Lecture 8

Last time

Investigate

$$S^2 A \left[t_f, t_f \times s_f \right] = 0$$

for

$$\frac{d}{dt} \left(\frac{2L}{S^2 \dot{q}_i} \right) - \frac{2L}{S^2 q_i} = 0$$

subject to the constraint

$$l = \sum_{i} S q_i(t_f) \dot{q}_{i}(t) \quad s q_i(t_r) = s q_i(t_f) = 0$$

(1) $$S^2 A =$$

$$\sum_{i=1}^{n} \int \left(A_{ij}(t) S q_i(t) S q_j(t) + 2 B_{ij}(t) S q_i(t) S q_j(t) \right) dt$$

$$+ C_{ij}(t) S q_i(t) S q_j(t)$$

where

$$A_{ij}(t) = \frac{\partial^2 L}{\partial q_i \partial q_j} (\ddot{q}(t)) = A_{ji}(t)$$

$$B_{ij}(t) = \frac{\partial^2 L}{\partial \dot{q}_i \partial q_j} (\ddot{q}(t))$$

$$C_{ij}(t) = \frac{\partial^2 L}{\partial \dot{q}_i \partial \dot{q}_j} (\ddot{q}(t)) = C_{ji}(t)$$

and $$\ddot{q}(t)$$ is the solution to Lagrange's equation.
If $\bar{s}_q(t)$ is a local minimum (or maximum) then it is a stationary point of $\bar{s}^2 A(t) + 9 \bar{s}_q^2$.

Because scaling the solution by a constant $\bar{s}_q \to \rho \bar{s}_q$ will change the value of $\bar{s}^2 A$, for any \bar{s}_q, this freedom is eliminated by the normalization constraint

$$1 = \int_{\mathbb{T}} \bar{s}^2 \bar{s}_q^2(t) \, dt$$

$$\Rightarrow$$

$$0 = 2 \sum_j \left(-\frac{d}{dt} \left(C_{ij}(t) \bar{s}_q^2(t) + B_{ij}(t) \bar{s}_q(t) \right) + B_{ji}(t) \bar{s}_q^2(t) + A_{ij}(t) \bar{s}_q(t) \right)$$

$$= 2 \lambda \bar{s}_q^2(t)$$

This gives the 2nd order boundary value problem

$$\frac{d}{dt} \left(\sum_{j=1}^{\infty} C_{ij}(t) \bar{s}_q^2(t) + \sum_{j=1}^{\infty} B_{ij}(t) \bar{s}_q(t) \right)$$

$$- \sum_j \left(A_{ij}(t) + B_{ij}(t) \frac{d}{dt} \right) \bar{s}_q(t) = -2 \bar{s}_q(t)$$
To use the constraint multiply by $sg_i(t)$, sum over i and integrate from $t_1 \to t_2$

$$\sum_{ij} \int_{t_1}^{t_2} \left[s g_i(t) \frac{d}{dt} \left(C_{ij}(t) \frac{d}{dt} s g_j(t) \right) + s g_i(t) \frac{d}{dt} \left(B_{ij}(t) s g_j(t) \right) \right] = -\lambda$$

Integrating the $i(t) = 2$ term by parts, using $sg_i(t_1) = s g_i(t_2)$ gives

$$-\sum_{ij} \int \left[C_{ij}(t) s g_i(t) s g_j(t) + s g_i(t) B_{ij}(t) s g_j(t) \right] = -\lambda$$

This can be rewritten as

$$\sum_{ij} \int \left[C_{ij}(t) s g_i(t) s g_j(t) + 2 B_{ij}(t) s g_i(t) s g_j(t) \right] = \lambda$$

which shows that λ is the value of the functions when \bar{sg} is the properly normalized eigenfunction with eigenvalue λ.
consider

\[2 \int \left(q_i(t) \frac{\partial}{\partial t} C_{ij} \frac{d}{dt} q_j + j_i \frac{d}{dt} (B_{ij} q_j) \right. \]

\[\left. - A_{ij} f_i q_j - B_{ij} f_i \frac{d}{dt} q_j \right) \]

integrating all of the \(\frac{d}{dt} \) by parts

\[2 \int \left(q_i(t) \frac{d}{dt} C_{ij} \frac{d}{dt} f_i - q_j B_{ij} \frac{d}{dt} f_i \right. \]

\[\left. - q_j A_{ij} f_i + q_j \frac{d}{dt} (B_{ij} f_i) \right) \]

using the symmetry of \(A_{ii}, C_{ii} \)

and interchanging \(ij \)

\[= 2 \int \left\{ q_i \left(\frac{d}{dt} C_{ij} \frac{d}{dt} f_i + \frac{d}{dt} (B_{ij} f_i) \right) \right. \]

\[\left. - q_i (A_{ij} f_i + B_{ij} \frac{d}{dt} f_i) \right\} \]

which has the same form as the equation at the top of the page with \(q \rightarrow q \)

\[(f, D g) = (D s, q) \]

This means that the differential operator \(D \) is Hermitian

(Here everything is real)
This is the differential equation form of a real symmetric matrix properties.

\[(ds^* D s) = \lambda (df^* f) = (s^* D s) \]

Complex conjugation:

\[(s^* D s^*) = \lambda^* (ff^*) \quad (s^* s^*) = (s^* f) \]

\[(f, g) = \int_{t_1}^{t_2} s f \cdot (s f) g \cdot (f) d \tau \]

Comparing \(\lambda^* = \lambda \) eigenvalues are real:

\[D s = \lambda f \quad D (s^* s^*) = \lambda (s^* s^*) \]
\[D s^* = \lambda f^* \quad D (s^* s^*) = \lambda (s^* s^*) \]

This gives 2 independent real functions with eigenvalues \(\lambda \)

(even could be 0)

\[\text{Eigenvectors and eigenvalues are real} \]

\[\lambda (g, f) = (g D s) = (f D g) = \lambda (s, f) \]

\[(\lambda s - \lambda f \cdot g \cdot f) = 0 \]

either \(\lambda s = \lambda f \) or \((g, f) = 0 \)
properties

1. \# of eigenvalues and eigenfunctions
2. all eigenfunctions and eigenvalues are real
3. eigenfunctions with different eigenvalues are \perp
4. eigenvalues are discrete and accumulate at \(\infty \)

\[\text{if } f(t) \text{ satisfies } \int_{t_0}^t |f(t)|^2 \, dt = 1 \]
then
\[\overline{\tilde{c}_n} = \sum C_n \tilde{q}_n(t) \quad \Sigma |C_n|^2 = 1 \]

Let \(\tilde{q}_n \) \(\lambda_n \) be the \(n \)-th eigenvalue and eigenfunction

\[\int \left(\tilde{q}_n^T (\tilde{q}^T \tilde{q} + \tilde{q}^T \tilde{B} \tilde{q} + \tilde{q}^T \tilde{A} \tilde{q}) + \tilde{q}^T \tilde{A} \tilde{q} \right) = \lambda \int \tilde{q}^T \tilde{q} \]

\[\Rightarrow \int \tilde{q}^T \tilde{q} = \tilde{q}^T \tilde{q} \]

\[\Rightarrow \int \tilde{q}^T \tilde{q} = \tilde{q}^T \tilde{q} \]

\[\int \tilde{q}_n^T \tilde{q}_m = \lambda_m (\tilde{q}_n^T \tilde{q}_m) = \delta_{nm}, \lambda_m \]
what this means is that
\[\tilde{q} = \frac{2}{n} c_n s_{q_n} \]
A[\tilde{t}, \tilde{x}, \tilde{q}, \tilde{s}] = \sum c_m c_n \int s_{q_n} s_{q_m} = \sum k^2 \lambda_n
so the value of A[\tilde{t}, \tilde{x}, \tilde{q}, \tilde{s}] for \(\sum s_{q_n} s_{q_n} = 1 \) is given by a weighted average of the eigenvalues that make the second variation stationary.

If all \(\lambda_n > 0 \) then \(\tilde{q}(x) \) is a local minimum.

To understand what happens it is simple to consider the one dimensional case

\[L = \frac{1}{2} m \dot{x}^2 - V(x) \]
for small time

\[x(t) = x(t_0) + \dot{x}(t_0)(t-t_0) - \frac{1}{2} m \frac{dV}{dx}(x(t_0)) (t-t_0)^2 + \]
so in very short times the time dependence is due to the initial velocity independent of the potential.
For short time
\[L \to T = \frac{1}{2} m \dot{x}^2 \]

In this case
\[c = \frac{d^2 L}{dx^2} = m \]
\[b = \frac{d^2 L}{dx \, dx} = 0 \]
\[\lambda = \frac{d^2 L}{dx^2} = 0 \]

The eigenvalue equation is
\[-\frac{d}{dt} c \frac{d}{dx} \ddot{x} = \lambda \ddot{x} \]
\[\frac{d^2}{dt^2} m \ddot{x} = -\lambda \ddot{x} \]

The solution that vanishes at 0 or T is
\[A \sin \left(\frac{n \pi t}{T} \right) \]

Normalization:
\[1 = A^2 \int_0^T \sin^2 \left(\frac{n \pi t}{T} \right) dt = A^2 \frac{T}{2} \]
\[A = \sqrt{\frac{2}{T}} \]
\[\ddot{x}_n(t) = \sqrt{\frac{2}{T}} \sin \left(\frac{n \pi t}{T} \right) \]
\[\lambda_n = m \cdot \frac{n^2 \pi^2}{T^2} > 0 \quad n = 1, 2, 3 \ldots \]
In this case we see explicitly that all of the small time eigenvalues are positive.

This means that the stationary points of \(L \) for small times are local minima.

While we did this for one degree of freedom in general the positivity of the kinetic energy leads to positive eigenvalues.

As \(t \) is increased from \(t_0 \), at some point the forces become important, if we think of the eigenfunction being parameterized as functions of \(t_0 \), they will move - some may cross a zero and become negative. Then the solution of Lagrange's equation will remain stationary - but not be a local minimum of the action.
in general - a solution \(\vec{s} \) with 0 eigenvalue will be a solution of

\[
- \frac{\varepsilon}{2} \frac{d}{dt} \left((C_{ij} \vec{s}) \vec{s} + (B_{ij} \vec{s}) \right) + \frac{2}{2} (A_{ij} \vec{s} \vec{q} + B_{ij} \vec{s} \vec{q}) = 0
\]

This is called the Jacobi equation. While it has solutions, they do not necessarily satisfy the boundary conditions.

To understand this better consider the 1 degree of freedom case again

\[
L = \frac{1}{2} m \dot{x}^2 - V(x)
\]

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = m \ddot{x} + \frac{\partial V}{\partial x} = 0 \quad \text{solution}
\]

\[
c_1 = m, \quad \Lambda(t) = -\frac{\partial V}{\partial x^2} (x(t))
\]

\[
(- m \frac{d^2}{dt^2} + \Lambda(t)) \delta x = 0 \quad \text{(Jacobi Eq.)}
\]

Let \(\Delta q(t, p) \) be a solution of Lagrange's equations with

1. \(\Delta q(t_0) = 0, \quad \frac{d}{dt} \Delta q(t_0) = \frac{p}{m} \)
In this case we consider different solutions of Lagrange's equations with the same starting point, but different initial velocities $X(v_0, t)$.

For each v this satisfies

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0$$

If we take the v derivative note

$$(1) \quad \frac{d}{dv} x(v_0, t) = 0$$

This is because all curves in different v all start at $x(t_0) = x(t_0)$ (fixed)

$$(2) \quad \frac{d}{dv} \left(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} \right)$$

$$= \frac{\partial^2 L}{\partial x^2} \frac{d^2 x}{dV} + \frac{\partial^2 L}{\partial x \partial \dot{x}} \frac{d \dot{x}}{dv} - \frac{\partial^2 L}{\partial \dot{x}^2} \frac{d \dot{x}}{dv} - \frac{\partial L}{\partial x} \frac{d x}{dv}$$

$$= \frac{\partial}{\partial x} \left(C \frac{d}{dt} \left(\frac{dx}{dv} \right) + B \frac{dx}{dv} \right) - A \left(\frac{dx}{dv} \right) - B \frac{d}{dv} \left(\frac{dx}{dv} \right) = 0$$

So we see

$$\frac{d}{dt} \left(t, v_0, t_0 \right) = J(t, v)$$
This satisfies the Jacobi equation, this solution does not have to vanish at $t = t_f$

If it vanishes

1. t_f is called a conjugate point.
2. $\frac{dx}{dt}(t_f, t_i, v) = 0$
3. This means that at $t = t_f$ the solutions have the same coordinate, independent of v_i.

So we see at conjugate points there are many solutions of Lagrange's equations that have the same initial and final points.

The analog of Fermat principle is a focus of many rays that start at the same points.
Fields

Consider a string of length L along the x axis with mass M tension T and fixed endpoints.

Let the amplitude of the string at x, t be $y(x, t)$.

To treat this as a mechanical system,

1. Break the string into N parts of mass
 \[\Delta m = \frac{M}{N} \]
 and length
 \[\Delta L = \frac{L}{N} \]

 Let y_n be the coordinate of the n segment.

 \[
 \sqrt{y_n - y_{n-1}}
 \]

 For small Δ the force on y_n is approximately

 \[-T \left(\frac{y_n - y_{n-1}}{\Delta L} - \frac{y_{n+1} - y_n}{\Delta L} \right) \Delta L \]
Newton's Law gives

\[
\frac{\mu}{N} \frac{d^2 y}{dt^2} = -T \frac{d^2 y}{dx^2} \quad \text{(1)}
\]

\[
\frac{\mu \partial^2 y}{\partial t^2} - T \frac{\partial^2 y}{\partial x^2} = 0
\]

This is called the wave equation.

Consider

\[
A = \int \left(\frac{1}{2} \mu \left(\frac{\partial y}{\partial t} \right)^2 - \frac{1}{2} T \left(\frac{\partial y}{\partial x} \right)^2 \right) \, dx \, dt
\]

Let \[y = y_0 + \delta y, \quad \delta y(0t) = \delta y(Lt) = 0\]

\[\delta A = \int \left(\frac{1}{2} \mu \frac{\partial \delta y}{\partial t} \cdot \delta y - \frac{1}{2} T \frac{\partial \delta y}{\partial x} \cdot \delta y \right)
\]

\[\int \left(-\mu \frac{\partial^2 y}{\partial t^2} \cdot \delta y + T \frac{\partial^2 y}{\partial x^2} \delta y \right)
\]

This requires \[\delta y(x_0) = \delta y(x_f) = 0 \quad \text{all time}\]

and \[\delta y'(x_0) = \delta y'(x_f) = 0 \quad \text{all } x\]

We recover equation of motion assuming this means that we fix the endpoints and the initial and final shape of the string.
The Lagrangian approach to fields normally starts from a Lagrangian, and then uses the principle of stationary action to derive equations of motion for the field.