1. Consider a differential equation of the form

\[f''(x) + p(x)f'(x) + q(x)f(x) = 0 \]

In class we showed that if \(f(x) \) is a solution to this equation that we could find a second solution of the form \(g(x) = h(x)f(x) \). Following the lecture solve for \(h(x) \) and show that \(g(x) \) is independent of \(f(x) \) by showing the Wronskian:

\[\det \begin{pmatrix} f(x) & f'(x) \\ g(x) & g'(x) \end{pmatrix} \neq 0 \]

2. Use the Feynman Hellmann theorem to compute the expectation value of the kinetic and potential energy of a one electron atom in a \(n,l,m \) state.

3. Apply the power series method to a three dimensional harmonic oscillator Hamiltonian

\[H = -\frac{\hbar^2}{2\mu} \nabla^2 + \frac{1}{2}kr^2 \]

Find the asymptotic form of the solutions (large \(r \) and small \(r \)) and include this behavior in the solution. Find the recursion relating different terms in the series.

4. Consider a central force problem with Hamiltonian

\[H = -\frac{\hbar^2}{2\mu} \nabla^2 + \lambda r^\alpha \]

Let \(|\psi\rangle \) be an eigenstate of \(H \). Use the Heisenberg equations of motion to show that for any operator \(O \)

\[\frac{d}{dt} \langle \psi| O |\psi\rangle = 0 \]

Consider the case \(O = r \cdot k \). Show that for the Hamiltonian above this relates the expectation values of the potential and kinetic energies.

5. Show that

\[L_n^\alpha(x) := \sum_{k=0}^{n} (-1)^k \frac{(n + \alpha)!}{k!(n - k)!(\alpha + k)!}x^k \]

is a solution to

\[xL_n^\alpha(x)'' + (\alpha + 1 - x)L_n^\alpha(x)' + nL_n^\alpha(x) = 0 \]

6. Use the Feynman Hellmann theorem to compute \(\langle n|x^2|n\rangle \) for a 1 dimensional harmonic oscillator with Hamiltonian

\[H = \frac{p^2}{2m} + \frac{1}{2}kx^2 \]