Consider the matrix

\[M := \begin{pmatrix} 1 & -i & 0 \\ i & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

1. Find the characteristic polynomial of \(M \)
2. Find the eigenvalues of \(M \)
3. Find the polynomials \(\phi_i(\lambda) \)
4. Calculate \(\phi_i(M) \).
5. Let \(|v\rangle \) be any vector such that \(\phi_i(M)|v\rangle \neq 0 \). Show that

\[M\phi_i(M)|v\rangle = \lambda_i \phi_i(M)|v\rangle \]

where \(\lambda_i \) is the \(i \)-th eigenvalue.
6. Calculate \(\sin(M) \)
7. Show that \(\sum_i \phi_i(M) = I \)
8. Find a similarity transform that diagonalizes \(M \)
9. Find \(M^{-1} \)