1. Calculate the differential cross section (in terms of the transition operator matrix elements) for two-body scattering in the laboratory frame where particle 1 of mass m_1 is initially at rest, particle 2 of mass m_2 is initially moving with momentum $p = p_2$ and the angular distribution of particle 2 is measured. (Hint - you need to find the initial relative velocity in this frame and integrate over all variables that are not measured.)

2. Assume that an electron scatters off of a potential due to a spherically symmetric electric charge density, $-e\rho(r)$. Find the scattering amplitude and differential cross section in the Born approximation. Show how these are related to the Fourier of this charge distribution.

3. Consider a three-dimensional scattering problem for two particles of mass m scattering with a potential

$$\langle P', k' | V | P, k \rangle = -\lambda \delta(P' - P) \frac{1}{a^2 + k'^2} \frac{1}{a^2 + k^2}$$

Solve the Lippmann Schwinger equation exactly to find

$$\langle k' | T \left(\frac{k^2}{2\mu} + i\epsilon \right) | k \rangle$$

4. For the potential of problem 3 find the scattering amplitude $F(k', k)$ and the differential cross section in the center of mass frame.

5. For the potential of problem 3 calculate the total cross section using the optical theorem.

6. For the potential of problem 3 the Born approximation can be obtained from the exact solution by keeping only the term in the scattering amplitude that is linear in the coupling constant λ. Compute the differential cross section in the Born approximation and compare the result to the exact cross section.
\(ds = \frac{(2\pi)^4}{1 V_F} \left| \frac{K \tilde{p}_1 \tilde{p}_2 | T(E+i\epsilon) | P_1 P_2 > |^2}{\text{momentum conserving \& factored out}} \right| \delta^4 (E_1' + E_2' - E_1 - E_2) \delta^3 (P_1' + P_2' - P_1 - P_2) \ d^3 P_1' \ d^3 P_2' \)

In this case:

0. \(\tilde{P}_1 = 0 \quad \tilde{P}_2 = \tilde{P} \quad E_1 = 0 \quad E_2 = \frac{P^2}{2m_2} \)

\(V_F = \frac{P^2}{m_1} - \frac{P^2}{m_2} = \frac{\tilde{P}}{m_2} \)

0. Integrating over \(\tilde{P}_1' \) eliminates the \(S \) function in momentum

\(\tilde{P}_1' = \tilde{P} - \tilde{P}_2' \)

0. The energy \(S \) function becomes

\(S \left(\frac{P_1'^2}{2m_1} + \frac{(P_2 - P_2')^2}{2m_1} - \frac{P_1^2}{2m_2} \right) = \)

\(S \left(\frac{P_2'^2}{2m_2} + \frac{P_2^2}{2m_1} - \frac{\tilde{P}_2' \tilde{P}}{m_1} - \frac{P_1^2}{2m_2} + \frac{P_1^2}{2m_1} \right) \)

0. We need

\(\int_0^\infty S \left(\frac{P_1'^2}{2m_1} + \frac{P_2^2}{2m_1} - \frac{P_2' \tilde{P} \cos \theta}{m_1} - \frac{P_1^2}{2m_2} + \frac{P_1^2}{2m_1} \right) P_2'' \ dp_2'' = \)

\(\frac{P_1'^2}{m_2 + \frac{P_1''^2}{m_1} - \frac{\tilde{P} \cos \theta}{m_1} \left| \frac{P_2''}{m_2} - \frac{P_2' \tilde{P} \cos \theta}{m_1} - \frac{P_1^2}{2m_2} + \frac{P_1^2}{2m_1} \right| \)

where \(P_1' = 0 \) of

\(\frac{P_2'^2}{2m_2} - \frac{P_2' \tilde{P} \cos \theta}{m_1} - \frac{P_1^2}{2} \left(\frac{m_2 - m_1}{m_2 m_1} \right) = 0 \)
This gives
\[
\Delta = \frac{2\pi}{1\pi^4} < \hat{P}'_2 \cdot \hat{P}'_2' \mid T(E+ic) \mid 0 \cdot \hat{P} >^2 \frac{P}{2\pi} \frac{m^2_2}{P_2' \cdot P_2' + P_{\text{cosec}}^2} \quad d\Omega_2'
\]

where
\[
0 = P_2'^2 - \frac{2\mu}{m_1} P \cos \theta P_2' - \frac{P^2}{m_1} \frac{m_2 - m_1}{m_1 + m_2}
\]
\[
P_2' = \frac{2\mu}{m_1} P \cos \theta \pm \sqrt{\frac{4\mu^2 P^2 \cos^2 \theta}{m_1^2} - 4P^2 \frac{(m_2 - m_1)}{m_1 + m_2}}
\]
\[
= \frac{\mu}{m_1} \cos \theta \pm \frac{\mu}{m_1} \sqrt{\cos^2 \theta - \frac{m_2 - m_1}{m_1 + m_2}}
\]
\[
= \frac{\mu}{m_1} \left(\cos \theta \pm \sqrt{\cos^2 \theta - \frac{(m_2 - m_1)}{m_2}} \right)
\]
\[
= \frac{\mu}{m_1} \left(\cos \theta \pm \sqrt{\cos^2 \theta + \frac{m_1}{m_2}} \right)
\]
\[
= \frac{\mu}{m_1 + m_2} \left(\cos \theta + \sqrt{\frac{m_1}{m_2} - \sin^2 \theta} \right)
\]

(for \(m_1 > m_2 \), the positive root is physical

\[
P_2' = \frac{\mu}{m_1 + m_2} \left(\cos \theta + \sqrt{\frac{m_1}{m_2} - \sin^2 \theta} \right)
\]

\(m_2 > m_1 \) \(\sin \theta \) m = \sqrt{\frac{m_1}{m_2}} \) is the largest possible scattering angle
\[u(r) = \int -\frac{e\rho(r')}{|r-r'|} \, d^3r' \quad v = -e\nabla u(r) \]

In the Born Approximation

\[\langle \tilde{k}' | T(E+ie) | \tilde{k} \rangle = \langle \tilde{k}' | V \tilde{k} \rangle = \]

\[\int \langle \tilde{k}' | \tilde{r} \rangle \, eV(r) \, d^3r \, \langle \tilde{r} | \tilde{k} \rangle = \]

\[-i(k' - \tilde{k}) \cdot \tilde{r}/\hbar \cdot \int \frac{1}{(2\pi \hbar)^3} \, e^{-i(k' - \tilde{k}) \cdot \tilde{r}/\hbar} \, (\frac{\rho(r')}{|r-r'|}) \, d^3r \, d^3r' \]

change variables \(r'' = r-r' \) so

\[d^3r \, d^3r' = d^3r'' \, d^3r' \quad \tilde{r} = \tilde{r}'' + \tilde{r}' \]

\[-\frac{e^2}{(2\pi \hbar)^2} \, e^{-i(k-\tilde{k}) \cdot (\tilde{r}'' + \tilde{r}')/\hbar} \cdot \int \frac{\rho(r')}{|r''|} \, d^3r' \, d^3r'' = \]

\[\int \langle \tilde{k}' | r'' \rangle \, \frac{\rho}{\hbar} \, \langle r'' | \tilde{k} \rangle \cdot \int e^{-i(k-\tilde{k}) \cdot \tilde{r}''/\hbar} \, d^3r'' \]

\[\langle \tilde{k}' | V \phi \tilde{k} \rangle = \langle \tilde{k}' | \phi \tilde{k} \rangle \cdot (2\pi \hbar^3 \, \tilde{\rho} (i\tilde{k}' - \tilde{k}')) \]

Fourier transform
Let $U = \frac{\lambda u <u|u> I}{\lambda u <u|u>}$

$I = \text{identity in } \mathbb{P}$

$\langle k|U \rangle = \frac{1}{\alpha + k^2}$

$T(z) = I \times (-\lambda u <u| - \lambda u <u| \frac{1}{z-\mu}) T(z)$

This means $T(z)$ must have the form

$T(z) = \gamma |u><u| + I$

$\gamma |u><u| + I = (-\lambda u <u| - \lambda u <u| \frac{1}{z-\mu}) |u><u| I$

$\gamma = -\lambda - \lambda |u| \frac{1}{z-\mu} |u| > \gamma$

$\gamma (z) = \frac{-\lambda}{1 + \lambda |u| (z-\mu)^{-1} |u|}$

To solve this we must compute $|u| (z-\mu)^{-1} |u| = $

$\int \frac{1}{\alpha + k^2} \frac{d^2 k}{z - \lambda u^2 + i \epsilon} \frac{1}{\alpha + k^2} =$

$\frac{-1}{2 \alpha} \int \frac{d^2 k}{d \alpha} \left(\int_0^\infty \frac{k^2 dk}{(\alpha + k^2)(k^2 - u^2 - k^2) + i \epsilon} \right) =$

$(-)^\frac{1}{2} \left(\frac{1}{2 \alpha} \right) 4 \pi u^2 \int \left(\int_0^\infty \frac{k^2 dk}{(k+i \alpha)(k-i \alpha)(k-k_0+i \epsilon)(k-k_0+i \epsilon)} \right)$

Close in the upper half plane
\[
= - \frac{2\pi i}{a} \left\{ \frac{-a^2}{2ia} - \frac{1}{a^2 - k_o^2} + \frac{k_o^2}{k_o^2 + a^2} \cdot \frac{1}{2k_o} \right\} \\
= - \frac{4\pi^2 i}{a} \frac{1}{da} \left\{ \frac{k_o - i a}{2a^2 + k_o^2} \right\} \\
= - \frac{2\pi^2 i}{a} \frac{1}{da} \left\{ \frac{1}{k_o + ia} \right\} = - \frac{2\pi^2 i}{a} \frac{(-1)^i}{(k_o + ia)^2} \\
= - \frac{2\pi^2 i}{a} \frac{1}{(k_o + ia)^2}
\]

Thus, given

\[
\tilde{\chi}(z) = \tilde{\chi}\left(\frac{k_o}{2a} + i e \right) = \frac{-\lambda}{1 - \frac{2\pi^2 i}{a} \frac{1}{(k_o + ia)^2}}
\]

\[
\langle k' | T(z) | k \rangle = \frac{1}{k^2 + a^2} \frac{-\lambda}{1 - \frac{2\pi^2 i}{a} \frac{1}{(k_o + ia)^2}} \frac{1}{k^2 + a^2}
\]

\[\triangleright \]

\[
F(k'k) = - (2\pi)^2 \mu \frac{1}{\lambda} \langle k' T \left(\frac{k_o}{2a} \right) | k \rangle = \\
- \frac{(2\pi)^2 \mu \frac{1}{\lambda}}{(k^2 + a^2)^2} \frac{1}{1 - \frac{2\pi^2 i}{a} \frac{1}{(k_o + ia)^2}} \\
\frac{d\sigma}{d\Omega} = \frac{(2\pi)^9 \mu^2 \hbar^2 \lambda^4}{(k^2 + a^2)^4} \frac{(k_o^2 + a^2)^2}{[(k_o + ia)^2 - \frac{2\pi^2 i}{a}]^2}
\]
\[G_t = \frac{4\pi^2}{k} \text{Im} F(kh) \]

In this case, \(F \) is independent of direction so we only need to compute the imaginary part of \(F \)

\[
F = \frac{2\pi l^2 \mu k}{(a^2 + k_0^2)^2} \left(\frac{1}{1 - \frac{2\pi^2 l^2 \mu}{a(k_0 + ia)^2}} \right)^2
\]

\[
= \frac{2\pi l^2 \mu k}{(a^2 + k_0^2)^2} \left(\frac{k_0^2 - a^2 + 2ika}{k_0^2 - a^2 + 2ika - 2\pi^2 l^2 \mu/a} \right)
\]

\[
= \frac{2\pi l^2 \mu k}{(a^2 + k_0^2)^2} \left(\frac{k_0^2 - a^2 + 2ika}{(k_0^2 - a^2 - 2\pi^2 l^2 \mu/a)^2 + 4k_0^2a^2} \right)
\]

We can read off the imaginary part

\[
\text{Im} F = \frac{2\pi l^2 \mu k}{(a^2 + k_0^2)^2} \frac{(2k_0a)(2\pi^2 l^2 \mu/a)}{(k_0^2 - a^2 - 2\pi^2 l^2 \mu/a)^2 + 4k_0^2a^2}
\]

\[
= \frac{(2\pi)^4 \mu^2 \kappa^2 k_0}{(k_0^2 - a^2 - 2\pi^2 l^2 \mu/a)^2 + 4k_0^2a^2} \left(\frac{1}{(k_0^2 - a^2 - 2\pi^2 l^2 \mu/a)^2 + 4k_0^2a^2} \right)
\]

\[
G = \frac{(4\pi)^2 (2\pi)^2 \mu^2 k^4}{(k_0^2 - a^2 - 2\pi^2 l^2 \mu/a)^2 + 4k_0^2a^2} \left(\frac{1}{(a^2 + k_0^2)^2} \right)
\]

This can be compared to the result of integration:

\[
G = \int \frac{d\theta}{2\pi} dR = 4\pi \times \frac{d\theta}{2\pi} \quad \left(\frac{d\theta}{2\pi} \text{ is independent of } \theta \right)
\]

\[
= 4\pi \left(\frac{2\pi^2 l^2 \mu^2 k^4}{(a^2 + k_0^2)^2} \right) \left(\frac{1}{(k_0 + ia)^2 - 2\pi^2 l^2 \mu/a} \right)^2
\]

\[
= 4\pi \left(\frac{2\pi^2 l^2 \mu^2 k^4}{(a^2 + k_0^2)^2} \right) \left(\frac{1}{(k_0^2 - a^2 - 2\pi^2 l^2 \mu/a)^2 + 4k_0^2a^2} \right)
\]

which are identical.
(c) expanding the solution to problem 3 in powers of λ

$$<\mathbf{k}^* \mathbf{T}(\mathbf{z}) \mathbf{k}> = \frac{1}{a^2 + k^2} \left(-\lambda \right) \sum_{n=0}^{\infty} \left[\left(\frac{2\pi^2 \mathbf{u}^2}{a} \right)^n \frac{1}{(k_n n^2 a)^2} \right] \frac{1}{\sqrt{e^2 + a^2}}$$

The term in brackets is

$$1 + \lambda \frac{2\pi^2 \mathbf{u}}{a} \frac{1}{(k_n n^2 a)^2} + \lambda^2 \left(\frac{2\pi^2 \mathbf{u}}{a} \right)^2 \frac{1}{(k_n n^2 a)^4} + \cdots$$

This approaches 1 as $\lambda \to 0$ or $k_n n^2 a$ get large.