Lecture 9

The second variation, when is the action minimal

\[S^2[A[\tilde{y}_0, \tilde{y}_1]] = \frac{d^2}{d \lambda^2} A[\tilde{y}_0 + \lambda \tilde{y}_1] \bigg|_{\lambda=0} \]

\[\frac{d}{d \lambda} \int_{t_1}^{t_2} L (\tilde{y}_0 + \lambda \tilde{y}_1, \dot{\tilde{y}}_0 + \lambda \dot{\tilde{y}}_1, t) \, dt = \]

\[\sum_{m=1}^{n} \int_{t_1}^{t_2} \left(\frac{\partial^2 L}{\partial \tilde{y}_m \partial \tilde{y}_n} \right) \tilde{y}_m(t) \tilde{y}_n(t) \, dt \]

\[+ \sum_{m=1}^{n} \int_{t_1}^{t_2} \left(\frac{\partial^2 L}{\partial \dot{\tilde{y}}_m \partial \dot{\tilde{y}}_n} \right) \dot{y}_m(t) \dot{y}_n(t) \, dt \]

\[+ \sum_{m=1}^{n} \int_{t_1}^{t_2} \left(\frac{\partial^2 L}{\partial \tilde{y}_m \partial \dot{\tilde{y}}_n} \right) \tilde{y}_m(t) \dot{y}_n(t) \, dt \]

The coefficients

\[A_{mn}(t) = \frac{\partial^2 L}{\partial \tilde{y}_m \partial \tilde{y}_n} \]

\[B_{mn}(t) = \frac{\partial^2 L}{\partial \dot{\tilde{y}}_m \partial \dot{\tilde{y}}_n} \]

\[C_{mn}(t) = \frac{\partial^2 L}{\partial \tilde{y}_m \partial \dot{\tilde{y}}_n} \]

are known functions of \(t \); they are evaluated with \(\tilde{y}_0(t) \) that makes the action stationary.
we use these to define a new functional of the $S_\gamma(t)$

$$S[S_\gamma] = $$

$$\sum_{mn} \int_{t_1}^{t_2} \left(A_{mn}(t) S_\gamma^m(t) S_\gamma^n(t) + 2 B_{mn}(t) S_\gamma^m(t) \dot{S}_\gamma^n(t) \right) dt$$

This represents the value of the second variation for a given $S_\gamma(t)$.

If this is positive for every $S_\gamma(t)$

then $S_\gamma(t)$ is a local minimum of $A S_\gamma$

This will be true if the S_γ that minimizes $S[S_\gamma]$ is positive.

If we call this $S_\gamma_0(t)$ then

$$S[S_\gamma_0; S_\gamma] = 0 \quad \text{for all } S_\gamma(t)$$

Note

1. $S_\gamma(t_1) = S_\gamma(t_2) = 0 \quad S_\gamma(t) = \dot{S}_\gamma(t) = 0$

2. $\int S[S_\gamma] = \eta^2 \int S[S_\gamma] \quad$ this means $S[S_\gamma]$ is homogeneous of degree 2 - which means there is no minimum - it can always be reduced by lowering η.
To eliminate this trivial rescaling we require

\[\int_{t_1}^{t_2} \overrightarrow{\delta y}(t) \cdot \overrightarrow{\delta y}(t) \, dt = 1 \]

Or

\[\int_{t_1}^{t_2} \left[\overrightarrow{\delta y}(t) \cdot \overrightarrow{\delta y}(t) - \frac{1}{t_2-t_1} \right] dt = 0 \]

We treat this constraint using the method of Lagrange multipliers:

\[\mathcal{F} = \int_{t_1}^{t_2} \left(\sum_{mn=1}^{n} \left(A_{mn}(t) \overrightarrow{\delta y}_m(t) \overrightarrow{\delta y}_n(t) + 2 B_{mn}(t) \overrightarrow{\delta y}_m(t) \overrightarrow{\delta y}_n(t) \\
- C_{mn}(t) \overrightarrow{\delta y}_m(t) \overrightarrow{\delta y}_n(t) \right) \\
- \eta (\overrightarrow{\delta y}(t) \cdot \overrightarrow{\delta y}(t) - \frac{1}{t_2-t_1}) \right) dt \]

We look for stationary values of this functional subject to the constraint \(\eta = \text{Lagrange multiplier} \)

\[\mathcal{F}[\overrightarrow{\delta y}_m; \overrightarrow{\delta y}_n] = \frac{d}{d\lambda} \mathcal{F}[\overrightarrow{\delta y}_m + \lambda \overrightarrow{\delta y}_n] = 0 = \]

\[\int_{t_1}^{t_2} \sum_{mn=1}^{n} \left(2 A_{mn}(t) \overrightarrow{\delta y}_m(t) \overrightarrow{\delta y}_n(t) + 2 B_{mn}(t) \overrightarrow{\delta y}_m(t) \overrightarrow{\delta y}_n(t) \\
+ 2 B_{mn}(t) \overrightarrow{\delta y}_m(t) \overrightarrow{\delta y}_n(t) + 2 C_{mn}(t) \overrightarrow{\delta y}_m(t) \overrightarrow{\delta y}_n(t) \right) \\
- \sum_{n=1}^{n} 2 \eta \overrightarrow{\delta y}_n(t) \overrightarrow{\delta y}_n(t) \right) \]
cancelling the factor of 2 integrating by parts to remove the derivatives from $\delta y_n(t)$ gives

\[0 = \int_{t_1}^{t_2} \left(\sum_{m} \left(A_{mn}(t) \delta y_m(t) + B_{mn}(t) \delta \dot{y}_m(t) \right) - \frac{d}{dt} \left(C_{mn}(t) \delta \dot{y}_m(t) \right) \right) \]

\[- \frac{d}{dt} \left(B_{nm}(t) \delta y_m(t) \right) - \frac{d}{dt} \left(C_{mn}(t) \delta \dot{y}_m(t) \right) \]

\[- \eta \delta y_{n_0}(t) \delta y_n(t) + \]

\[\sum_{m} B_{nm}(t) \delta y_m(t) \delta y_n(t) \right) \]

\[\left| \sum_{m} C_{mn}(t) \delta \dot{y}_m(t) \delta y_n(t) \right| \]

The boundary term vanishes because $\delta y_{n}(t_1) = \delta y_{n}(t_2)$ for all n. The coefficients of $\delta y_n(t)$ must vanish for all $t_1 < t < t_2$ since the $\delta y_n(t)$ are arbitrary. This gives the differential equation

\[\sum_{m} \left[\frac{d}{dt} \left(C_{mn}(t) \delta \dot{y}_m(t) \right) + \frac{d}{dt} \left(B_{nm}(t) \delta y_m(t) \right) \right] \]

\[- B_{mn}(t) \delta \dot{y}_m(t) - A_{nm}(t) \delta y_m(t) \right) \]

\[= - \eta \delta y_{n_0}(t) \]

where we have used $A_{mn} = A_{nm}$, $C_{mn} = C_{nm}$.
This is a linear second order differential equation that has the structure of an eigenvalue equation

$$\sum_{mn} \delta_{mn} \dot{y}_{m0} = \eta \delta_{n0}$$

where δ_{mn} is a linear differential operator.

So far we have not used the constraint --- multiply both sides by $\delta_{n0}(t)$, sum over n, and integrate the result from t_1 to t_2.

This gives

$$\eta \int_{t_1}^{t_2} \sum_{n} \delta_{n0}(t) \dot{y}_{n0}(t) = \eta \cdot 1 =$$

$$\sum_{mn} \int \left[\frac{-d}{dt} \left(C_{nm}(t) \dot{y}_{m0}(t) \right) - \frac{d}{dt} \left(B_{nm}(t) \dot{y}_{m0}(t) \right) \right] \dot{y}_{n0}(t) dt + \int \left(B_{mn}(t) \dot{y}_{m0}(t) + A_{mn}(t) \dot{y}_{m0}(t) \right) dt$$

Integrating the first, second and third terms separately gives

$$M = \sum_{mn} \int \left(C_{nm}(t) \dot{y}_{m0}(t) \dot{y}_{n0}(t) + B_{mn}(t) \dot{y}_{m0}(t) \dot{y}_{n0}(t) \right)$$

$$+ \left(B_{mn}(t) \dot{y}_{m0}(t) \dot{y}_{n0}(t) + A_{mn}(t) \dot{y}_{m0}(t) \dot{y}_{n0}(t) \right)$$
The middle 2 terms are identical:

\[\eta = \sum_{mn} \int_{t_1}^{t_2} \left(A_{mn}(t) \dot{y}_{mn}(t) y_{mn}(t) + 2 B_{mn}(t) \dot{y}_{mn}(t) \dot{y}_{mn}(t) + C_{mn}(t) \ddot{y}_{mn}(t) \dot{y}_{mn}(t) \right) dt = \mathcal{S}[\tilde{y}_0] \]

This shows that the Lagrange multiplier \(\eta \) is the value of the functional of the second variation at \(y_0(t) \) for the eigenvector \(\tilde{y}_0 \).

Note that if we integrate by parts a second time we get:

\[\eta = \sum_{mn} \int \left(A_{mn}(t) \dot{y}_{mn}(t) y_{mn}(t) - \frac{d}{dt} \left(y_{mn}(t) \dot{y}_{mn}(t) \right) y_{mn}(t) \right) dt = \mathcal{S}[\tilde{y}_0] \]

which is completely symmetric with respect to \(mn \):

\[\int y_{mn} \theta_{nm} y_{nm} = \int (\theta_{nm} y_{nm}) y_{mn} \]
This means that the differential operator

\[-\frac{d}{dt} (C_{nm}(t) \frac{d}{dt}) - \frac{d}{dt} B_{mn}(t) + B_{mn}(t) \frac{d}{dt} + A_{mn} \]

with boundary conditions is

a Hermitean operator. Linear equations that are Hermitean
on a finite interval and with symmetric boundary conditions
are called Sturm-Liouville problems.

They have the following properties:

1. The eigenvalues are real.
2. The eigenvalues accumulate at \(\infty \).
 (If there are a finite number
 with absolute value less than
 any constant.
3. The eigenfunctions are a
 basis for functions satisfying
 the boundary conditions.
Since any \(\overline{\psi}(t) \) satisfying the boundary conditions can be expanded

\[
\overline{\psi}(t) = \sum_{n=1}^{\infty} a_n \overline{\psi}_n(t)
\]

\[
\overline{\psi}_1(t) = \sum a_n \overline{\psi}_n(t) = \sum a_n \eta_n \phi_n
\]

multiplying by \(\overline{\psi}(t) \) and integrating

\[
\int \overline{\psi} \overline{\psi} = \sum a_n \eta_n \phi_n \phi_n
= \sum \eta_n a_n^2
\]

Since the \(a_n^2 \) are real and non-negative, this will be positive if all of the eigenvalues are positive.

This analysis is essentially identical to the function of \(n \) variables case discussed previously.
For purposes of illustration consider a particle of mass \(m \) in one dimension, the equations of motion are

\[
m \ddot{x} = -\frac{dV}{dx}
\]

The solution for short time is

\[
x(t) = x(t_1) + \dot{x}(t_1) (t-t_1) - \frac{1}{2m} \frac{dV}{dx} (t_1) (x-x_1)^2 + \ldots
\]

For small \(t-t_1 \) the solution is approximately

\[
x(t) \approx x(t_1) + \dot{x}(t_1) (t-t_1)
\]

We convert this to a boundary value for

\[
x(t_2) = x(t_1) - \dot{x}(t_1) (t_2-t_1) = 0
\]

\[
\dot{x}(t_1) = \frac{x(t_2) - x(t_1)}{t_2-t_1}
\]

\[
x(t) \approx x_1 + \frac{x_2-x_1}{t_2-t_1} (t-t_1)
\]

\[
x(t) \rightarrow x_0 + \frac{x_2-x_1}{t_2-t_1} (t-t_1)
\]
for these short times the potential does not matter. In that case

\[L \to \frac{1}{2} mx^2 \]

\[C = \frac{\partial^2 L}{\partial x^2} = m \quad B = \frac{\partial^2 L}{\partial x \partial t} = 0 \quad A = \frac{\partial^2 L}{\partial x^2} = 0 \]

the eigenvalue equation is

\[-\frac{d}{dt} \left(m \frac{d}{dt} \right) s \cdot x_0 = m s \cdot x.\]

we see that

\[s \cdot x(t) = \sin \left(\sqrt{\frac{m}{\eta}} (t - t_1) \right) \]

to satisfy \[s \cdot x(t_2) = 0 \]

\[\sin \left(\sqrt{\frac{\eta}{m}} (t_2 - t_1) \right) = 0 \]

\[\sqrt{\frac{\eta}{m}} \Delta t = n \pi \]

\[\eta = m \frac{n^3 \pi^4}{\Delta t^4} > 0 \]

we see in this case all of the \(n^2 \) > 0.

As time is increased the potential term becomes more important.
In that case the eigenvalues move as \(\Delta t \) is increased, while they all start off positive, some of them can change sign. When this happens the curve that makes the action stationary does not make it a minimum (local).

To understand what is going on, we consider the differential equation when the times are adjusted so one of the eigenvalues is 0. The resulting equation

\[
-\frac{\mathbf{S}_n}{m} \frac{d}{dt} \left(C_{mn} \frac{d}{dt} \delta_{Xm} + B_{nm} \delta_{Ym} \right) + \sum B_{mn} \frac{d}{dt} \delta_{Xn} + A_{mn} \delta_{Yn} = 0
\]

This equation (with \(n \) set to 0) is called the Jacobi equation.
Returning to the one dimensional problem

\[L = \frac{1}{2} m \dot{x}^2 - V(x) \]

In this case

\[C = \frac{d^2 L}{dx^2} = m \]
\[A = \frac{d^3 L}{dx^3} = -\frac{d^2 V}{dx^2} \]
\[B = \frac{d^4 L}{dx^4} = 0 \]

The Jacobi equation is

\[(-m \frac{d^2}{dt^2} + A(x)) \frac{dx}{dt} = 0 \]

Let \(x(t, v_0) \) be the solution of Lagrange's with initial coordinate \(x_i \) and initial velocity \(v \).

Consider

\[\frac{dx}{dv} (t, v, v_0) \]

Note this is the derivative of the solution with respect to initial condition.

\[\frac{dx}{dv} (t, v, v_1) = 0 \]

Since \(x(t, v, v_1) = x_i \) independent of \(v \)
Consider

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0. \]

\[\frac{d}{dv} \left[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} \right] = 0. \]

\[\frac{d}{dt} \left(\frac{\partial^2 L}{\partial x^2} \frac{dx}{dv} + \frac{\partial^2 L}{\partial x \partial x} \frac{dx}{dv} \right) - \frac{\partial^2 L}{\partial x \partial x} \frac{dx}{dv} - \frac{\partial^2 L}{\partial x^2} \frac{dx}{dv} = 0. \]

Note that

\[\frac{d}{dt} \left(C \frac{d}{dt} \left(\frac{dx}{dv} \right) + B \frac{dx}{dv} \right) - B \frac{d}{dx} \frac{dx}{dv} - A \frac{dx}{dv} = 0. \]

This is exactly the Jacobi equation.

So we see that

\[\frac{dx}{dv} = f(t, v, t') \]

is a solution to the Jacobi equation.

This solution does not have to vanish at \(t_F \) since we are solving the initial value problem.

If \(\frac{dx}{dv} (t_i, v, t_F) \) vanishes, \(t_F \) is called a conjugate point.
Men

1. \(\frac{dx}{dv}(t,v,t) \) satisfies boundary conditions on \([t,t_f]\).

2. \(\frac{dx}{dv}(t,v,t_f) = 0 \)

This means that solutions for different values of \(V \) have the same coordinate at \(t_f \).

This means that at \(t=t_f \) the solutions for different values of \(V \) have the same coordinate.

If we think in terms of Fermat's principle, there are many rays that come to a focus at the conjugate point.