
Chapter 1

Newtonian Mechanics

1.1 Definitions

Classical Mechanics is the theory governing the motion of particles. The theory
is unchanged since it’s discovery by Newton.

Point particles are idealized particles whose internal dimensions and prop-
erties can be neglected. The motion of a point particle can be completely
described by the particle’s position as a function of time in some coordinate
system. The coordinates of the particle’s position at time t is denoted by a
vector r(t).

The particle’s instantaneous velocity v(t) and acceleration a(t) in this coor-
dinate system are defined by

v(t) =
dr

dt
(t) (1.1)

a(t) =
d2r

dt2
(t). (1.2)

I use MKS units where distance is measured in meters, mass is measured in
kilograms and time is measured in seconds.

1.2 Experimental observations

1.2.1 Principle of Newtonian determinacy and Newton’s
second law

A fundamental observation (recognized by Newton and nicely discussed in Arnold’s
book) is that the particle’s position, r(t), is a nhy6function that depends only on
the time t and the coordinate and velocity of the particle at some earlier initial,
time t = t0. Arnold refers to this observation as the principle of Newtonian
determinacy. This can be written mathematically as

r(t) = R(t, t0, r(t0),v(t0)). (1.3)

1



2 CHAPTER 1. NEWTONIAN MECHANICS

That r(t) does not depend on higher order initial derivatives of the position
with respect to time or the past history of the particle’s position is a profound
observation.

If I differentiate this equation twice with respect to t and set the initial time
to the current time, t0 = t, I get

d2r

dt2
= a(r(t),v(t), t) :=

∂2

∂t2
R(t, t, r(t),v(t)) (1.4)

where the partial derivative in the term on the right acts only on the first t
variable. Expressing the instantaneous velocity as the derivative of the particle’s
position gives the second order differential equation:

d2r

dt2
= a(r(t),

dr(t)

dt
, t). (1.5)

Thus the principle of Newtonian determinacy indicates that motion of the
particle is governed by a second order differential equation in time!

The acceleration function is not completely arbitrary. Since real particles
do not spontaneously disappear, physically acceptable acceleration functions
lead to second order differential equations whose solutions can be extended for
all time.

Next I use the concept of inertial mass to decompose the acceleration func-
tion into a part that depends on the particle and a part that is independent of
the particle.

If I consider two different point particles connected to identical springs, the
two point particles will experience different accelerations. This means that in
addition to the initial position and velocity, the acceleration function depends
on additional properties of the particle. A second important observation is
that in some preferred coordinate systems the acceleration functions for different
particles are related by a multiplicative constant. The preferred coordinate
systems are called inertial coordinate systems and in these systems the
acceleration function can be separated into a product of a constant that is
characteristic of the particle and a vector-valued function that is independent of
the choice of particle. In inertial coordinate systems the second order differential
equation can be put in the from

m
d2r

dt2
= F(r(t), ṙ(t), t). (1.6)

The constant m, characteristic of the particle, is called the inertial mass of
the particle and the quantity F(r(t), ṙ(t), t), that only depends on the particle’s
coordinate and velocity, is called the Force on the particle. This equation is the
familiar form of Newton’s second law. The MKS unit of mass is a kilogram
and MKS unit of force is a Newton (kg ·m/s2).

For example, for a fixed linear spring with force constant k, the angular

frequency ω :=
√

k
m of oscillation depends on the inertial mass of the particle

and can be used to distinguish particles with different inertial masses.
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The inertial mass permits a clean separation of the acceleration function into
a part the depends of properties of the particle and a part that depends of the
initial conditions and the rest of the system on the right.

These considerations generalize to systems of N interacting point particles.
The result is a set of coupled second order ordinary differential equations of the
form

mi
d2ri
d2r

= Fi(r1 · · · rN ;
dr

dt 1
· · · dr

dtN
, t) (1.7)

In this case the particle’s coordinate as a function of time, ri(t), is the solution of
3N coupled second-order differential equations. The solution requires specifying
the initial coordinates and velocities of all N particles.

1.2.2 Local solutions

The equations of motion (1.6) can be equivalently expressed as a system of 6N
coupled first order differential equations

dvi
dt

=
1

mi
Fi(r1, · · · rN ,v1, · · · ,vN , t) (1.8)

dri
dt

= vi. (1.9)

Integrating these equations from t0 to t gives an equivalent system of integral
equations that incorporate the initial coordinate and velocity:

vi(t) = vi(t0) +

∫ t

t0

1

mi
Fi(r1(t′), · · · rN (t′),v1(t′), · · · ,vN (t′), t′)dt′ (1.10)

ri(t) = ri(t0) +

∫ t

t0

vi(t
′)dt′. (1.11)

For small t− t0 this system can be solved by iteration. The iterative solution is
given by

vi(t) = lim
k→∞

vki (t) (1.12)

ri(t) = lim
k→∞

rki (t) (1.13)

where the initial values are
v0
i (t) = vi(t0) (1.14)

r0i (t) = ri(t0) (1.15)

and the k-th approximations can be expressed in terms of the k − 1-th approx-
imation as

vki (t) = vi(t0) +

∫ t

t0

1

mi
Fi(r

k−1
1 (t′), · · · rk−1N (t′),vk−11 (t′), · · · ,vk−1N (t′), t′)dt′

(1.16)
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rki (t) = ri(t0) +

∫ t

t0

vk−1i (t′)dt′. (1.17)

This is just the iteration used by Picard to prove the existence of local solutions
of systems of differential equations. The convergence of this method has only
been established for sufficiently small t − t0. It is much more difficult to find
stable computational methods for finding solutions that are valid for all time,
however independent of mathematical considerations, physics considerations re-
quire that acceptable physical forces must be of the type that have solutions
that are valid for all time.

1.2.3 Galilean invariance

A third important observation is called the Principle of Galilean Relativity.
It states that for isolated systems the form of the dynamical equations is the
same in all inertial coordinate systems.

For the special case of a single point particle in the absence of forces the
equation of motion in an inertial coordinate system is

d2r

dt2
= 0. (1.18)

The form of this equation must be the same in any inertial coordinate system.
The form of equation (1.18) is preserved by (1) changing the origin of the

coordinate system by a fixed constant vector (2) changing the origin of the
coordinate system by a fixed constant velocity (3) rotating the coordinate system
about a fixed point (4) or changing the time by a fixed amount. Combining these
transformations defines a new inertial coordinate system:

ri → r′i = Rri + v0t+ r0 (1.19)

t→ t′ = t+ c. (1.20)

Transformations generated by these elementary transformations are called Galilean
transformations. Here r0 and v0 are constant vectors and R is a constant 3×3
orthogonal matrix with unit determinant. The orthogonality ensures that it pre-
serves the length of vectors and the condition on the determinant ensures that
it does not include transformations that involve space reflection. Later I will
show that these transformations are rotations.

Equation (1.18) are also invariant under changes of length or time scale,
but these correspond to changes in distance or time units. When we consider
interactions which have dimensions, they will also scale according to their di-
mensions.

It is an easy exercise to show (1) the composition of two Galilean transforma-
tions is a Galilean transformation (2) the identity is a Galilean transformation
(3) every Galilean transformation has an inverse (4) the composition of Galilean
transformations is associative.

These properties imply that the Galilean transformations define a mathe-
matical structure called a group under composition. This is called the Galilean
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group. The elements of this group are coordinate transformations that relate
different inertial coordinate systems.

The Galilean transformations can be expressed in matrix form as r′

t′

1

 =

 R v r0
0 I t0
0 0 1

 r
t
1

 . (1.21)

The requirement that the equations of motion for an isolated system have
the same form in any inertial coordinate system also restricts the structure of
the allowed forces, Fi(r1 · · · rN ; ṙ1 · · · ṙN , t):

Invariance with respect to spatial translations means

Fi(r1 · · · rN ; ṙ1 · · · ṙN , t) = Fi(r1 − a · · · rN − a; ṙ1 · · · ṙN , t). (1.22)

Choosing a = r1 means that the force for an isolated system in an inertial
coordinate system only depends on coordinate differences.

Invariance with respect to time shifts requires

Fi(r1 · · · rN ; ṙ1 · · · ṙN , t) = Fi(r1 · · · rN ; ṙ1 · · · ṙN , t− c). (1.23)

Setting c = −t implies that the forces have no explicit dependence on time.
Since coordinate differences are preserved under shifts by constant velocity,

invariance with respect to shifts by constant velocity implies

Fi(r1−ri · · · rN−ri; ṙ1 · · · ṙN ) = Fi(r1−ri · · · rN−ri; ṙ1−v · · · ṙN−v) (1.24)

Setting v = ṙ1 gives

Fi(r1 · · · rN ; ṙ1 · · · ṙN , t) = Fi(r1 − ri · · · rN − ri; ṙ1 − ṙi · · · ṙN − ṙi) (1.25)

which means that the forces depend only on velocity differences. Invariance of
the form of the equations of motion with respect to rotations means

Fi(r1 − ri · · · rN − ri; ṙ1 − ṙi · · · ṙN − ṙi) =

R−1Fi(R(r1 − ri) · · ·R(rN − ri);R(ṙ1 − ṙi) · · ·R(ṙN − ṙi)) (1.26)

or
RFi(r1 − ri · · · rN − ri; ṙ1 − ṙi · · · ṙN − ṙi) =

Fi(R(r1 − ri) · · ·R(rN − ri);R(ṙ1 − ṙi) · · ·R(ṙN − ṙi)) (1.27)

Thus forces consistent with the principle of Galilean relativity in an inertial
coordinate system requires the the forces have no explicit time dependence, are
functions of coordinate and velocity differences, and are vectors constructed out
of the coordinate and velocity differences.

This principle applies to the universe or isolated subsystems in inertial co-
ordinate systems. This principle does not apply to subsystems that are not
isolated from their environment, and requires modification in non-inertial coor-
dinate systems.

End of first lecture?
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1.2.4 Inertial reference frames

The group of Galilean transformations tells one how to transform from one
inertial coordinate system to another one, but it does not give any indication
of how to experimentally determine if a given coordinate system is inertial. To
answer this question it is useful to consider how the equations of motion are
modified in a non-inertial coordinate system.

1.2.5 Accelerated reference frames

To understand this problem it is useful to postulate a dynamics formulated
in a fixed inertial reference frame and consider how the dynamics looks in an
arbitrary frame.

Consider general coordinates yi related to inertial coordinates ri by

yi = yi(ri, t). (1.28)

To use Newton’s laws in an inertial coordinate system I compute the first and
second time derivatives of these coordinates:

dyi
dt

=
∑
j

∂yi

∂rji

drji
dt

+
∂yi
∂t

(1.29)

d2yi
dt2

=
∑
j

∂yi

∂rji

d2rji
dt2

+
∑
jk

∂2yi

∂rji ∂r
k
i

drji
dt

drki
dt

+

2
∑
j

∂2yi

∂rji ∂t

drji
dt

+
∂2yi
∂t2

. (1.30)

Multiplying by mi and using Newton’s second laws in an inertial coordinate
system gives

mi
d2yi
dt2

=
∑
j

∂yi

∂rji
F ji +mi

∑
kj

∂2yi

∂rji ∂r
k
i

drji
dt

drki
dt

+

2mi
∂2yi

∂rji ∂t

drji
dt

+mi
∂2yi
∂t2

. (1.31)

It is desirable to express these equations in terms of the new coordinates. This
can be done using

drji
dt

=
∑
k

∂rji
∂yki

(
dyki
dt
− ∂yki

∂t

)
. (1.32)

Using (1.32) in (1.33) gives

mi
d2yi
dt2

=
∑
j

∂yi

∂rji
F ji +mi

∑
kj

∂2yi

∂rji ∂r
k
i

[∑
k

∂rji
∂ymi

(
dymi
dt
− ∂ymi

∂t

)][∑
n

∂rki
∂yni

(
dyni
dt
− ∂yni

∂t

)]
+
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2mi

∑
jk

∂2yi

∂rji ∂t

∂rji
∂yki

(
dyki
dt
− ∂yki

∂t

)
+mi

∂2yi
∂t2

. (1.33)

This equation looks like Newton’s second law with a transformed force

∑
j

∂yi

∂rji
F ji (1.34)

and three additional inertial forces:

F1 := mi

∑
kj

∂2yi

∂rji ∂r
k
i

[∑
k

∂rji
∂ymi

(
dymi
dt
− ∂ymi

∂t

)][∑
n

∂rki
∂yni

(
dyni
dt
− ∂yni

∂t

)]
(1.35)

F2 := 2mi

∑
jk

∂2yi

∂rji ∂t

∂rji
∂yki

(
dyki
dt
− ∂yki

∂t

)
(1.36)

and

F3 := mi
∂2yi
∂t2

. (1.37)

The inertial forces can be distinguished from the transformed force by the ap-
pearance of the inertial mass mi in these forces. In addition they do not vanish
when the applied forces vanish, i.e. F ji = 0. This means that particles in
non-inertial coordinate systems will experience spontaneous acceleration in the
absence of applied forces.

These inertial forces are familiar. They include the force that pushes you
back in you seat when an airplane takes off.

This equation suggest that a coordinate system for an isolated system is
inertial if in that coordinate system a particle’s acceleration is inversely pro-
portional to its inertial mass. Clearly, for the inertial forces the acceleration is
independent of the mass, so non-inertial coordinate systems do not have this
property.

1.2.6 Gravity

The problem with the test described above is that while it works fine for elec-
trical forces, it fails for gravitational forces. This is because of the remarkable
observation that the gravitational “charge” of a particle is identical to its inertial
mass. As a consequence of the equivalence of the inertial and gravitational
mass the masses cancel on both sides of the equation and the particle’s accel-
eration is independent of its mass in all coordinate systems. The equivalence of
the gravitational and inertial mass is not explained by classical mechanics. In
classical mechanics both masses have very difference origins. This observation
is a consequence of the theory of general relativity.
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1.2.7 Newton’s first law

If the force on a particle in an inertial coordinate system vanishes, then the
particle’s acceleration is zero. Integrating the differential equation (1.6) with no
force term gives

r(t) = v(t0)(t− t0) + r(t0) (1.38)

which means that the particle moves with constant velocity. This is the content
of Newton’s first law.

1.2.8 Conservative forces

Many forces in nature are independent of velocities and are derivable from a
single-valued potential function. I consider potential functions that do not de-
pend on the particle velocities. A set of forces are conservative if they can be
written in the form

Fi = − ∂

∂ri
V (r1 · · · rN ) (1.39)

for some single valued potential function V (r1 · · · rN ).
The work done, WA,B [γγγ], by a force along some path γγγ(λ) between rA and

rB is

WA,B [γγγ] :=

∫
γγγ

F · dr =

∫ 1

0

F · dγ
γγ

dλ
dλ (1.40)

where γγγ(0) = rA and γγγ(1) = rB .
For a system of particles this is replaced by

WA,B [γγγ] :=
∑
i

∫
γγγi

Fi · dri =

∫ 1

0

∑
i

Fi ·
dγγγi
dλ

dλ. (1.41)

where γγγi(0) = riA and γγγi(1) = riB .
The work done by a conservative force is independent of the paths used to

get from the initial to the final points.

WA,B [γγγ] :=

∫ 1

0

∑
i

Fi ·
dγγγi
dλ

dλ =

∫
(−∇∇∇iV (γγγ1(λ), · · · , γγγN (λ)) · dγ

γγi
dλ

dλ = (1.42)

∫ 1

0

d

dλ
V (γγγ1(λ) · · ·γγγN (λ))dλ =

V (γγγ1(1) · · ·γγγN (1))− V (γγγ1(0) · · ·γγγN (0)) =

V (r1A, · · · , rNA)− V (r1B , · · · , rNB)) (1.43)

which only depends on the endpoints of the paths, not the specific path.
For a closed path, riB = riA

γγγ−(1) = γγγi(0) (1.44)
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and for a single-valued potential

V (γγγ1(1) · · ·γγγN (1))− V (γγγ1(0) · · ·γγγN (0)) =

V (r1A, · · · , rNA)− V (r1A, · · · , rNA) = 0 (1.45)

This can be expressed in the form∑
i

∮
γγγi

Fi · dri = 0 (1.46)

for any closed path γ = (γγγ1(λ), . . . , γγγN (λ)).

1.2.9 Newton’s third law

For a Galilean invariant systems interacting with velocity-independent conser-
vative forces the potential only depends on the coordinate differences. This
means that the potential functions satisfy

V (r1, · · · , rN , t) = Ṽ (r1 − rN , · · · , rN−1 − rN , t). (1.47)

It follows that the net force on this system is

N∑
i=1

Fi = −
N∑
i=1

∂Ṽ

∂ri
= −

N−1∑
i=1

(
∂Ṽ

∂ri
− ∂Ṽ

∂ri
) = 0. (1.48)

Which shows that the net force on a translationally invariant conservative sys-
tem with velocity independent forces is zero. When applied to isolated systems
of two particles it means that the force on particle 1 due to particle 2 is the
negative of the force on particle 2 due to article 1. This is the usual form of
Newton’s third law.

1.2.10 Macroscopic particles - elementary conservation laws

Consider a macroscopic particle consisting of many point particles. Assume that
each point particle experiences (1) an applied external force and (2) Galilean
invariant conservative forces due the other point particles in the system.

Define the total inertial mass

M :=
∑
i

mi (1.49)

and the center of mass coordinate

R :=
∑
i

mi

M
ri. (1.50)

In terms of these quantities

M
d2R

dt2
=
∑
i

Mmi

M

d2ri
dt2

=
∑
i

mi
d2ri
dt2

=
∑
i

Fi (1.51)
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Fi = −∂V
∂ri

+ Fi ext (1.52)

The sum of the derivatives of the potential vanishes (1.48) due to the Galilean
invariance of the conservative inter-particle forces. It follows that the total force
on the macroscopic particle is the vector sum of the applied external forces on
the system. Summing over the particles gives∑

i

Fi = −
∑
i

∂V

∂ri
+
∑
i

Fi ext (1.53)

It follows that

M
d2R

dt2
=
∑
i

Fi ext (1.54)

which as the form of Newton’s second law for a point particle of mass M and
coordinate R being acted on by a force Fext :=

∑
i Fi ext.

The means the center of mass coordinate of the system behaves like a point
particle being acted on by the sum of the external forces on the system. This
justifies treating a macroscopic system of point particles by an idealized point
particle. This equation holds independent of all of relative motion of the con-
stituent point particles.

1.2.11 Conservation Laws

Symmetries in classical mechanics are normally associated with conserved quan-
tities.

In the above analysis the translational invariance of conservative force en-
sures that the corresponding potential was only a function of coordinate dif-
ferences. This in turn showed that the sum of all of the inter-particle forces
vanish.

In the absence of external forces equation (1.54) becomes

M
d2R

dt2
=

d

dt

(
M
dR

dt

)
= 000 (1.55)

The conserved vector quantity

P = M
dR

dt
(1.56)

is called the linear momentum of the system. The above equation shows
that all three components are conserved in the absence of external forces.

From the definitions it follows that

P = M
dR

dt
=
∑
i

mi
dri
dt

:=
∑
i

pi (1.57)

where pi := mi
dri
dt is the linear momentum of particle i.
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The quantity
L := R×P (1.58)

is called the angular momentum of the system. Note that its value depends
on the position of the origin of the coordinate system. Note that for an isolated
Galilean-invariant system

dL

dt
:=

dR

dt
×P + R× dP

dt
=

1

M
P×P + R× Fext = R× Fext. (1.59)

this vanishes in the absence of external forces or more generally when the ex-
ternal torque

T := R× Fext (1.60)

vanishes. It follows that in the absence of external torques the angular momen-
tum of the system

L := R×P (1.61)

is conserved. The last conservation law follows from

000 = M
d2R

dt2
· dR
dt

=
1

2
M

d

dt
(
dR

dt
· dR
dt

) =
1

2M
P ·P (1.62)

which shows that in the absence of external forces the total kinetic energy is
conserved.

These conservation laws hold for isolated systems or isolated point particles.
We will discuss a more general treatment of conservation laws in the next section.

End second lecture
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Chapter 2

Lagrangian Dynamics

2.1 Problems with constraints

Many mechanical system involve constraints. In addition to explicit forces, the
system also has forces due to the constraints that are often not explicitly known.

There are many different kinds of constraints that may be relevant for an
isolated system. A holonomic constraint is a relation of the form

f(r1, · · · , rN , t) = 0 (2.1)

that constrains the particle’s coordinates. The time dependence means that
these constraints can depend on time. Not all constraints are holonomic. Some
elementary examples of non-holonomic constraints are

r2 + y2 ≤ L2

f(dr1dt , · · · ,
drN
dt , t) = 0∑

u ci(r1, · · · , rN ) · dri = 0 (unless ci = ∂g
∂ri

for some g).

The method that I discuss for treating holonomic constraints can also be applied
to the third kind of constraint listed above, called differential constraints.

There are two problems when a system is subject to holonomic constraints.

1. Because of the constraints, not all of the coordinates are independent.

2. The forces of constraint are not explicitly known.

An important observation that helps to solve both of these problems is that
the motion is normally perpendicular to the forces of constraint, so the con-
straint forces do no work. For example, the normal force on an inclined plane
keeps the particle on the plane, but it does no work as the particle slides down
the plane.

13
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2.2 Principle of virtual work

I begin by considering a system of N point particles. Newton’s second law
implies

dpi
dt
− Fi = 0 (2.2)

Here Fi represents the sum of all of the forces on particle i including the con-
straint forces. It follows that for an arbitrary infinitesimal displacement, δri
that

(
dpi
dt
− Fi) · δri = 0 (2.3)

Next I write the force on particle i as the sum of an applied force, Fai , and
a constraint force, Fci

(
dpi
dt
− Fai − Fci ) · δri = 0. (2.4)

I also restrict the infinitesimal displacements so they are consistent with the
constraints. This requirement, along with the observation that the forces of
constraint are perpendicular to the displacement, implies

Fci · δri = 0. (2.5)

Thus, for infinitesimal displacements consistent with the constraints, equa-
tion (2.4) becomes

(
dpi
dt
− Fai ) · δri = 0. (2.6)

This step has eliminated the forces of constraint from the problem.
If the system has K holonomic constraints then it is possible, by eliminating

variables, to express coordinates consistent with the constraints in terms of
3N −K generalized coordinates, q1 · · · qm=3N−K :

ri = ri(q1, · · · , qm) (2.7)

Arbitrary small displacements consistent with the constraints can be ex-
pressed as

δri =
∑
j

∂ri
∂qj

δqj (2.8)

where the small displacements in the 3N −K generalized coordinates are inde-
pendent. Thus for each i

(
dpi
dt
− Fai ) ·

∑
j

∂ri
∂qj

δqj = 0. (2.9)

If I sum (2.9) over i, because of the independence of the δqi, the coefficient of
each δqi must vanish. This gives the following 3N −K = m equations:∑

i

(
dpi
dt
− Fai )

∂ri
∂qj

= 0 (2.10)
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for 1 ≤ j ≤ m.
Now I use some elementary calculus to express (2.9) and (2.10) in a more

useful form: ∑
i

dpi
dt
· ∂ri
∂qk

=
∑
i

d

dt
(mi

dri
dt

) · ∂ri
∂qk

=

∑
i

d

dt
(mi

dri
dt
· ∂ri
∂qk

)−
∑
i

mi
dri
dt
· d
dt

(
∂ri
∂qk

) (2.11)

Note that
d

dt
(
∂ri
∂qk

) =
∂2ri
∂qk∂ql

dql
dt

+
∂2ri
∂qk∂t

=

∂

∂qk
(
∂ri
∂ql

dql
dt

+
∂ri
∂t

) =
∂

∂qk
(
dri
dt

) (2.12)

I also observe that because

dri
dt

=
∂ri
∂ql

dql
dt

+
∂ri
∂t

(2.13)

it follows that
∂ri
∂ql

=
∂ṙi
∂q̇l

, (2.14)

where q̇l = dql
dt and ṙi = dri

dt .
Using (2.11-2.14) in (2.10) gives

0 =
∑
i

(
dpi
dt
− Fai ) ·

∑
j

∂ri
∂qj

=

∑
i

mi

(
d

dt
(
dri
dt
· ∂ri
∂qj

)− dri
dt
· d
dt

(
∂ri
∂qj

)

)
−
∑
i

Fai ·
∑
j

∂ri
∂qj

=

∑
i

mi

(
d

dt
(
dri
dt
· ∂ṙi
∂q̇j

)− dri
dt
· ( ∂

∂qj
(
dri
dt

)

)
−
∑
i

Fai ·
∑
j

∂ri
∂qj

=

d

dt

∂

∂q̇j
(
∑
i

1

2
mi

dri
dt
· dri
dt

)− ∂

∂qj
(
∑
i

1

2
mi

dri
dt
· dri
dt

)−
∑
i

Fai ·
∑
j

∂ri
∂qj

=

(
d

dt

∂

∂q̇j
− ∂

∂qj

)
T −

∑
i

Fai ·
∑
j

∂ri
∂qj

(2.15)

where T is the kinetic energy of the system:

T :=
∑
i

1

2
mi

dri
dt
· dri
dt

(2.16)

With these substitutions equation (2.9) becomes∑
j

(
(
d

dt

∂

∂q̇j
− ∂

∂qj
)T −Qj

)
δqj = 0 (2.17)
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and equation (2.10) becomes(
d

dt

∂

∂q̇j
− ∂

∂qj

)
T = Qj (2.18)

where

Qj :=
∑
i

Fai ·
∂ri
∂qj

(2.19)

is called called a generalized force. When the applied force is conservative
then the generalized force takes on a simple form

Qj :=
∑
i

Fai ·
∂ri
∂qj

=

−
∑
i

∂V

∂ri
· ∂ri
∂qj

= −∂V
∂qj

(2.20)

Since the potential is independent of velocities I can replace (2.20) by

Qj =

(
d

dt

∂

∂q̇j
− ∂

∂qj

)
V (2.21)

Using this in (??) gives the following system of equations(
d

dt

∂

∂q̇j
− ∂

∂qj

)
(T − V ) = 0 (2.22)

The quantity L = T − V is called the Lagrangian of this system. The differ-
ential equations (2.22) are called Lagrange’s equations. The standard form
of Lagrange’s equations is

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0. (2.23)

For a conservative force equation (2.9) becomes∑
j

(
d

dt

∂L

∂q̇j
− ∂L

∂qj
)δqj = 0. (2.24)

For conservative forces these equations are equivalent to Newton’s second
law. One advantage of Lagrange’s equations is that the dynamical input is
a single scalar quantity L rather than a number of vector forces. A second
advantage is that in the Lagrangian formulation it is not necessary to know
the forces of constraint to find the equation of motion of the particle. Finally,
the Lagrangian allows one to use any set of convenient generalized coordinates.
This is true even when there are no constraints on the system.

End third lecture?
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2.2.1 Forces of constraint - Lagrange multipliers

Lagrange’s equations have the feature that the forces of constraint never appear
in the equations of motion. Sometimes it is desirable to know the forces of
constraint. For example, in designing a roller coaster it is important to know
that the cart stays on the track. The signal for failure is the normal force, which
is a force of constraint, vanishes.

If I return to the principle of virtual work but replace the independent gener-
alized coordinates by the full set of generalized coordinates, still assuming that
the motion is consistent with the constraints, equation (2.9) is replaced by

3N∑
j=1

(
d

dt

∂L

∂q̇j
− ∂L

∂qj

)
δqj = 0. (2.25)

This differs from equation (2.9) in that the sum runs over all 3N generalized
coordinates, however in this case we cannot demand that the coefficient of each
δqi vanish because they are no longer independent.

The holonomic constraints can be expressed in terms of the full set of gen-
eralized coordinates as:

fi(q1 · · · q3N ) = 0 1 ≤ i ≤ k. (2.26)

Because there are k constraints we expect that there are only 3N−k independent
generalized coordinates. The constraints imply the k additional relations

3N∑
j=1

∂fi(q1 · · · q3N )

∂qj
δqj = 0 (2.27)

for any displacements δqj consistent with the constraints.
I add zero to equation (2.25) using some undetermined coefficients λi mul-

tiplied by (2.27) for each 1 ≤ i ≤ k I get

3N∑
j=1

(
d

dt

∂L

∂q̇j
− ∂L

∂qj
−

k∑
i=1

λi
∂fi(q1 · · · q3N )

∂qj

)
δqj = 0. (2.28)

This is valid for any λi as long as the particles move in a manner that is consis-
tent with the constraints. I choose the k λi’s so that for each time the coefficient
of δqj for 3N − k + 1 ≤ j ≤ 3N is zero. It follows that

d

dt

∂L

∂q̇j
− ∂L

∂qj
−

k∑
i=1

λi
∂fi(q1 · · · q3N )

∂qj
= 0 (2.29)

for j = 3N − k + 1 · · · 3N by the choice of λ. For this choice of the Lagrange
multipliers λi the last k terms in the sum in (2.28) do not appear. The
remaining 3N − k δqi in the sum can be taken as the independent generalized
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coordinates It follows that the coefficients of each of them also vanish. This
gives

d

dt

∂L

∂q̇j
− ∂L

∂qj
−

k∑
i=1

λi
∂fi(q1, · · · , q3N )

∂qj
= 0 (2.30)

for j = 1 · · · 3N − k.
While the interpretation of the first 3N − k and last k equations differ, the

result is the system of 3N equations:

d

dt

∂L

∂q̇j
− ∂L

∂qj
−

k∑
i=1

λi
∂fi(q1 · · · q3N )

∂qj
= 0 (2.31)

for 1 ≤ j ≤ 3N . When the k constraints are used in these equations we get
equations that we can solve for the Lagrange multipliers, λi. Comparing (2.31
to (2.18) gives explicit expressions for the generalized forces of constraint:

d

dt

∂L

∂q̇j
− ∂L

∂qj
=

k∑
i=1

λi
∂fi(q1 · · · q3N )

∂qj
= Qjconstraint 1 ≤ j ≤ 3N −k (2.32)

Note that unlike equation (2.24) equations (2.32) involve all 3N generalized
coordinates with explicit constraint forces.

This method is called the method of Lagrange undetermined multipliers.
Note that generalized forces can depend on both coordinates and velocities.

2.3 Dissipative forces

Many dissipative forces in nature are velocity dependent. In many cases of
interest it is possible express all of the dissipative forces of a system in terms of
a single scalar function, P , of the coordinates and velocities

Fdi =
∂P

∂ṙi
(2.33)

This is true, for example when the dissipative force on particle i depends only
the velocity of particle i and coordinates of all of the particles. Even when the
dissipative forces are not velocity-dependent they can be put in this form.

For this type of dissipative force

Qj :=
∑
i

Fai ·
∂ṙi
∂qj

=
∑
i

∂P

∂ṙi
· ∂ri
∂qj

(2.34)

Using (2.14) this becomes

Qj =
∑
i

∂P

∂ṙi
· ∂ṙi
∂q̇j

=
∂P

∂q̇j
. (2.35)



2.3. DISSIPATIVE FORCES 19

It follows that the equations of motion for combined conservative and dissipative
forces become (

d

dt

∂

∂q̇j
− ∂

∂qj

)
L =

∂P

∂q̇j
(2.36)

An example of a useful class of dissipation functions P are

P = −
∑
i

αi
n

(ṙi · ṙi)n/2 (2.37)

where n = 1 gives static friction forces and n = 2 gives viscous forces.

2.3.1 Principle of stationary action

There is an alternate way to derive Lagrange’s equations. The derivation is
based on a variational principle that has applications that go beyond Newtonian
mechanics.

A functional is a mapping from a space of functions with certain properties
to the space of real or complex numbers. A simple example is

F [f ] = f(0) +

∫
(f2(r) +

df

dr
(r))dr. (2.38)

For mechanics applications we consider a system that can be described by spec-
ifying the values of N generalized coordinates, {qi}Ni=1. Let γi(t) = qi be a
path that gives the value of the i − th generalized coordinate of the system as
a function of time subject to the initial and final conditions: γi(t0) = qAi and
γi(tf ) = qBi .

The Action functional, A[γγγ], assigns a real number to a fixed collection of
paths {γi(t)}. It is defined as

A[γγγ] :=

∫ tf

t0

L(γ1(t′), · · · , γN (t′), γ̇1(t′), · · · , γ̇N (t′), t′)dt′ (2.39)

where L(q1, · · · , qN , q̇1, · · · , q̇N , t) is the Lagrangian of the system. In general,
the path γγγ(t) may have no relation to the solution of the equations of motion,
except that it has the same initial and final coordinates.

A path γγγ0 is an extremal path or stationary point of A[γγγ] if the first
variation of A at γγγ:

δA[γγγ0; δγγγ] :=
dA[γγγ]

dλ
[γγγ0 + λδγγγ]|λ=0 = 0 (2.40)

vanishes for all displacement paths, δγγγ(t), that vanish at t = t0 and t = tf . This
means that is extremal with respect to all paths that have the same initial and
final positions for given initial and final times.

It is instructive to compare this condition to the following formulation of a
partial derivative of a function of N variables in the n̂ direction.

dF (r + λn̂)

dλ
=
∂F

∂r
· n̂. (2.41)
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This is stationary at r = r0 if the partial derivatives of F in all directions
vanish at r0. In the functional case vectors r are replaced by functions, and the
direction n̂ is replaced by δγγγ(t).

End fourth lecture

Next I show that the curves that leave the Action functional stationary are
solutions of Lagrange’s equations with prescribed initial and final conditions.
The condition for the action to be stationary is

0 =
dA[γγγ0 + λδγγγ]

dλ λ=0
(2.42)

where

A[γγγ0 + λδγγγ] =

∫ tf

t0

L(γ10(t′) + λδγ1(t′), · · ·

, γN0(t′) + λδγN (t′), γ̇10(t′) + λδγ̇1(t′), · · · , γ̇N0(t′) + λδγ̇N (t′), t′)dt′ (2.43)

where

δγ̇i(t
′) :=

d

dt′
δγi(t

′) (2.44)

Differentiating with respect to λ and setting λ to zero gives:

N∑
i=1

∫ tf

ti

(
∂L

∂qi
δqi +

∂L

∂q̇i

dδqi
dt

)
dt (2.45)

Next I integrate the second term by parts to get

0 =

N∑
i=1

∫ tf

ti

(
∂L

∂qi
− d

dt
(
∂L

∂q̇i
)

)
δqidt+

(
∂L

∂q̇i
δqi

)
(tf )−

(
∂L

∂q̇i
δqi

)
(ti). (2.46)

The boundary term vanishes because δqi(tf ) = δqi(ti) = 0.
Since the δqi(t) are arbitrary independent functions, the coefficient of each

δqi in the integral must vanish, giving

∂L

∂qi
− d

dt
(
∂L

∂q̇i
) = 0 (2.47)

which are identical to differential equations that I derived using the principle of
virtual work.

The argument that the variational principle leads to the differential equations
proceeds as follows. If I assume by contradiction that the differential equation
is not satisfied for a point on the stationary curve, them there is a small time
interval containing that point where ∂L

∂qi
− d

dt (
∂L
∂q̇i

the are strictly positive or
strictly negative. We can choose the δqi to vanish outside of this region and
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have a signs in this region so ( ∂L∂qi −
d
dt (

∂L
∂q̇i

)δqi are all strictly positive in this
region. This particular variation of the action about stationary curve does
not give zero, which contradicts the requirement that γγγ0(t) makes the action
stationary.

There is one difference between Lagrange’s equations derived using the prin-
ciple of virtual work compared to the principle of stationary action. That is
that the principle of virtual work treats Lagrange’s equations as an initial value
problem. The motion is specified by the differential equations and the initial
generalized coordinates and velocities. The principle of stationary action treats
Lagrange’s equations as a boundary value problem. The motion is specified by
the differential equations, the initial and final generalized coordinates, and the
initial and final times.

The variational principle can be used to find extremal solutions to any func-
tional. Before we discuss some examples it is useful to discuss when the extreme
points are local minima.

2.3.2 The second variation

The principle of stationary action is sometimes incorrectly called the principle of
least action. When I consider a function of several variables, a stationary point
is a local minimum if all of the first partial derivatives of the function vanish at
the stationary point and the matrix of second partial derivatives evaluated at
the stationary point is a real symmetric matrix with positive eigenvalues:

f(r) = f(r0) +
∑
i

∂f

∂ri︸︷︷︸
vanishes

(r0)(ri − ri0)+

1

2!

∑
ij

∂2f

∂ri∂rj
(r0)︸ ︷︷ ︸

positive eigenvalues

(ri − ri0)(rj − rj0) + · · · . (2.48)

A similar condition is used to determine whether a stationary point (curve) of
a functional is a local minima. In this case equation (2.48) is replaced by

A[γγγ] = A[γγγ0] +
dA[γγγ0 + λδγγγ]

dλ λ=0
+

1

2

d2A[γγγ0 + λ δγγγ]

dλ2 λ=0
+ · · · =

A[γγγ] = A[γγγ0]+

∫ ∑
i

δA

δγi(t)
[γγγ0]δγi(t)dt+

1

2

∫ ∑
ij

δ2A

δγi(t)δγj(t′)
[γγγ0]γi(t)γj(t

′)dtdt′+· · ·

(2.49)
where the second term vanishes if the action is stationary at γγγ0(t) and the third
term is positive for non-zero δγγγ0. The quantities

δA[γγγ0; δγγγ0] =
dA[γγγ0 + λδγγγ]

dλ λ=0
(2.50)
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and

δ2A[γγγ0; δγγγ] =
d2A[γγγ0 + λ δγγγ]

dλ2 λ=0
(2.51)

are called the first and second variation of A[] at γγγ0. The quantities

δA

δγi(t)
[γγγ0] (2.52)

and
δ2A

δγi(t)δγj(t′)
[γγγ0] (2.53)

are called the first and second functional derivatives of A at γγγ0. In order to
investigate whether the action is a minimum at a path γγγ0 that makes the action
stationary, I express the second variation explicitly in terms of the Lagrangain
as

δ2A[γγγ0; δγγγ] =∫ tf

ti

{ ∂2L

∂q̇i∂q̇j
(γγγ0(t))δγ̇i(t)δγ̇j(t) + 2

∂2L

∂q̇i∂qj
(γγγ0(t))δγ̇i(t)δγj(t)+

∂2L

∂qi∂q̇j
(γγγ0(t))δγi(t)δγj(t)}dt. (2.54)

For fixed γγγ0(t) this becomes a quadratic functional in δγγγ. The strategy used to
determine if the stationary point γγγ0(t) is a local minimum of the action is to
look for stationary solutions of the new functional of δγγγ,

F [δγγγ] := δ2A[γγγ0; δγγγ] (2.55)

If this has a minimum, the minimum will be a stationary δγγγ(t). If these sta-
tionary δγγγ(t) all make this functional positive, then the solution γγγ0(t) of the
original problems is a local minimum of the action.

The difficulty with this result is because this functional is homogeneous of
degree 2 in δγγγ,

F [λδγγγ] = λ2F [δγγγ] (2.56)

the best that can be hoped for is a minimum of zero. This problem can be
avoided by requiring a normalization condition

1 =

∫ ∑
i

δγi(t)δγi(t)dt (2.57)

which simply fires a scale. Rather that using this constraint to eliminate degrees
of freedom, it is more efficient to introduce this constraint using a Lagrange
multiplier. This involves adding the following term in the integrand of (2.54)

λ(
∑
i

δqi(t)δqi(t)−
1

tf − ti
) (2.58)
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I define the-time dependent matrices

Aij(t) :=
∂2L

∂q̇i∂q̇j
(γγγ0(t)) (2.59)

Bij(t) :=
∂2L

∂q̇i∂qj
(γγγ0(t)) (2.60)

Cij(t) :=
∂2L

∂qi∂q̇j
(γγγ0(t)) (2.61)

Note that Aij and Cij are symmetric while Bij is not. In this notation the
functional F [δγγγ], including the Lagrange multiplier, becomes∫ tf

ti

∑
ij

{Aij(t)δγ̇i(t)δγ̇j(t) + 2Bij(t)δγ̇i(t)δγj(t) + Cij(t)δγi(t)δγj(t)−

λ(
∑
i

δγi(t)δγi(t)−
1

tf − ti
)}dt (2.62)

Lagrange’s equations for the variation δγi(t) are

2
d

dt
(Aij(t)δγ̇j(t)) + 2

d

dt
(Bji(t)δγj(t))−

2Bij(t)δγ̇j(t)− 2Cij(t)δγj(t) + 2λδijδγj(t)) = 0. (2.63)

This has the form of an eigenvalue problem∑
j

d

dt
(Aij(t)δγ̇j(t) +Bij(t))−

∑
j

(Bij(t)γ̇j(t) + Cij(t))δγj(t)).

= −λδijδγj(t). (2.64)

This differential equation is a linear equation of the form

Dδγγγ(t) = −λδγγγ(t) (2.65)

where D is a second order linear differential operator. It satisfies∫
ξξξ(t)Dγγγ(t)dt =

∫
γγγ(t)Dξξξ(t)dt (2.66)

which can be seen by integrations by parts using the fact the that δγγγ(t) vanish
at the endpoints of the integral.

It only has solutions for certain eigenvalues λ. the solution δγγγi(t) for the i-th
eigenvalue is called the ith eigenfunction. Integration by parts and the boundary
conditions imply∫ tf

ti

δγγγi(t)D(t)δγγγj(t)dt = −λi
∫ tf

ti

δγγγi(t)δγγγj(t)dt = −λj
∫ tf

ti

δγγγi(t)δγγγj(t)dt

(2.67)
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Subtracting this equation from itself leads to the orthogonality condition

0 = (λi − λj)
∫ tf

ti

δγγγi(t)δγγγj(t)dt (2.68)

from which one learns that the eigenfunctions are orthogonal. In the case that
there are several eigenfunctions with the same eigenvalue it is possible to con-
struct linear combinations of these functions that have the same eigenvalue and
are orthogonal.

This class of differential equations are called Strum-Liouville equations. The
have the following properties. There are an infinite number of discrete eigen-
values λn with |λn| → ∞. The eigenvalues are real and the eigenfunctions are
a basis for functions δγγγ(t) on the interval [ti, tf ].

Since the equation is homogeneous we can normalize the eigenfunctions so
they are orthonormal ∫ tf

ti

δγγγi(t)δγγγj(t)dt = δij (2.69)

The basis property means that an arbitrary δγγγ(t) can be expressed as

δγγγ(t) =
∑
n

cnδγγγn(t) (2.70)

where

cn =

∫ tf

ti

dtδγγγn(t)δγγγ(t) (2.71)

Evaluating F [δγγγ] gives

F [δγγγ] = F [
∑
n

cnδγγγn] = −
∑
mn

cmcn

∫ tf

ti

δγγγm(t)D(t)δγγγn(t)dt (2.72)

∑
n

λnc
2
n (2.73)

which is a sum of positive constants (note the functions and eigenvalues are all
real) multiplied by eigenvalues λn. Thus, a necessary and sufficient condition
for the second variation of A about the stationary γγγ0(t) to be positive is that
all of the eigenvalues λn > 0 of the Strum-Liouville eigenvalue equation are
positive. The eigenvalues are the Lagrange multipliers and they represent the
value of the second variation on the n-th normalized eigenfunction.

Next we consider the simplest one degree of freedom case and argue that
initially the stationary solution is a minimum of the action. For sufficiently
small t the motion is determined by the initial coordinate and velocity. The
force only contributes to the acceleration, which is the second time derivative:

r(t) = r(0) + v(0)t+ · · · (2.74)

This is the solution of
dT

dt
= 0 (2.75)
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which corresponds to A = m, B = C = 0, The boundary value problem for the
δr is

m
d2

dt2
δr = −λδr (2.76)

which has the solutions

δr(t) = c sin(

√
λ

m
(tf − ti) (2.77)

with eigenvalues

λn =
mπ

tf − ti
n2 (2.78)

These are positive for all n, which means that for small time the path followed
by a particle is always the path that minimizes the action functional.

If one investigates what happens for longer times the eigenvalues change
with time depending on the potential. What can happen is that the eigenvalues
can pass through zero and change sign. A point tf where the second variation
has a zero eigenvalue is called a conjugate point to ti. These are characterized
by having a non-trivial solution to

d

dt
(Aij(t)δγ̇j(t)) + (

d

dt
(Bij(t)− (Cij(t))δγj(t)) = 0. (2.79)

which is called the Jacobi equation.
To understand the role played by the Jacobi equation consider the simple

case of one degree of freedom and let γ0(q̇0, t) be a solution of Lagrange’s equa-
tion with initial condition γ0(t) = q0 and γ̇0(0) = q̇0. Define

J(q̇0, t) :=
∂γ0(q̇0, t)

∂q̇0
(2.80)

By definition
γ0(q̇0 + ε, t)− γ0(q̇0, t) = εJ(q̇0, t) + o(ε)2 (2.81)

Since independent of the choice of q̇0, γ0(q̇0, t) is a solution of Lagrange’s
equation with the same initial coordinate

d

dq̇0

(
d

dt

∂L

∂γ̇
− ∂L

∂γ

)
= 0e (2.82)

Changing the order of the derivatives gives(
d

dt
(
∂2L

∂γ̇2
dγ̇

dq̇0
+

∂2L

∂γ̇∂γ

dγ

dq̇0
− ∂L2

∂γ̇∂γ

dγ̇

dq̇0
− ∂L2

∂γ2
dγ

dq̇0

)
= 0 (2.83)

This can be rewritten in the form

(
d

dt
(
∂2L

∂γ̇2
dγ̇

dq̇0
) + (

d

dt
(
∂2L

∂γ̇∂γ
)− ∂L2

∂γ2
) (2.84)
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Inspection shows that this is the one dimensional version of

d

dt
(C(t)

dγ̇

dq̇0
)− (A(t)− dB

dt
(t))

dγ

dq̇0
) = 0 (2.85)

which demonstrates that dγ
dq̇0

satisfies the Jacobi equation.
Note that

J(q̇0, 0) = 0 (2.86)

because the he initial coordinate does not depend on q̇0. If

J(q̇0, t) = 0 (2.87)

also vanishes then the final point is also independent of

q̇0 (2.88)

to leading order. This corresponds to a conjugate point and leads to the inter-
pretation of the conjugate points as focal points of solutions that start at the
same point with different velocities.

2.3.3 Noether’s theorem

One of the advantages of the Lagrangian formulation of mechanics is that there
is a connection between symmetries of the action and conserved quantities. This
connection is often used in field theories, but the principle also applies to systems
of particles.

To formulate Noether’s theorem consider the following transformations on
the generalized coordinates as time

t→ t′ = t+ δt(ε, t) (2.89)

qi(t)→ q′i(t
′) + δqi(ε, t) (2.90)

where both δt(ε, t) and δqi(ε, t) vanish in the limit that ε→ 0.
Now we assume that the combined transformation leaves the action invariant

A[γγγ, tf , ti] = A[γγγ′, t′f , t
′
i] = (2.91)

Noether’s theorem states that the invariance of the action, (2.91), implies
that the following quantity is conserved for solutions of Lagrange’s equations:

(L−
∑
i

∂L

∂q̇i

dqi
dt

)
∂δt

∂ε
(0, t) +

∑
i

∂L

∂q̇i

∂δγi
∂ε

(0, t) (2.92)

To prove this theorem we only need to require that the action is conserved
to leading order in ε. This gives

d

dε
A[γγγ′, t′f , t

′
i]ε=0 = 0 (2.93)
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which can be manipulated to get the above theorem.
To evaluate this we need to erpand the coordinate and time changes to

leading order in ε:

t→ t′ = t+ ε
∂δt

dε
(0, t) + o(ε2) (2.94)

qi(t)→ q′i(t
′) = qi(t) + ε

∂δqi
dε

(0, t) + o(ε2) (2.95)

Since the time is a dummy integration variable in the action, it is useful to use
the first equation to express the right side of the second equation in the same
variable, t′, that appears on the left. In doing these we only retain the terms
that are linear in ε. Thus (2.95) becomes

q′i(t
′) = qi(t

′ − ε∂δt
dε

(0, t)) + ε
∂δqi
dε

(0, t) + o(ε2) =

qi(t
′)− εdqi

dt

∂δt

dε
(0, t′) + o(ε)) + ε

∂δqi
dε

(0, t) + o(ε2) =

qi(t
′)− εdqi

dt

∂δt

dε
(0, t′) + ε

∂δqi
dε

(0, t) + o(ε2) (2.96)

Next we use these to express the difference between the transformed action and
original action to leading order in ε

0 = A[γγγ′, t′f , t
′
i]−A[γγγ, tf , ti] =

∫ tf+ε
∂δt
dε (0,tf )+···

ti+ε
∂δt
dε (0,ti)+···

L(
d

dt
(qi(t

′)− εdqi
dt

∂δt

dε
(0, t′) + ε

∂δqi
dε

(0, t) + o(ε2), qi(t
′)

−εdqi
dt

∂δt

dε
(0, t′) + ε

∂δqi
dε

(0, t′) + o(ε2), t′)dt′

−
∫ tf

ti

L(
d

dt
(qi(t

′), qi(t
′), t′)dt′ (2.97)

To expand this out we first write∫ tf+ε
∂δt
dε (0,tf )+···

ti+ε
∂δt
dε (0,ti)+···

=

∫ ti

ti+ε
∂δt
dε (0,ti)+···

+

∫ tf

ti

+

∫ tf+ε
∂δt
dε (0,tf )+···

tf

(2.98)

The integrand can be expanded in a Taylor series in ε. Since the width of the
domain of integration in the first and last integrals is of order ε we only need
to pick up the ε independent term in those factors, and we only need the first
order term in the middle integral, because the 0 − th order term is subtracted
off.
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Combining everything gives

= ε

(
∂δt

dε
(0, tf )L(q̇,q, tf )− ∂δt

dε
(0, ti)L(q̇,q, ti)

)
+

+ε
∑∫ (

∂L

q̇
· d
dt

(−q̇
∂δt

dε
(0, t) +

∂δq

∂ε
(0, t)

)
+ε
∑∫ (

∂L

q
· (−q̇

∂δt

dε
(0, t) +

∂δq

∂ε
(0, t)

)
(2.99)

Now we assume that q(t) is a solution of Lagrange’s equation so

∂L

q
=

d

dt

(
∂L

q̇

)
(2.100)

Using this and writing the first term in (??) as the integral of a derivative we
get:

0 = ε
∑∫ tf

ti

d

dt

∂δt

dε
(0, t)L(q̇,q, t)+

+ε
∑∫ tf

ti

d

dt

(
∂L

q
· (−q̇

∂δt

∂ε
(0, t) +

∂δq

∂ε
(0, t)

)
dt+ o(ε2) (2.101)

Differentiating with respect to ε and setting ε→ 0 gives the conservation law

0 =

(
L− ∂L

q̇
· q̇
)
∂δt

∂ε
(0, t) +

∂L

∂q̇
· ∂δq
∂ε

(0, t)

is independent of time. It is important to realize (1) this only works if the action
is unchanged to leading order and (2) only for solutions of Lagrange’s equations.

This completes the proof of Noether’s theorem. Now I present some example
showing the implications for Galilean invariance of the action.


