Daubechies wavelet
and the hl are a unique set of numerical coefficients that
satisfy certain relations [6] such as orthogonality of basis
functions. We employ wavelets of order K = 3, hence-
forth called Daubechies-3 wavelets. The numerical values
of the hl are given in Table I.

Equation (1) is the most important in all of wavelet
analysis, as all the properties of a wavelet basis are de-
termined by the so-called filter coefficients, hl. A simple
property that follows from the hl is that the father and
mother function both have compact support on the in-
terval (0, 2K−1). All other basis functions are related to
the primal father and mother by means of dyadic (power
of two) scale transformations and unit translations,

φj,k(x) := 2−j/2φ(2jx− k)

ψj,k(x) := 2−j/2ψ(2jx− k). (5)

To solve the two-dimensional integral equation for the
T-matrix we need to construct a two-dimensional basis
in terms of wavelet functions. The simplest method is to
construct a direct-product basis of the one-dimensional
functions

φm,l(x)φn,k(y), φm,l(x)ψn,k(y),

ψm,l(x)φn,k(y), and ψm,l(x)ψn,k(y). (6)

The primal versions of these four basis function types for
the Daubechies-3 wavelets are shown in Fig. 1. The com-
plex pointwise structure of the basis functions tends to
obscure their ability to accurately and efficiently repre-
sent smooth functions. Fortunately, the pointwise struc-
ture never appears in calculations, since all calculations
are made in terms of the simple scaling equation (1).

B. Equivalent Representations and Wavelet

Transforms

If one includes wavelets of all scales, then one can ob-
tain a basis for L2(R). In practice however, one chooses a
fine approximation scale J and constructs an approxima-
tion basis with respect to this scale. At any scale, there
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FIG. 1: (Color online) Direct product basis of Daubechies-3
wavelets

are two equivalent bases in terms of wavelet functions.
The first basis consists of translates of the father func-
tion on the finest scale J . The second basis consists of the
father functions on the coarsest scale j = 0 and mother
functions on all intermediate scales j = 0, ..., J − 1. So,
for any function we have two equivalent approximations
given by

f(x) =
∑

l

alφJ,l(x)

=
∑

l

a′
lφ0,l(x) +

J−1
∑

j=0

∑

l

dj,lψj,l(x). (7)

In two dimensions, the two equivalent representations are
given by the direct product of the one-dimensional rep-
resentations, which gives us the four types of basis func-
tions in equation (6). It turns out that the first repre-
sentation is typically dense while the second can often
be truncated to a sparse representation by eliminating
expansion coefficients with a magnitude below some cer-
tain threshold. This is because the father functions can
exactly represent polynomials of degree K − 1 while the
mother functions are orthogonal to such polynomials [6].
Specifically,

∫

xkψ(x)dx = 0, 0 ≤ k ≤ K − 1 (8)

Thus, for any function that is well-represented by low de-
gree polynomials on the scale J , most of the coefficients
dj,l in the second representation will be small. These
small coefficients can be eliminated with a local error of
O(ε), where ε is the threshold of the truncation. A fast
orthogonal transformation known as the discrete wavelet
transform [7] links the two bases given above. This al-
lows us to compute projections in the first basis where

the single scale and single type of basis function make the
approximations accurate and efficient. Then we can ap-
ply the discrete wavelet transform to quickly produce the
sparse basis, which is useful for solving linear systems.

C. Application of the Scaling Equation

Now, we briefly discuss some of the useful results that
follow from the scaling equation (1). For a more detailed
treatment see [3, 8]. First we consider the moments of
the father function defined by

〈

xk
〉

:=

∫

xkφ(x)dx. (9)

Applying the scaling equation (1) to (9) gives

〈

xk
〉

=
1

2k

∑

l

hl√
2

k
∑

m=0

(

k

m

)

lk−m 〈xm〉 . (10)

This recursion relation, along with the normalization
condition,

〈

x0
〉

:= 1, can be used to compute all of the
moments of the father function in terms of the filter co-
efficients, hl. These moments can be used to construct
quadrature rules, which are used to approximate the pro-
jection of an arbitrary function, f(x), onto a wavelet
basis. We employ the simplest such quadrature, the
one point quadrature [10]. This quadrature is based on

the identity
〈

x2
〉

= 〈x〉2 and results in a local error of

O(f (3)(x)).
It is also important in applications to consider the case

where the interval of integration is finite. Specifically,
we consider integrals over left-hand and right-hand end-
points of the form [11]

〈

xk
〉+

m
:=

∫ ∞

0

φ(x −m)xkdx,

〈

xk
〉−

m
:=

∫ 0

−∞

φ(x −m)xkdx, (11)

and

∆+
mn :=

∫ ∞

0

φ(x −m)φ(x − n)dx,

∆−
mn :=

∫ 0

−∞

φ(x −m)φ(x− n)dx. (12)

Applying the scaling equation (1) to these integrals gives
linear relations such as

〈

xk
〉+

m
= 2−k−1/2

2K−1
∑

l=0

hl

〈

xk
〉+

2m+l
(13)
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TABLE II: Integrals over singularity

S−1 -0.1717835441734 −i 4.041140804162
S−2 -1.7516314066967 +i 1.212142562305
S−3 -0.3025942645356 −i 0.299291822651
S−4 -0.3076858066180 −i 0.013302589081

and

∆+
m,n =

2K−1
∑

r=0

2K−1
∑

s=0

hrhs∆
+
2m+r,2n+s. (14)

These linear systems can be solved for the cases of
m,n = −1,−2, ...,−(2K − 2) using the previously com-

puted moments for
〈

xk
〉+

m
and the orthogonality relations

for ∆+
m,n.

In [3], we introduced a method for computing singular
integrals of the form

Sk :=

∫

φ(x − k)

x+ i0+
dx, (15)

where 0+ is a positive infinitesimal quantity. Applying
the scaling equation (1), gives the degenerate linear rela-
tions

Sk =
√

2

2K−1
∑

l=0

hlS2k−l. (16)

These can be supplemented with a normalization condi-
tion

−iπ =

∫ a

−a

dx

x+ i0+
=

∑

n

∫ a

−a

φ(x− n)
dx

x+ i0+
=

∑

n

Sn:a, (17)

which follows from the identity 1 =
∑

n φ(x−n). Finally,
we need the nonsingular integrals which can be obtained
using the recursion relation (16) and the convergent ex-
pansion for large n given by

Sn:a =

∫ a

−a

φ(x − n)

x+ i0+
dx

=
1

n

∫ a−n

−a−n

φ(y)

1 + y/n
dy

=
1

n

∞
∑

k=0

(−1

n

)k ∫ a−n

−a−n

φ(y)ykdy, (18)

where the final integrals can be calculated using the
methods for equations (9) and (11). The values of the
singular integrals are given in Table II.

For a more thorough and detailed discussion of these
calculations and additional properties of wavelets see [3,
8].
III. TWO-BODY T-MATRIX IN MOMENTUM

SPACE

The two-body T-matrix is given by the solution to the
Lippmann-Schwinger equation

T = V + V G0T, (19)

where V is the two-body potential and G0 = (E + iε −
H0)

−1 is the free two-body propagator. In momentum
space, this equation becomes

T (p′, p, x′) =
1

2π
v(p′, p, x′, 1) −m

∫ ∞

0

dp′′p′′2

∫ 1

−1

dx′′v(p′, p′′, x′, x′′)
1

p′′2 − p2
0 − iε

T (p′′, p, x′′), (20)

where m is the mass of the particles, p0 is the on-shell momentum, x′ = p̂′ · p̂, x′′ = p̂′′ · p̂, and v is the two-
body potential with the azimuthal angle dependence integrated out. For our calculations, we use a Malfliet-Tjon III
potential [12] with attractive and repulsive parts. In this case, the azimuthal integration can be carried out analytically
giving

v(p′, p, x′, x) =
1

π

[

λR
√

(p′2 + p2 − 2p′px′x+ µR)2 − 4p′2p2(1 − x′2)(1 − x2)

− λA
√

(p′2 + p2 − 2p′px′x+ µA)2 − 4p′2p2(1 − x′2)(1 − x2)

]

. (21)

The parameters for this potential are: λA = -626.8932
MeV fm, µA = 1.55 fm−1, λR = 1438.723 MeV fm, µR =

3.11 fm−1, which correspond to those used in [4]. We use
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a nucleon mass such that 1/m = 41.47 MeV fm2.
In our work, we consider solutions for the half off-shell

T-matrix, T (p′, p0, x
′). Traditionally, the T-matrix is de-

composed in a partial wave basis using

T (p′, p0, x
′) =

∞
∑

l=0

2l+ 1

4π
Tl(p

′)Pl(x
′) (22)

where the Pl are Legendre polynomials. Each amplitude
Tl(p

′) must be solved for individually. For high ener-
gies, a significant number of amplitudes may need to be
included to ensure convergence [4].

The magnitude squared of the on-shell T-matrix is pro-
portional to the differential cross section. Furthermore,
the on-shell partial wave amplitudes, Tl(po), can be pa-
rameterized as

Tl(p0) =
−2

π

1

mp0
eiδl(p0) sin(δl(p0)), (23)

where the δl(p0) are experimentally determined phase-
shifts. These phase-shifts are used to fit realistic nucleon-
nucleon potentials and should be accurately reproduced
by any viable solution method.

IV. WAVELET REPRESENTATION

To solve equation (20) we need to transform the half-
interval, [0,∞), corresponding to the momentum variable
into a finite interval, [−a, b]. For computational conve-
nience we also transform the interval, [−1, 1], associated
with the angular variable into the region, [−c, d]. For the
first transformation we use the following map

p(k) := p0
b

a

a+ k

b− k
, k(p) :=

ab(p− p0)

ap+ p0b
, (24)

which maps the scattering singularity at p′′ = p0 to the
origin. Then we have

dp = p0
b

a

(b+ a)

(b− k)2
dk (25)

and

1

p− p0
=

a(b− k)

(a+ b)p0

1

k
. (26)

The second mapping is the simple linear transformation

x(u) :=
2u− d+ c

d+ c
, u(x) :=

(d+ c)x+ (d− c)

2
, (27)

which gives

dx =
2

d+ c
du. (28)

We now apply these maps to equation (20) to obtain
an equivalent integral equation on the rectangular region
[−a, b] × [−c, d]. For notational convenience we define

f(p′, x′) := T (p′, p0, x
′),

g(p′, x′) :=
1

π
v(p′, p0, x

′, 1), (29)

and for the non-singular part of the kernel

L(p′, p′′, x′, x′′) := m
v(p′, p′′, x′, x′′)p′′2

p′′ + p0
. (30)

Now, we let

f̃(k′, u′) := f(p(k′), x(u′)),

g̃(k′, u′) := g(p(k′), x(u′)), (31)

and

L̃(k′, k′′, u′, u′′) :=

L(p(k′), p(k′′), x(u′), x(u′′))
2

d+ c

b

b− k′′
. (32)

The last factor in this equation comes from applying
equations (25), (26) and (28), which gives

1

p′′ − p0
dp′′dx′′ =

1

k′′

2

d+ c

b

b− k′′
dk′′du′′. (33)

Finally, substituting equations (31) and (32) into equa-
tion (20) gives

f̃(k′, u′) = g̃(k′, u′)

−
∫ b

−a

dk′′

∫ d

−c

du′′ L̃(k′, k′′, u′, u′′)

k′′
f̃(k′′, u′′) (34)

Now, we project this equation onto the wavelet ba-
sis which results in a Galerkin type procedure. In gen-
eral, one can choose a separate fine scale in each variable.
For notational simplicity, we will consider the case where
Jk = Ju = J . In this case, we approximate f̃ using

f̃(k′, u′) ≈
∑

m,n

f̃m,nφJ,m(k′)φJ,n(u′). (35)

Substituting this in (34) and multiplying by
φJ,m′(k′)φJ,n′(u′) and integrating over k′ and u′

gives the linear equation
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∑

m,n

Nm′,n′;m,nf̃m,n = g̃m′,n′

−
∑

m,n

∫ b

−a

dk′

∫ d

−c

du′

∫ b

−a

dk′′

∫ d

−c

du′′φJ,m′(k′)φJ,n′(u′)
L̃(k′, k′′, u′, u′′)

k′′
φJ,m(k′′)φJ,n(u′′)f̃m,n, (36)

where

g̃m′,n′ :=

∫ b

−a

dk′

∫ d

−c

du′g̃(k′, u′)φJ,m′(k′)φJ,n′(u′) (37)

and

Nm′,n′;m,n :=

∫ b

−a

dk′

∫ d

−c

du′φJ,m′(k′)φJ,n′(u′)φJ,m(k′)φJ,n(u′). (38)

We can evaluate g̃m′,n′ using the one-point quadrature [10] discussed earlier and an endpoint quadrature based on
the partial moments [3]. Nm′,n′;m,n is simply the direct product of block diagonal matrices consisting of identity
blocks and blocks of the form ∆± given in equation (12). The final term in equation (36) can be evaluated using the
subtraction

L̃m′,n′;m,n :=

∫ b

−a

dk′

∫ d

−c

du′

∫ b

−a

dk′′

∫ d

−c

du′′φJ,m′(k′)φJ,n′ (u′)
L̃(k′, k′′, u′, u′′)

k′′
φJ,m(k′′)φJ,n(u′′)

=

∫ b

−a

dk′

∫ d

−c

du′

∫ b

−a

dk′′

∫ d

−c

du′′φJ,m′(k′)φJ,n′ (u′)
L̃(k′, k′′, u′, u′′) − L̃(k′, 0, u′, u′′)

k′′
φJ,m(k′′)φJ,n(u′′)

+

∫ b

−a

dk′

∫ d

−c

du′

∫ d

−c

du′′φJ,m′(k′)φJ,n′(u′)L̃(k′, 0, u′, u′′)φJ,n(u′′)

∫ b

−a

φJ,m(k′′)

k′′
dk′′. (39)

The first term in this equation is nonsingular and can
be approximated using the quadrature methods previ-
ously discussed. Likewise, the k′, u′′, u′ integrations in
the second term can be carried out in the same manner.
The final integration over k′′ can be accomplished using
the method following equation (16).

Thus, the problem is reduced to solving a linear system
of the form

∑

m,n

(Nm′,n′;m,n + L̃m′,n′;m,n)f̃m,n = g̃m′,n′ . (40)

Once we have solved this equation for f̃m,n we can substi-
tute this approximate solution back into the right hand
side of the original equation to obtain a refined solution.

V. WAVELET TRANSFORM AND SPARSE

SOLUTION

The eigenvalues of ∆+ accumulate at 0 while those of
∆− accumulate at 1 as K increases [13]. This makes the
matrix N, and consequently the right hand side of (40),
numerically ill-behaved. To circumvent this difficulty we
can precondition the system by inverting N, which is
easily accomplished by inverting the two blocks ∆+ and

∆− and using the direct product structure of N. If we
define

h = Nf̃ , (41)

then equation (40) becomes

(I + LN−1)h = g̃. (42)

If we define

A = (I + LN−1). (43)

Then equation (42) is a simply linear system of the form

Ah = g̃. (44)

This is a large dense linear system. However, as shown
in equation (7), there are two equivalent representa-
tions that are linked by a fast orthogonal transforma-
tion. In two variables, the matrix representation of this
transformation is simply the direct product of the one-
dimensional transformation matrices that are given in
many standard references [7]. If we denote this matrix
as W then we can transform equation (44) as
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(WAWT)Wh = Wg̃. (45)

Now we make the definitions

Â = WAWT, ĥ = Wh, ĝ = Wg̃. (46)

Then as mentioned in reference to equation (7) we can

truncate the matrix Â by eliminating all elements with
a magnitude below some certain threshold ε, where the
error introduced is proportional to ε. The matrix Â can
be stored in a sparse format such as compressed column
format (CCS) [14], which permits both efficient storage
and matrix multiplication. These savings help eliminate
computationally costly writing and reading from the hard
disk when solving the linear system.

To solve the sparse system we use the complex bicon-
jugate gradient method [7, 15] which we present for gen-
eral complex matrices in Appendix A. This method is a
simple and effective iterative method for general sparse
matrices. In addition, this method, like all iterative tech-
niques, is readily amenable to parallel processing of the
matrix multiplication. Once the solution to (45) is found,

it is a simple matter to recover f̃ by applying the inverse
transform WT and the inverse matrix N−1. In particu-
lar,

f̃ = N−1WTĥ. (47)

VI. RESULTS AND ANALYSIS

We made calculations using the Daubechies-3 wavelets
at scales up to J = 5 in each variable. The total number
of wavelet basis functions in each variable was taken to
be 2M , where M = J + 2. If we take a = c = 1, then b
and d are determined by

b = 2−Jk(2Mk − (2K − 2)) − a,

d = 2−Ju(2Mu − (2K − 2)) − c. (48)

Using these parameters calculations were performed at
lab energies of 300 and 800 MeV to test the efficacy of the
method in different energy regimes. Figure 2 shows the
real and imaginary parts of the half off-shell T-matrix
as a function of momentum, p′, and the scattering an-
gle, x′ = cos(θ) at a scattering energy of 800 MeV.
Daubechies-3 wavelets were used with Mk = Mu = 5.

It can be seen that the real part of the T-matrix is
relatively smooth, while the imaginary part does have
some structure. The fact that the T-matrix is smooth
with isolated structure suggests that wavelet methods
should be able to efficiently compress the matrix Â. Fig-
ure 3 shows the on-shell T-matrix as a function of angle,
x′ = cos(θ), at a scattering energy of 300 MeV. These

FIG. 2: (Color online) Half off-shell T-matrix at 800 MeV
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FIG. 3: On-shell T-matrix at 300 MeV

calculations were made using Daubechies-3 wavelets with
Mk = Mu = 5. From these graphs the general smooth-
ness of the on-shell amplitude is apparent. We can also
see the forward peaking of the scattering amplitude that
is expected at higher energies.

From a numerical standpoint, the first aspect of the
calculation to consider is the general convergence of the
method as the number of basis functions is increased. Ta-
bles III and IV illustrate the convergence of the method
as the number of basis functions is increased. The quoted
values are for on-shell scattering at an angle of 90◦ using
Daubechies-3 wavelets with no truncation. From Table
III, we see that the majority of improvement occurs as
Mk is increased. This can be attributed to the fact that
the integral over k′′ in the kernel is singular and thus
requires more basis functions to accurately represent the
dependence on this variable.

All of these calculations were made by solving the lin-
ear system (42). It is instructive to consider the behav-
ior if one attempts to solve (40) using iterative methods
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TABLE III: Convergence as a function of total number of
basis functions: 300 MeV

Mk Mu Re(T (p0, p0, 0)) Im(T (p0, p0, 0))
4 4 0.484065410 0.292438234
4 5 0.483906981 0.293504057
5 4 0.491111143 0.286418162
5 5 0.490972783 0.287464852
5 6 0.490891484 0.287452418
6 5 0.491773044 0.286276262
6 6 0.491691220 0.286263888
6 7 0.491678773 0.286256958
7 6 0.491772680 0.286123199
7 7 0.491760404 0.286116271

TABLE IV: Convergence as a function of total number of
basis functions: 800 MeV

Mk Mu Re(T (p0, p0, 0)) Im(T (p0, p0, 0))
4 4 0.456127838 0.126626540
4 5 0.454750689 0.126515462
5 4 0.456227507 0.113862313
5 5 0.455006434 0.113967425
5 6 0.454697067 0.113367584
6 5 0.455242066 0.111684819
6 6 0.454931562 0.111107815
6 7 0.454884387 0.111005571
7 6 0.454978565 0.110889988
7 7 0.454931334 0.110788571

without directly inverting N first. Table V compares

the error in the residual, en = ‖r̂n‖ =
∥

∥

∥
ĝ − Âĥn

∥

∥

∥
, as a

function of the number of iterations. As the number of
iterations, n, is increased the preconditioned method con-
verges very rapidly, while the non-preconditioned method
fails to converge adequately.

Now we turn our attention to the compression of the
sparse matrix and its subsequent effect on the calculation.
Figure 4 displays a such a representation for scattering
at 800 MeV using Daubechies-3 wavelets with Mk = 4,
Mu = 3. The plot shows the location of the nonzero
elements of Â after it has been truncated at the thresh-
old level ε = 10−5. This threshold produces a matrix
with 19% of the elements of the full matrix. The order-
ing scheme for Â used in the plot places the elements
associated with finer scales at higher indices. The de-
gree of sparsity increases considerably as the scale in-
creases, which demonstrates that less and less elements
are needed at finer scales.

A key advantage of wavelets is that this reduction in

TABLE V: Convergence of the bi-conjugate gradient method

n en (non-preconditioned) en (preconditioned)

10 3.25×10−4 1.98×10−3

20 4.21×10−4 3.07×10−5

30 7.23×10−5 2.03×10−6

40 9.94×10−4 9.10×10−10

50 1.01×10−4 8.09×10−13
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FIG. 4: Location of the nonzero of elements of Â

the number of nonzero matrix elements significantly re-
duces the time required to solve the linear system. For
the biconjugate gradient method, each iteration requires
two matrix multiplications, which take a time propor-
tional to the number of nonzero elements in the matrix.
Thus, a reduction in the number of nonzero elements re-
duces the solution time by a corresponding amount. The
other major source of computational effort is setting up
and storing the various matrices used in the problem.
For the range of test cases we considered, the solution
of the sparse linear systems only took 5–10% of the total
computational time. Other methods, such as those based
on splines, will have comparable setup time, but longer
solution time for the corresponding dense linear system.

In Table VI, the effect of truncating the matrix Â on
the convergence of the solution is illustrated for various
threshold levels with a lab energy of 800 MeV. This cal-
culation was performed using the Daubechies-3 wavelets
with Mk = Mu = 6. Comparing these results with those
in Table III, we see that even keeping just one percent
of the matrix elements we are able to reproduce the T-
matrix to the same precision as the accuracy of the un-
truncated matrix.

Finally, we consider the accuracy of the phase shifts
determined by our momentum vector approach. To cal-
culate the phase shifts we project our T-matrix onto the
partial waves using

Tl(p
′) = 2π

∫ 1

−1

Pl(x
′)T (p′, p0, x

′)dx′. (49)

We compute the integrals using 20 Gauss-Legendre
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TABLE VI: Effect of truncation on the on-shell T-matrix at
800 MeV for scattering at 180◦, 90◦ and 0◦ corresponding to
T (p0, p0, −1), T (p0, p0, 0) and T (p0, p0, +1)

ε % Re(T (p0, p0, −1)) Im(T (p0, p0, −1))
0 100 0.249235 -0.0777091
10−8 23 0.249235 -0.0777093
10−7 14 0.249234 -0.0777116
10−6 8 0.249217 -0.0777525
10−5 1 0.248296 -0.0770660
ε % Re(T (p0, p0, 0)) Im(T (p0, p0, 0))
0 100 0.454932 0.111108
10−8 23 0.454932 0.111108
10−7 14 0.454932 0.111108
10−6 8 0.454941 0.111117
10−5 1 0.454966 0.111154
ε % Re(T (p0, p0, +1)) Im(T (p0, p0, +1))
0 100 -6.16347 -1.31548
10−8 23 -6.16347 -1.31548
10−7 14 -6.16347 -1.31548
10−6 8 -6.16346 -1.31548
10−5 1 -6.16327 -1.31559

TABLE VII: Comparison of 800 MeV phase shifts with stan-
dard methods

l δl(p0) (Standard) δl(p0) (Wavelet)
0 -0.2535 -0.2534
1 0.2950 0.2949
2 0.3635 0.3634
3 0.2747 0.2746
4 0.1755 0.1755
5 0.1053 0.1052
6 0.06169 0.06168
7 0.03591 0.03591
8 0.02089 0.02089
9 0.01217 0.01217
10 0.007110 0.007109
11 0.004164 0.004163
12 0.002445 0.002444
13 0.001439 0.001437

points [16]. From the Tl it is straightforward to calculate
the phase shifts using equation (23). Table VII displays
these phase shifts (calculated for ELab = 800 MeV using
Daubechies-3 wavelets with Mk = Mu = 7 and truncat-
ing all but 2% of the coefficients) compared with phase
shifts calculated using standard partial wave techniques.
The agreement between the two methods is very good for
all the phase shifts.

VII. CONCLUSIONS

We have shown that it is possible to use wavelets
to calculate the two-body scattering matrix in terms of
momentum vectors without resorting to partial waves.
We were able to accurately reproduce the phase shifts
of the Malfliet-Tjon potential. These calculations lead
to sparse matrices, which can be efficiently inverted us-

ing standard iterative methods. Application of a sim-
ple preconditioning matrix was shown to be necessary
to achieve convergence of the iterative methods. Tradi-
tional methods for solving scattering equations in mo-
mentum space typically produce dense matrices that re-
quire a large amount of storage and are time consuming
to invert. These are promising results because relativistic
scattering equations are naturally formulated in momen-
tum space. Also, the scattering boundary conditions are
most easily treated in momentum space. Wavelet meth-
ods can help treat both of these of problems.

One of the main advantages of wavelet methods over
methods such as splines is that the wavelet transform
presents a method that automatically determines what
basis functions are necessary for a given accuracy. Unfor-
tunately, this also leads to one of the main drawbacks of
this method. In our procedure, a large dense matrix, A,
needs to be produced first and then this is transformed
to a sparse matrix. Most of the computational time is
spent constructing and transforming this matrix into a
sparse format. The subsequent solution of the sparse lin-
ear system takes relatively little computational effort.

For this specific problem, wavelet methods based on
momentum vectors may not be necessary. The maxi-
mum number of partial waves that needs to be included
to achieve convergence, lmax = 14 [4], is simply too small
to gain a computational benefit from using wavelets in
the angular variable. To achieve a computational benefit
we should use less basis functions in the angular vari-
able than the maximum number of partial waves. In the
three-body problem or at much higher energies, the num-
ber of partial waves that need to be included increases
considerably and computational benefits may be gained
from employing a momentum vector approach.
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APPENDIX A: COMPLEX BICONJUGATE

GRADIENT METHOD

The biconjugate gradient method [7, 15] is an iterative
technique for solving large matrix equations of the form

Ax = b .

The advantage of this method for large sparse matrices is
that it only involves matrix multiplication by A and its
adjoint, both of which can be accomplished efficiently in
a sparse storage format such as CCS [14]. The algorithm
generates a sequence of approximate solutions, xk with
residual rk = b − Axk. One iterates until the norm of
the residual is less than some predetermined value.

This method is traditionally formulated for real matri-
ces, but the extension to complex matrices is straightfor-
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ward. Below we present the algorithm for general com-
plex matrices. For our calculations, we start with the
initial approximate solution

x0 = b

with the residual

r0 = b − Ax0 .

For the initial values of the bi-residual r̄0, the direction
vector p0, and bi-direction p̄0 we use

r̄0 = b − A†x0

p1 = r0

p̄1 = r̄0 .

Then we use the recurrence relations

αk =
r̄

†
k−1rk−1

p̄
†
kApk

xk = xk−1 + αkpk

rk = rk−1 − αkApk

r̄k = rk−1 − α∗
kA

†p̄k

βk =
r̄

†
krk

r̄
†
k−1rk−1

pk+1 = rk + βkpk

p̄k+1 = r̄k + β∗
kp̄k .

to generate an improved approximation. This is repeated
until the desired accuracy is obtained. We measure the
accuracy by the `2(C) norm of the residual,

ek = ‖r̂k‖ =
√

r†r .
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