More on symmetries

\[
\begin{pmatrix}
R & \tilde{u} & a \\
0 & 1 & t \\
0 & 0 & 1
\end{pmatrix} = g_l \begin{pmatrix}
R_l & \tilde{u}_l & a_l \\
0 & 1 & t_l \\
0 & 0 & 1
\end{pmatrix}
\]

\[U(q_2)U(q_1) = e^{i\frac{\theta(q_2,q_1)}{4}}U(q_2q_1)\]

Rotations, translations, and time translations can redefine phases so \(\theta = 0\).

Recall time translations

\[U(t_2)U(t_1) = U(t_2+t_1)\]
\[U(0) = I\]

\[i\frac{dU(t)}{dt}U^+(t)\]

is (1) self-adjoint
(2) independent of \(t\)

Space translations in 1 direction

\[U(q_1)U(q_1) = U(q_2+q_1)\]
\[U(0) = I\]

Rotations about fixed axis

\[U(\theta_2)U(\theta_1) = U(\theta_1+\theta_1)\]
\[U(0) = I\]
\[U(\phi) = U(\phi+2\pi)\]
Following what was done in the case of time translations:

\[U(a) = e^{i p \cdot a / \hbar} \quad p = p^+ \text{ indep of } a \]

\[U(\phi) = e^{i j \cdot \phi / \hbar} \quad j = j^+ \text{ indep of } \phi \]

since we want to consider arbitrary axes we write:

\[p \rightarrow \tilde{p} \cdot \hat{n} \] (translations in \(\hat{n} \) direction)

\[j \rightarrow \tilde{j} \cdot \hat{n} \] (rotations about \(\hat{n} \) axis)

\[\langle x|\psi \rangle = \text{state centered about } \bar{x} = 0 \]

\[\langle x|U(a)|\psi \rangle = \langle \bar{x}+a|\psi \rangle \]

\[= \text{state centered about } \bar{x} = -a \]

\[\langle 4|U(a)|\bar{x} \rangle = \langle 4|\bar{x}+a \rangle \]

In this to hold for all \(|\psi \rangle \)

\[U(a)|x\rangle = |x-a\rangle \]

Denote the eigenvalue of the operator \(x \) by \(x' \)

\[x U(a)|x'\rangle = x|x-a\rangle = (x'-a)|x'-a\rangle \]

\[= (x'-a)U(a)|x\rangle \]
This means that \(u(x) \ket{x'} \) is an eigenstate of \(x \) with eigenvalue \(x' + a \).

We also have

\[
 u^+(x) x u(x) \ket{x'} = (x' - a) u^+(x) u(x) \ket{x'}
 = (x' - a) \ket{x'} = (x - a) \ket{x'}
\]

since this holds for all \(x' = 0 \),

\[
 u^+(x) x u(x) = x - a
\]

\[
 u(x) x u^+(x) = x + a
\]

We note

\[
 e^{-i \frac{\hbar}{\lambda} p a} x e^{i \frac{\hbar}{\lambda} p a} = x + a
\]

differentiate both sides with respect to \(a \) set \(a = 0 \)

\[
 \frac{i}{\hbar} (p x - x p) = +1
\]

\[
 [p, x] = -i \hbar
\]
\[P \langle x | p' \rangle = p' \langle x | p' \rangle \]

\[P = \frac{\hbar}{i} \frac{\partial}{\partial x} \quad (\text{representation of } E_p, x \gamma = -i \hbar \quad \text{in } x \times \text{representation}) \]

\[\frac{\hbar}{i} \frac{d \langle x | p' \rangle}{\langle x | p' \rangle} = p' \, dx \]

\[\langle x | p' \rangle = e^{ -\frac{i}{\hbar} x \cdot p' } \]

\[\delta (x - x') = \int \langle x | p' \rangle d p' \langle p'(x') = \]

\[= \int e^{ \frac{i}{\hbar} (x - x') \cdot p } (c l^2 \, d p \quad u = p l_n \]

\[= \int e^{ i u (x - x') } (c l^2 \, k \, du \]

\[= (c l^2 \, \hbar \, \delta (x - x') \Delta n \quad c = \frac{1}{\sqrt{2 \pi n}} \]

\[\langle x | p' \rangle = \frac{1}{\sqrt{2 \pi n}} e^{ i \frac{p' \cdot x}{\hbar} } \]

\[\langle p | x' \rangle = \frac{1}{\sqrt{2 \pi n}} e^{ -i \frac{p \cdot x'}{\hbar} } \]

because \(K |x | p' \rangle = K | p | x' \rangle = \sqrt{2 \pi n} \) for all \(x, p \) are complementary observables.

\[U(\alpha) \bar{\psi} U^\dagger(\alpha) = \bar{x} + \bar{\alpha} \]

\[\begin{pmatrix} +i q \cdot x / \hbar & -i q \cdot x / \hbar \end{pmatrix} \begin{pmatrix} \bar{p} \bar{c} \end{pmatrix} = \bar{p} - \bar{\alpha} \]

\[V(\xi) P V^\dagger(\xi) = \bar{p} - \bar{\xi} \]
\[V(q) \text{ is the momentum translation operator.} \]

\[\frac{dX}{dt} = \frac{i}{\hbar} [H, X] \]

\[[H, X] = 0 \quad X \text{ conserved} \]

\[U(t) X U^*(t) = X \]

Both translations and rotations satisfy

\[U(t) U(\tilde{\phi}) U^*(t) = U(\tilde{\phi}) \]

\[U(t) U(\tilde{\phi} \hat{\theta}) U^*(t) = U(\tilde{\phi} \hat{\theta}) \]

\[U(\tilde{\phi} \hat{\theta}) U(\tilde{\psi} \hat{\theta}) U^*(\tilde{\phi} \hat{\theta}) = U(\tilde{\phi} \tilde{\theta}) \]

These equations lead to

\[[H, \tilde{J}] = [H, \tilde{P}] = 0 \quad [P_i, P_j] = 0 \]

These first 2 equations mean that \(\tilde{P}, \tilde{J} \) are conserved quantities.

For this reason

\[H = \text{energy} \]

\[\tilde{P} = \text{linear momentum} \]

\[\tilde{J} = \text{angular momentum} \]
which are classically conserved quantities. The factor \hbar gives both H and \hat{P} the correct units.

Not all symmetries are continuous. Standard examples are space reflection and time reversal:

\[
P^2 = I \quad \Rightarrow \quad P = P^{-1}
\]
\[
T^2 = I \quad \Rightarrow \quad T = T^{-1}
\]
\[
P \times P^{-1} = -\mathbf{x}
\]
\[
\hat{P} \cdot \hat{P}^{-1} = -\hat{\mathbf{p}}
\]
\[
\hat{P} \cdot \hat{J} \cdot P^{-1} = \hat{J} \quad (\hat{J} = \mathbf{x} \times \hat{\mathbf{p}})
\]
\[
T \times T^{-1} = \mathbf{x}
\]
\[
T \cdot \hat{P} \cdot T^{-1} = -\hat{P}
\]
\[
T \cdot \hat{J} \cdot T^{-1} = -\hat{J}
\]

\[
P \cdot \nabla \cdot P^{-1} = \nabla \quad \text{pseudo vector} \quad (\hat{J})
\]
\[
P \cdot A \cdot P^{-1} = -A \quad \text{pseudo scalar} \quad (\hat{J}, \frac{\mathbf{p}}{m} + \frac{\hat{p}}{m} \cdot \hat{J})
\]

If H contains pseudoscalar operators then $PHP^{-1} \neq H$.

It turns out that the weak Hamiltonian does not commute with the space reflection operator.
Time reversal

\[T U(t) T^{-1} = U(-t) \]

\[T e^{i \mathbf{H} t} T^{-1} = e^{-i \mathbf{H} t} = e^{i \mathbf{H} t} = 0 \]

\[T \mathbf{(iH)} T^{-1} = -i \mathbf{H} \]

There are 2 possibilities:

\[T \] is unitary \(\Rightarrow \) \(T \mathbf{H} T^{-1} = -\mathbf{H} \)
\[T \] is anti-unitary \(\Rightarrow \) \(T \mathbf{H} T^{-1} = \mathbf{H} \)

\[\mathbf{H} \xi' \rangle = \mathbf{E} \xi' \rangle \]

\[\mathbf{H} (\mathbf{T} \xi) \rangle = \mathbf{T} \mathbf{T}^{-1} \mathbf{H} \mathbf{T} \xi \rangle = \mathbf{E} \mathbf{T} \xi \rangle \]

In the unitary case every eigenvector with energy \(\mathbf{E} \) is paired with another with eigenvalue \(-\mathbf{E}\). If \(\mathbf{H} \) is not bounded from above then it can't be bounded from below! This suggests that the universe could be unstable with respect to small perturbations.

\(T \) is taken to be anti-unitary so can construct operators that do not commute with \(T \).

\((\mathbf{p} \mathbf{J} + \mathbf{J} \mathbf{p}) \)
the weak interaction contains terms that violate time reversal invariance.

Discrete translations

\[
\begin{align*}
T(a) \times T(a) &= x + a \\
T(a) V(x) T^*(a) &= V(x + a) = V(x)
\end{align*}
\]

Periodic potentials are invariant with respect to translations along lattice planes through a multiple of the lattice spacing:

\[
H = \frac{p^2}{2m} + V(x)
\]

\[
T(a) H T^*(a) = H
\]

\[
H |E\rangle = E' |E\rangle = \delta
\]

\[
H T(a) |E\rangle = T(a) H |E\rangle = E' T^*(a) |E\rangle.
\]

\[
(T(a))^n |E\rangle
\]
is an eigenvalue of \(H\) with eigenvector \(E'\).

define \(|n\rangle = (T(a))^n |E\rangle\), \(n = -\infty \ldots \infty \)
\(T(a) \left| n \right> = \left| n+1 \right> \) by def.

The states \(\left| n \right> \) are not eigenstates of \(T(a) \). But

\[
\left| \omega \right> = \sum_{n=-\infty}^{\infty} e^{i n \omega} \left| n \right>
\]

\[
H \left| \omega \right> = \sum_{n=-\infty}^{\infty} e^{i n \omega} H \left| n \right> = E \left| \omega \right>
\]

\[
T(a) \left| \omega \right> = \sum_{n=-\infty}^{\infty} e^{i n \omega} \left| n+1 \right> =
\]

\[
e^{-i \omega} \sum_{n=-\infty}^{\infty} e^{i(n+1)\omega} \]

\[
= e^{-i \omega} \sum_{n=-\infty}^{\infty} e^{i n \omega} \left| n \right>
\]

\[
= e^{-i \omega} \left| \omega \right>
\]

\(\left| \omega \right> \) is a simultaneous eigenstate of \(T(a) \) and \(H \).

\[
\langle x \mid T(a) \left| \omega \right> = e^{-i \omega} \langle x \mid \omega \rangle = \langle x-a \mid \omega \rangle
\]

\[
e^{-i \omega} \langle x \mid \omega \rangle = \langle x-a \mid \omega \rangle.
\]

Try a solution of the form

\[
\langle x \mid \omega \rangle = e^{ikx} u_k(x), \quad k = \frac{\omega}{a}
\]
\(-i \theta + ikx\) \\
\(e^{ik(x-\alpha)} U_{\alpha}(x) = e^{ik(x-\alpha)} \quad \theta = +k\alpha\) \\
\(U_{\alpha}(x) = U_{\alpha}(x-\alpha)\)

This shows that \\
\(\langle x|k\alpha \rangle = e^{ikx} U_{\alpha}(x) =\)

plane wave \times periodic function.

This is called Bloch's theorem.

Potentials\(s\)

\[i\hbar \frac{d\psi}{dt} = (T + V) \psi \]

\(\langle \psi_n(t) \rangle = e^{-i\hbar E_n t} \langle \psi_n(0) \rangle \)

let \(V = V + V_0 \quad V_0 = \text{constant} = 1 \)

\(\langle \psi_n(t) \rangle = e^{-i\hbar (E_n + V_0) t} \langle \psi_n(0) \rangle \)

state vectors differ by a time dependent phase

Next consider the case that \(V \) is \emph{in} in a finite time: \\
\(\langle \psi_n(t) \rangle = e^{-i\int_0^t V_0 dt} - \frac{i}{\hbar} E_n \langle \psi_n(0) \rangle \)

\[\frac{d}{dt} \langle \psi_n(t) \rangle = -\frac{i}{\hbar} (V_0(t) + E_n) \langle \psi_n(t) \rangle \]
This clearly satisfies the equation. The wave functions differ by the phase
\[e^{i\frac{\hbar}{U} \int_0^t V(x) \, dt} = e \]

Beam of charged particles - split inside of 2 conductors at different potentials - no fields, no force recombine - there is a phase difference that depends on the elapsed time in the conductors.

Phase depends on \(\hbar \) - quantum mechanical effect.