Assignment 10 - due November 16

1. Verify the following properties of Poisson brackets:

\[\{ F, GH \} = \{ F, G \} H + G \{ F, H \} \]

\[\{ F, \{ G, H \} \} + \{ G, \{ H, F \} \} + \{ H, \{ F, G \} \} = 0 \]

Let \(D_F G = \{ F, G \} \). Show

\[e^{D_F} \{ G, H \} = \{ e^{D_F} G, e^{D_F} H \} \]

2. A real \(2N \times 2N \) matrix \(M \) is symplectic if and only if

\[MJM^T = J \]

\[J = \begin{pmatrix} 0 & I_{N \times N} \\ -I_{N \times N} & 0 \end{pmatrix} \]

Show \(M^T \) and \(M^{-1} \) are symplectic.

Show that the product of symplectic matrices are symplectic.

Show that if \(\lambda \) is an eigenvalue of a symplectic matrix \(M \) then so is \(\lambda^* \), \(1/\lambda \), and \(1/\lambda^* \).

3. Consider the following one, two, and three forms

\[dx \quad dx \wedge dy \quad dy \wedge dz \quad dx \wedge dy \wedge dz \]

Replace \(x, y, z \) by spherical polar coordinates and evaluate these forms in terms of the spherical polar coordinates.

4. Consider the one form

\[F = f_1(x, y) dx + f_2(x, y) dy \]

What are the conditions on \(f_1 \) and \(f_2 \) for this one form to be exact, i.e. \(F = dG \) for some \(G \)?

5. Apply the generating function

\[F(Q, p) = \sinh(p)Q^2 \]

Find the canonical transform from \((q, p) \) to \((Q, P) \). Apply this canonical transformation to

\[H = \frac{p^2}{2m} + \frac{kq^2}{2} \]

Find the transformed Hamiltonian, the equations of motion, and the solution to the equations of motion.

6. Let \(H = \frac{p^2}{2m} + gq \) Calculate

\[p(t) = e^{Dt}p(0) \quad \text{and} \quad q(t) = e^{Dt}q(0) \]

Verify that your calculated expressions are solutions of Hamilton’s equations.