1. The commutator and anti-commutator of two linear operators are defined by

\[[A, B] := AB - BA \quad \{A, B\} := AB - BA \]

Prove the following identities

\[[A[B, C]] + [B[C, A]] + [C[A, B]] = 0 \]

\[[A, BC] = \{A, B\}C - B\{A, C\} \]

2. Let \(K \) be a linear Hermitian operator. Define

\[W := (I + iK)(I - iK)^{-1} \]

Show that \(W \) is a unitary operator.

Express \(K \) in terms of \(W \). (\(K \) is called the Cayley transform of \(W \))

3. Let \(P \) be an orthogonal projection operator. Let \(Q := I - P \).

Show that \(Q \) is an orthogonal projection operator.

Evaluate \(QP \).

4. A linear operator \(N \) is Nilpotent if for some finite \(n \), \(N^n = 0 \). Show that \(e^N \) is a finite degree polynomial in \(N \) if \(N \) is nilpotent. Show that \(e^{\alpha N}e^{\beta N} = e^{(\alpha + \beta)N} \) still holds when \(N \) is nilpotent.

5. Let \(A \) be a bounded linear operator on a normed linear space. Define the partial sums

\[F_n(A) = I + \sum_{m=1}^{n} \frac{1}{m!}A^m \]

Show that this is a Cauchy sequence of operators.

6. Show that if \([A, B] = 0\) that

\[exp(A + B) = exp(A)exp(B) = exp(B)exp(A) \]

What happens to these relations if \([A, B] = \alpha I\) where \(\alpha \) is complex and \(I \) is the identity operator?

7. Let \(P \) be a positive operator. Prove the generalized Cauchy Schwartz inequality:

\[|\langle a|P|b\rangle|^2 \leq \langle a|P|a\rangle \langle b|P|b\rangle \]