
Scattering Theory

In quantum mechanics the basic observable is the probability

P = |〈ψ+(t)|ψ−(t)〉|2, (1)

for a transition from and initial state, |ψ−(t)〉, to a final state, |ψ+(t)〉. Since
time evolution is unitary this probability is independent of time and can be
evaluated at any time t:

P (t) = |〈ψ+(t)|ψ−(t)〉|2 = |〈ψ+(0)|eiHt/~e−iHt/~ψ−(0)〉|2 =

|〈ψ+(0)|ψ−(0)〉|2 = P (0) (2)

For a scattering experiment |ψ−(t)〉 represents the state of the beam and target.
It is a solution of the Schrödinger equation that looks like a free beam of particles
heading towards free target particle at a time t = −T , when the beam and
target are initially prepared (long before the collision). Similarly |ψ+(t)〉 is a
solution of the Schrödinger equation that represents the state selected by the
detectors. At the time t = T , long after the collision, this state looks like two
free particles heading towards specific elements of the detector, for example
towards a particular pair of photo-multiplier tubes. The probability (1) is the
probability that the initial state will be measured in the final state associated
with the photomultiplier tubes.

The scattering probability has to be evaluated at (any) common time for
both the initial and final states. The problem is that there is no single time
where both the initial and final state look like free particles.

The initial conditions for the two solutions of the Schrödinger equation are
most naturally formulated at the times −T and T when they look like free
particles:

i~
d

dt
|Ψ±(t)〉 = H|Ψ±(t)〉 |Ψ±(±T )〉 = |Ψ±0 (±T )〉 (3)

where
|Ψ±0 (±T )〉 (4)

are the corresponding free particle solutions at t = −T and t = T . The free
particle solutions satisfy the free-particle Schrödinger equation:

i~
∂

∂t
|Ψ±0 (t)〉 = H0|Ψ±0 (t)〉. (5)

The solutions, |Ψ±(t)〉 and |Ψ±0 (t)〉, of these equation can be expressed in terms
of the unitary time evolution operators U(t) and U0(t):

|Ψ±(t)〉 = U(t∓ T )|Ψ±(±T )〉 U(t) = e−iHt/~ (6)

|Ψ±0 (t)〉 = U0(t∓ T )|Ψ±(T )〉 U0(t) = e−iH0t/~ (7)
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The initial free particle wave packets can be taken as minimal uncertainty
wave packets with momentum uncertainty ∆p1 and ∆p2 and specified mean
single-particle momenta, p10 and p20. These states have the form

〈p1,p2|Ψ±0 (t)〉 =

1

(2π)3/4

1

(∆p1)3/2
e
− (p1−p10)2

(2∆p1)2
1

(2π)3/4

1

(∆p1)3/2
e
− (p2−p20)2

(2∆p2)2 e−i(
p2

1
2m1

+
p2

2
2m2

)t/~. (8)

Of course in a real experiment we do not have precise control over the struc-
ture of the initial or final wave packets. For example the particle might be
detected in the photo-multiplier tubes in a state orthogonal to |Ψ+(T )〉. What
is really measured in an experiment is counts in the photo-multiplier tubes. It
is also awkward to determine the times ±T . For these reason scattering theory
is formulated in a manner that removes the sensitivity to the choice of wave
packet or T provided the wave packets are sufficiently narrow in momentum
and the times T are sufficiently large. How this is achieved is discussed below.

To remove the dependence on the choice of T note that once the particles are
beyond the range of the interaction, H acts like the free Hamiltonian H0 and the
unitary time-evolution operator U(t) can be replaced by the free time-evolution
operator U(t) = e−iHt/~ → U0(t) = e−iH0t/~. This means that if

|Ψ±(±T )〉 = |Ψ±0 (±T )〉 (9)

then
|Ψ±(±(T + ∆T ))〉 = U(±∆T )Ψ±(±T )〉 ≈

U0(±∆T )Ψ±(±T )〉 = U0(±∆T )|Ψ±0 (±T )〉 = |Ψ±0 (±(T + ∆T )〉, (10)

which shows that the initial conditions at ±T are approximately equivalent
to initial conditions at ±(T + ∆T ) for any positive ∆T . The T dependence
can be eliminated by taking the limit T → ∞, which does not change the
initial condition for short range V . This leads to the scattering asymptotic
conditions:

0 = lim
t→±∞

‖|Ψ±(t)〉 − |Ψ±0 (t)〉‖ =

lim
t→±∞

‖e−iH t
~ |Ψ±(0)〉 − e−iH0

t
~ |Ψ±0 (0)〉‖ =

lim
t→±∞

‖|Ψ±(0)〉 − eiH t
~ e−iH0

t
~ |Ψ±0 (0)〉‖. (11)

where we used unitarity of the time evolution operator, ‖eiH t
~ |Ψ〉‖ = ‖|Ψ〉‖ in

the last line of (11). This condition can be written as

|Ψ±(0)〉 = lim
t→±∞

eiH
t
~ e−iH0

t
~ |Ψ±0 (0)〉 = Ω±|Φ±0 (0)〉 (12)

The operators,
Ω± := lim

t→±∞
eiH

t
~ e−iH0

t
~ , (13)
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are called Møller wave operators. The limit is a strong limit. This means
that it is only defined when the operators are applied to wave packets, as they
are in (11). The existence of this limit can be proven for a large class of short
ranged interactions (a notable exception is the Coulomb interaction - this will
be discussed separately.) Sufficient conditions for the existence of the wave
operators follow by writing the limit (13) as an integral of a derivative

Ω± := I +

∫ ±∞
0

d

dt
eiH

t
~ e−iH0

t
~ dt =

I +
i

~

∫ ±∞
0

eiH
t
~V e−iH0

t
~ dt

Convergence follows provided

‖
∫ ±∞

0

eiH
t
~V e−iH0

t
~ dt|ψ〉‖ <∞

A sufficient condtion for this to be finite is∫ ∞
0

‖V e∓iH0
t
~ |ψ〉‖dt <∞.

Wheather this is true depends on the choice of potential. It holds for most
potentials that fall off faster than the Coulomb potential at ∞. In what follows
we assume that the Møller wave operators exist.

The Møller wave operators satisfy the intertwining relations

HΩ± = Ω±H0. (14)

To prove (14) note that

eiH
s
~ Ω± = lim

(t+s)→±∞
eiH

(t+s)
~ e−iH0

(t+s)
~ eiH0

s
~ = Ω±e

iH0
s
~ . (15)

Differentiation with respect to s, setting s to zero gives (14). This condition
ensure that energy is conserved in the scattering experiment; i.e. that

HΩ±|E0〉 = Ω±H0|E0〉 = E0Ω±|E0〉 (16)

which show that Ω± maps eigenstates of H0 with energy E0 to eignestates of H
with the same energy.

It also follows that
|Ψ±(t)〉 = U(t)|Ψ±(0)〉 =

U(t)Ω±|Ψ±0 (0)〉 = Ω±U0(t)|Ψ±0 (0)〉 = Ω±|Ψ±0 (t)〉 (17)

The scattering probability can be expressed directly in terms of the asymp-
totic free-particle wave packets using the Møller operators:

P = |〈Ψ+
0 (t)|Ω†+Ω−|Ψ−0 (t)〉|2 (18)
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which is independent of t by (17).
The scattering operator S operator is defined by

S := Ω†+Ω−. (19)

The scattering probability can be expressed in terms of the free-particle asymp-
totic states and S as

P = |〈Ψ+
0 (t)|S|Ψ−0 (t)〉|2. (20)

The advantage of expressing the probability in terms of the the free-particle
states is that they have a simple form that is determined by the measurement,
but independent of the interaction. The physics associated with the interaction
is contained in the operator S.

There are a number of ways to calculate the scattering operator S. All of
them involve closely related quantities.

Structure of the scattering operator

Scattering probability amplitude can be expressed in term of plane-wave
matrix elements of the scattering operator

〈Ψ+
0 |S|Ψ

−
0 〉 =∫

〈Ψ+
0 |p1,p2〉dp1dp2〈p1,p2|S|p′1,p2

′〉dp′1dp′2〈p′1,p2
′|Ψ−0 〉. (21)

Since typical interactions are translationally invariant, for some purposes it is
useful to change variables to the total momentum of the system

P = p1 + p2 (22)

which is conserved and the momentum of particle 1 in the two-body rest frame:

k := p1 −
m1

m1 +m2
P =

m2p1 −m1p2

m1 +m2
, (23)

where P is the total momentum of the two body system, and k is the momentum
of particle 1 in the frame where P = 0. This is just a Galilean boost by velocity
v = −P/(m1 +m2). We also have

−k := p2 −
m1

m1 +m2
P =

m1p2 −m2p1

m1 +m2
, (24)

The Jacobian of the variable change

(p1,p2)→ (P,k) (25)

is 1.
In terms of these variables the scattering probability amplitude can be ex-

pressed as ∫
〈Ψ+

0 |k,P〉dkdP〈k,P|S|k′,P′〉dk′dP′〈k′,P′|Ψ
−
0 〉 (26)
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The kernel of this expression has the form

〈k,P|S|k′,P′〉 =

lim
t→∞
〈k,P|eiH0t/~e−2iHt/~eiH0t/~|k′,P′〉 =

δ(P−P′)δ(k− k′) +

∫ ∞
0

d

dt
〈k,P|eiH0t/~e−2iHt/~eiH0t/~|k′,P′〉 =

δ(P−P′)δ(k− k′)− i

~

∫ ∞
0

〈k,P|eiH0t/~V e−2iHt/~eiH0t/~|k′,P′〉−

i

~

∫ ∞
0

〈k,P|eiH0t/~e−2iHt/~V eiH0t/~|k′,P′〉 (27)

We define h and h0 (the rest energy operators) in terms of the free and
interacting Hamiltonians by

H =
P2

2M
+ h h =

k2

2µ
+ V (28)

H0 =
P2

2M
+ h0 h0 =

k2

2µ
. (29)

If the interaction is translationally invariant, [V,P] = 0, then

eiHt/~e−iH0t/~ = eiht/~e−ih0t/~. (30)

If the interaction is translationally invariant, i.e. [H,P] = [H0,P] = 0, then
we can factor out a total momentum conserving delta function had replace H
by h and H0 by h0. In what follows we use “hats” to indicate operators with
the momentum conserving delta function removed

〈P,k|O|P′,k′〉 =: δ(P−P′)〈k|Ô|k′〉 (31)

Thus, assuming a translationally invariant interaction, (27) becomes

δ(P−P′)

(
δ(k− k′)− i

~

∫ ∞
0

〈k|eih0t/~V̂ e−2iht/~eih0t/~|k′〉 −

i

~

∫ ∞
0

〈k|eih0t/~e−2iht/~V̂ eih0t/~|k′〉
)

(32)

Note that |k〉 is and eigenstate of h0 with eigenvalue E(k) = k2

2µ :

h0|k〉 =
k2

2µ
|k〉 = E(k)|k〉. (33)

I define the average relative kinetic energy

Ē =
1

2
(E(k) + E(k′)). (34)
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Using (33) and (34) in (32) gives

δ(P−P′)

(
δ(k− k′)− i

~

∫ ∞
0

〈k|eih0t/~V̂ e−2iht/~eih0t/~|k′〉−

i

~

∫ ∞
0

〈k|eih0t/~e−2iht/~V̂ eih0t/~|k′〉
)

=

δ(P−P′)

(
δ(k− k′)− i

~

∫ ∞
0

〈k|V̂ e−2i(h−Ē)t/~|k′〉−

i

~

∫ ∞
0

〈k|e−2i(h−Ē)t/~V̂ |k′〉
)

(35)

These limits only make sense if they are used in (27) where the integrals over
k,P and k′ are performed before the time integrals. After such an integration
the result will vanish for large t. This can be seen by considering the example∫

f(k)e
−ik2t
2µ~ d3k =

∫
f̂(k2)e

−ik2t
2µ~ k2dk =

(
2µ~
t

)3/2

∫
f̂(

2µ~
t
u2)e−iu

2

u2du (36)

where

f̂(k2) :=

∫
f(k)dk̂ (37)

This falls off like t−3/2 for large t. It we insert an additional factor e−εt which
ε small enough so e−εt ≈ 1 for all t where the integrand is non-zero, then this
addition will not affect the integral in the limit that ε→ 0. On the other hand
if we insert this factors the order of integration does not matter, and we can
perform the time integral first, with the understanging that limε→0 be taken
after integrating over the initial and final wave packets. It follows that (35) can
be replaced by

δ(P−P′)

(
δ(k− k′)− i

~

∫ ∞
0

〈k|V̂ e−2i(h−Ē−iε)t/~|k′〉−

i

~

∫ ∞
0

〈k|e−2i(h−Ēi−iε)t/~V̂ |k′〉
)

(38)

Doing the time integral gives

δ(P−P′)

(
δ(k− k′) +

1

2
〈k|V̂ 1

Ē − h+ iε
|k′〉+

+
1

2
〈k| 1

Ē − h+ iε
V̂ |k′〉

)
(39)
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Some care is required to evaluate (39). The second resolvent identities

1

z −A
− 1

z −B
=

1

z −A
(A−B)

1

z −B
=

1

z −B
(A−B)

1

z −A
(40)

can be applied to h and h0 with z = Ē + iε:

1

Ē − h+ iε
− 1

Ē − h0 + iε
=

1

Ē − h0 + iε
V

1

Ē − h+ iε
=

1

Ē − h+ iε
V

1

Ē − h0 + iε
(41)

Using these in (39) gives

δ(P−P′)

(
δ(k− k′) +

1

2
〈k|V̂ (1 +

1

Ē − h+ iε
V̂ )

1

Ē − h0 + iε
|k′〉+

+
1

2
〈k| 1

Ē − h0 + iε
(1 + V̂

1

Ē − h+ iε
V̂ )|k′〉

)
=

δ(P−P′)

(
δ(k− k′) +

1

2
〈k|(V̂ + V̂

1

Ē − h+ iε
V̂ )|k′〉( 1

Ē − E(k′) + iε
+

1

Ē − E(k) + iε
)

)
δ(P−P′)

(
δ(k− k′) +

1

2
〈k|(V̂ + V̂

1

Ē − h+ iε
V̂ )|k′〉( 1

Ē − E(k′) + iε
+

1

Ē − E(k) + iε
)

)
=

δ(P−P′)

(
δ(k− k′)− 〈k|(V̂ + V̂

1

Ē − h+ iε
V̂ )|k′〉 2iε

(E(k′)− E(k))2 + ε2

)
(42)

In the limit that ε→ 0

2iε

(E(k′)− E(k))2 + ε2
→ −2πiδ(E(k′)− E(k)) (43)

which implies that (39) becomes

〈P,k|S|P′,k′〉 =

δ(P−P′)
(
δ(k− k′)− 2πiδ(E(k)− E(k′))〈k|(T̂ (E − h+ iε)|k′〉

)
(44)

Where operator

T̂ (z) := V̂ + V̂
1

z − h
V̂ (45)

is called the the transition operator. Using the second resolvent identities
(41) in (45) shows that T̂ (z) satisfies the integral equation

T̂ (z) := V̂ + V̂
1

z − h0
T̂ (z) (46)
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T̂ (z) = V̂ + T̂ (z)
1

z − h0ε
V̂ (47)

These are called Lippmann-Schwinger equations for the transition operator.

We are normally interested in the case z = E + iε = k2

2µ + iε.
The main results of this section can be summarized by the following three

equations:
〈Ψ+|Ψ−〉 = 〈Ψ+

0 |S|Ψ
−
0 〉 =∫

〈Ψ+
0 |k,P〉dkdP〈k,P|S|k′,P′〉dk′dP′〈k′,P′|Ψ

−
0 〉 (48)

with
〈k,P|S|k′P′〉 =

δ(P−P′)
(
δ(k− k′)− 2πiδ(E(k)− E(k′))〈k|T̂ (E + iε)|k′〉

)
(49)

and

T̂ (E + iε) = V̂ + V̂
1

E − h0 + iε
T̂ (E + iε) (50)

Calculation of the scattering operator using the interaction picture:

The scattering operator can be expressed as

S := Ω†+Ω− = lim
t→∞,t′→−∞

eiH0
t
~ e−iH

(t−t′)
~ e−iH0

t′
~ = lim

t→∞,t′→−∞
UI(t, t

′) (51)

where UI(t,−t) is the interaction picture time-evolution operator. It satisfies

i~
d

dt
UI(t, t

′) = VI(t)UI(t, t
′) UI(t

′, t′) = I (52)

where
VI(t) = e

iH0t
~ V e

−iH0t
~ (53)

is the interaction picture interaction. The formal solution can be obtained by
iterating the integrated form of (52)

U(t, t′) = I − i

~

∫ t

t′
VI(t

′′)U(t′′, t′)dt′′ (54)

The formal solution of this equation is

S = I +

∞∑
n=0

(
−i
~

)n
1

n!

∫ ∞
−∞

T (VI(t1) · · ·VI(tn))dt1 · · · dtn =:

T exp(− i
~

∫ ∞
−∞

VI(t
′)dt′) (55)
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which is expressed as a time-ordered exponential. This is obtained by replacing
the n-nested integrals by equivalent integrals obtained by the n! possible orders
of integration of the time integrals.

This method is used to construct S perturbatively in quantum field theory.
This series does not necessarily converge even for bounded potentials because
the time limits are infinite. Note however that the infinite limits can be replaced
by [−T, T ] and the result should be unchanged as long as T is large enough. In
this case the series with bounded potentials converges because it is bound by
the exponential series e2T‖V ‖/~.

Calculation of the scattering operator using the Lippmann-Schwinger
equation:

The starting point is the expression of the scattering probability P in terms
of the scattering operator, S

P = |〈Ψ+
0 (0)|S|Φ−0 (0)〉|2. (56)

As discussed previously, for translationally invariant interactions [V,P] = 0,

eiHt/~e−iH0t/~ = eiht/~e−ih0t/~. (57)

This means that when we compute the Møller operators for a translationally
invariant potential the total momentum dependence-factors out of all of the
matrix elements. This means that

〈P,k|Ω±|P′,k′〉 = δ(P−P′)〈k|Ω̂±|k′〉 (58)

where
Ω̂± = lim

t→±∞
eiht/~e−ih0t/~. (59)

The scattering eigenstates are defined as

|k±〉 = Ω̂±|k〉. (60)

The intertwining properties, which for Ω̂± have the form

hΩ̂± = Ω̂±h0 (61)

imply that these are eigenstates of h with energy k2

2µ :

h|k±〉 = hΩ̂±|k〉Ω̂±h0|k〉 =
k2

2µ
Ω̂±|k〉 =

k2

2µ
|k±〉. (62)

These solutions are related to the S matrix by

P = |〈Ψ+(0)|Ψ−(0)〉|2 (63)
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where

〈P,k|Ψ±(0)〉 =

∫
〈k|k±′〉dPdk′〈P,k|Ψ±0 (0)〉. (64)

The time-independent scattering states are defined by

|k±〉 := lim
t→±∞

e−iht/~eih0t/~|k〉 =

(I + lim
t→±∞

∫ t

0

d

dt
e−iht/~eih0t/~|k〉). (65)

If I include the wave packet (??) becomes

|ψ±0 〉+ lim
t→±∞

∫ t

0

d

dt

∫
dkeiht/~e−ih0t/~|k〉ψpm0 (k) (66)

As long as the k integral is done first the above is equal to

|ψ±0 〉+ lim
ε→0

∫ ±∞
0

e∓εt
d

dt

∫
dk(eiht/~e−ih0t/~)|k〉ψpm0 (k)). (67)

However, when the factor ε is included the result is independent of the order
of the t and k integrals. The scattering eigenstate |k±〉 can be calculated buy
performing the time integral first, with the understanding that the integral must
eventually integrated against a wave packet.

It follows that the integral in (??) becomes

|k±〉 =

|k〉+ lim
ε→0

∫ ±∞
0

e∓εt
d

dt
(eiht/~e−ih0t/~)|k〉dt =

|k〉 − lim
ε→0

(
i

~
)

∫ ±∞
0

e∓εteiht/~V̂ e−ih0t/~|k〉dt =

|k〉 − lim
ε→0

(
i

~
)

∫ ±∞
0

ei(h−E(k)±iε)t/~V̂ |k〉dt =

|k〉+ lim
ε→0

1

E(k)− h∓ iε
V̂ |k〉 (68)

where E(k) = k2

2µ
This gives the following expression for the scattering eigenstates

|k±〉 = (I +
1

E(k)− h± iε
V̂ )|k〉 (69)

The operator
1

z − h
(70)
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is the resolvent of h. It can be constructed by solving an integral equation. The
integral equation can derived using the second Resolvent identities

1

z − h
− 1

z − h0
=

1

z − h0
V

1

z − h
=

1

z − h
V

1

z − h0
. (71)

Using these in the above expression with z = E(k)± iε gives

|k±〉 =

(I +
1

E(k)− h± iε
V̂ )|k〉

(I +
1

E(k)− h0 ± iε
V̂ (I +

1

E(k)− h± iε
V̂ ))|k〉︸ ︷︷ ︸

|k±〉

=

|k〉+
1

E(k)− h0 ± iε
V̂ |k±〉 (72)

which is called the Lippmann-Schwinger equation. It is equivalent to the
Schrödinger equation with asymptotic intitial conditions.

|k±〉 = |k〉+ (
k2

2µ
∓ iε+ − h0)−1V̂ |k±〉. (73)

This equation can be expressed in any basis

〈r|k±〉 = 〈r|k〉+

∫
〈r|(k2

2µ
∓ i0+ − Ĥ0)−1|r′〉dr′V̂ (r′)〈r|k±〉, (74)

〈k′|k±〉 = 〈k′|k〉+

∫
(
k2

2µ
∓ i0+ − k′2

2µ
)−1〈k′|V̂ |k′′〉dk′′〈k′′|k±〉. (75)

In the coordinate-space basis the free Green functions (matrix elements of the
resolvent operator) can be evaluated using the residue theorem. The result of
this calculations is

〈r|(k2

2µ
∓ i0+ − Ĥ0)−1|r′〉 =

1

(2π~)3

∫
dk

2µeik·(r−r
′)/~

k2 − k′ ∓ ε
=

− µ

2π~2

e±ik|r−r
′|/~

|r− r′|
(76)

Multiplying (72) by V and comparing to (45) gives

V |k±〉 = V |k〉+ V
1

E(k)− h0 ∓ iε
V |k〉 = T (E ∓ iε)|k〉 (77)

It follows that the scattered wave functions can be expressed in terms of the
transition operator, T (z):

|k±〉 = |k〉+ (
k2

2µ
∓ i0+ − ĥ0)−1T̂ (

k2

2µ
∓ i0+)|k〉 (78)
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The second resolvent identities can be used to demonstrate the equivalence
of the following quantities

〈k+′|V̂ |k〉 = 〈k′|V̂ |k−〉 = 〈k′|T̂ (
k2

2µ
+ i0+)|k〉 (79)

any of these can be used to calculate

〈P,k|S|P′,k′〉 =

δ(P−P′)
(
δ(k− k′)− 2πiδ(E(k)− E(k′))〈k|(T̂ (E − h+ iε)|k′〉

)
=

δ(P−P′)
(
δ(k− k′)− 2πiδ(E(k)− E(k′))〈k|(V̂ |k−′〉

)
=

δ(P−P′)
(
δ(k− k′)− 2πiδ(E(k)− E(k′))〈k+|(V̂ |k′〉

)
(80)

An important property of T̂ (z) is that it is a short range operator, like the
potential. This means that an approximation to T̂ (z) can be found by inserting
a complete basis in the Lippmann-Schwinger equations and then truncating the
sum to a finite number (M) of terms

〈n|T̂ (z) ≈ 〈n|V̂ +

M∑
m

〈n|V̂ (z − Ĥ0)−1|m〉〈m|T̂ (z) (81)

Mathematically the justification for this procedure follows because the kernel of
this equation is a compact operator (on a normed space which may or may not be
the Hilbert space). Compactness means that it can be uniformly approximated
by a finite rank matrix. Eq. (81) is a finite system of linear equations. The
solution of this finite system can be used in right-hand side of the Lippmann-
Schwinger equation to get an approximations to T (z):

T̂ (z) ≈ V̂ +
∑
m

V̂ (z − Ĥ0)−1|m〉〈m|T̂ (z) (82)

This improves the convergence and this method is often used in practice.

Scattering cross sections

The notion of a scattering cross section is introduced to eliminate the de-
pendence on the choice of wave packet in describing a scattering experiment.

The starting point is to note that the probability of measuring the momenta
of particles 1 and 2 to be within dp1 of p1 and within dp2 of p2 is

dP = |〈p1,p2|Ψ〉|2dp1dp2 (83)

For the case of interest we can take

〈p1,p2|Ψ〉 = 〈p1,p2|S|Ψ−0 〉 (84)
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which is the momentum distribution seen after the scattered particles travel
beyond the range of the interactions. This change removes any mentions of the
final wave packets.

In the absence of scattering S → I, so that part if S that causes the scattering
is (S − I). Replacing S by S − I in (84) gives

dP = |〈p1,p2|(S − I)|Ψ−0 〉|2dp1dp2 =

|〈p1,p2| − 2πiδ(Ef − Ei)T (E + i0)|Ψ−0 〉|2dp1dp2 (85)

Of interest is the case that the potential is translationally invariant. In this
case the matrix elements of T (z) are proportional to δ(Pf − Pi) so the above
becomes

dP = |〈p1,p2| − 2πiδ(Ef − Ei)δ(Pf −Pi)T̂ (E + i0)|Ψ−0 〉|2dp1dp2 =

4π2

∫
δ(Ef − E′i)δ(Ef − E′′i )δ(P′f −P′i)δ(P

′′
f −P′′i )×

〈p1,p2|T̂ (E + i0)|p′1,p′2〉〈p1,p2|T̂ (E + i0)|p′′1 ,p′′2〉∗×

φt0(p′1)φb0(p′2)φ∗t0(p′′1)φ∗b0(p′′2)dp1dp2dp
′
1dp

′
2dp

′′
1dp

′′
2 (86)

where the integral are over p′1,p
′
2, dp

′′
1 and p′′2

Now we make the crucial approximation - we assume that initial beam and
target wave functions are sharply peaked around fixed values pb and pt re-
spectively. We also assume that T does not change significantly on the scales
of momenta where the wave packets are non-zero. For sharply peaked wave
functions the following

δ(Ef − Eb − Et)δ(E′i − E′′i )δ(P− pt − pb)δ(P
′′
f −P′′i )×

〈p1,p2|T (E + i0)|pt,pb〉〈p1,p2|T (E + i0)|pt,pb〉∗ (87)

replaces
δ(Ef − E′i)δ(Ef − E′′i )δ(P′f −P′i)δ(P

′′
f −P′′i )

〈p1,p2|T̂ (E + i0)|p′1,p′2〉〈p1,p2|T̂ (E + i0)|p′′1 ,p′′2〉∗ (88)

which leaves

dP = 4π2

∫
δ(

p2
1

2m1
+

p2
2

2m2
− p2

t

2mt
− p2

b

2mb
)δ(p1 + p2 − pt − pb)×

|〈p1,p2|T̂ (E + i0)|pt,pb〉|2dp1dp2∫
δ(E′i − E′′i )δ(P′′f −P′i)φt0(p′1)φb0(p′2)φ∗t0(p′′1)φ∗b0(p′′2)dp′1dp

′
2dp

′′
1dp

′′
2 (89)

Representing the delta functions in the integral by

δ(E′i − E′′i )δ(P′′f −P′i) =

13



1

(2π~)4
ei(p

′
1+p′2−p

′′
1−p

′′
2 )·x/~e−i(E

′
1+E′2−E

′′
1 −E

′′
2 )t/~ · x (90)

and observing

φb(x, t) =
1

(2π~)3/2

∫
φb(pb)e

ipb·x/~−iEb(pb)tdpb

φt(x, t) =
1

(2π~)3/2

∫
φt(pt)e

ipt·x/~−iEt(pt)tdpt (91)

The expression for the differential probability becomes

dP = 4π2

∫
δ(

p2
1

2m1
+

p2
2

2m2
− p2

t

2mt
− p2

b

2mb
)δ(p1 + p2 − pt − pb)×

|〈p1,p2|T̂ (E + i0)|pt,pb〉|2dp1dp2

(2π~)6

(2π~)4
|φt0(x, t)|2|φb0(x, t)|2dxdt (92)

The integral shows that the probability get contributions from all times when
both the beam and target particle are at the same place. It follows that the
probability of a transition per unit time pert unit volume into volumes dp1 and
dp2 about p1 and p2 is

dP

dV dt
= 4π2

∫
δ(

p2
1

2m1
+

p2
2

2m2
− p2

t

2mt
− p2

b

2mb
)δ(11 + p2 − pt − pb)×

|〈p1,p2|T̂ (E + i0)|pt,pb〉|2dp1dp2

(2π~)6

(2π~)4
|φt0(x, t)|2|φb0(x, t)|2 (93)

The quantities
|φt0(x, t)|2|φb0(x, t)|2 (94)

represent the probability of finding the target and beam within dx of x at time
t.

If we multiply both sides of this equation by the total number of beam an
target particles then third expression becomes the number of scattering events
within dx of x at time t.

If the interactions are sufficiently weak that essentially each particle experi-
ences at most one collision, then we expect this rate to be proportional to the
target density and the number of beam particle crossing a surface per unit time.
In this case

dN

dV dt
= dσNtφt0(x, t)|2Ns|φb0(x, t)|2 = NtNb

dP

dV dt
(95)

The proportionality constant, dσ is called the differential cross section (because
it has dimensions of area). Comparing (??) to (??) gives

dσ =
(2π)4~2

v
|〈p1,p2|T̂ (E + i0)|pt,pb〉|2×
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δ(
p2

1

2m1
+

p2
2

2m2
− p2

t

2mt
− p2

b

2mb
)δ(p1 + p2 − pt − pb)dp1dp2 (96)

In using this expression, because of the δ functions there are 2 independent
parameters needed to define the final state, one picks out the variables that one
chooses to measure in an experiment and integrates over the remaining four
variables. This eliminates the delta functions.

One choice is to measure the angular distribution of one particle in the center
of momentum frame. In this case integrating over P eliminates the momentum
conserving delta function. The other is eliminated by integrating∫

dkk2δ(
k2

2µ
+

P2

2M
− Ei) =

µ

k
(97)

The relative velocity of the beam and target is

v =
k

m1
− −k

m2
=

k

µ
(98)

With these substitutions

dσcm = (2π)4~2µ2|〈k′|T̂ (
k2

2µ
+ i0)|k〉|2dk̂′ (99)

This can be expressed in terms of the scattering amplitude

dσcm = |F (k,k′)|2dk̂′ (100)

where

F (k,k′) := −(2π)2µ~〈k′|T̂ (
k2

2µ
+ i0)|k〉 (101)

An important property of the transition operator, T̂ (z), is its relation to the
scattering operator S. We derived it using the formal expression for S:

〈P′,k′|S|P,k〉 = δ(P′ −P)

(
δ(k′ − k)− 2πiδ(

k′2

2µ
− k2

2µ
)〈k′|T̂ (

k2

2µ
+ i0+)|k〉

)
(102)

Note that we only need T̂ (k2

2µ + i0+), not T̂ (k2

2µ − i0
+).

A important property of the scattering wave function is its structure for
very large values of |r|. This truns out to be closely related to the scattering
amplitude.

The Lippmann Schwinger equation for the wave function in the coordinate
representation is

〈r|k−〉 = 〈r|k〉 − µ

2π~2

eik|r−r
′|/~

|r− r′|
dr′V̂ (r′)〈r|k−〉, (103)

For large r this becomes

〈r|k−〉 → 〈r|k〉 − µ

2π~2

eikr

r
e−ikr̂·r

′
dr′V̂ (r′)〈r|k−〉 =

15



1

(2π~)3/2
(eik·r/~ − (2π~)3 µ

2π~2

e±ikr

r

1

(2π~)3/2
eµikr̂·r

′
V (r′)〈r′|k±〉 =

1

(2π~)3/2
(eik·r/~ − (2π)2~µ

e±ikr

r
〈kr̂|T̂ (E + iε)|k〉)

1

(2π~)3/2
(eik·r/~ +

e±ikr

r
F (kr̂,k))

This shows that the scattering amplitude is the amplitude of the scattered wave
at a large distance from the sacttering center.

Phase shifts

While the scattering operator is the limit of a product of unitary operators,
it is not necessarily unitary; however unitarity of S is a physical assumption
that is equivalent to the conservation of probability in a scattering experiment.
The assume unitarity means that

S = e2iδ (104)

In this representation δ is called the phase shift operator. Note that in a basis
of energy eigenstates

δ(E − E′)e2iδ(E) = δ(E − E′)(Î − 2πi〈E|T̂ (E + iε)|E〉) =

δ(E − E′)(Î − i2πµ
k
〈k|T̂ (E + iε)|k〉) (105)

This gives
ei2δ(E) = 1− i2πµk〈k|T̂ (E + iε)|k〉) (106)

or
eiδ(E) sin(δ(E)) = −πµk〈k|T̂ (E + iε)|k〉 =

k

4π~
F (k,k′) (107)

For rotationally invariant system the same relations hold for each partial wave;
i.e.

eiδl(E) sin(δk(E)) = −πµkT̂l(k)
k

4π~
Fl(k) (108)

The reason that δl(k) is called a phase shift is because asymptotically the
scattering wave in the asymptotic wave function looks like the incoming wave
with a shifted phase.

For r larger than the range of the interaction we have

〈r|k−, l〉 =
4πil

(2π~)−3/2
(jl(kr/~)− 2µki

~3
h

(1)
l (kr/~)

∫ ∞
0

jl(kr
′/~)V (r′)〈r′|k−, l〉

(109)
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The integral term is∫ ∞
0

jl(kr
′/~)V (r′)r′2dr′〈r′|k−, l〉 =

(2π~)3/2

4π
tl(k) =

(2π~)3/2

4π
(−1

1

πkµ
eiδl sin(δl) (110)

Summary of formulas:

Scattering probability

P = |〈Ψ+(0)|Ψ−(0)〉|2 = |〈Ψ+(t)|Ψ−(t)〉|2 (111)

Scattering asymptotic condition
initia conditions for scattering solutions

lim
t→±∞

‖|Ψ±(t)〉 − |Ψ±0 (t)〉‖ = 0 (112)

Equations of motion
interacting and non-interacting scattering solutions

i~
d|Ψ±(t)〉

dt
= H|Ψ±(t)〉 (113)

i~
d|Ψ±0 (t)〉

dt
= H0|Ψ±0 (t)〉 (114)

Møller wave operators
transform non-interacting to interacting scattering solutions

Ω± = lim
t→±∞

eiHt/~e−iH0t/~ (115)

|Ψ±(t)〉 = Ω±|Ψ±0 (t)〉 (116)

Intertwining relation
leads to energy conservation in S

HΩ± = Ω±H0 (117)

Scattering operator
replace dependence on interacting wave packets by dependece on

non-interacting wave packets
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P = |〈Ψ+
0 (0)|Ω†+Ω−|Ψ−0 (0)〉|2 (118)

P = |〈Ψ+
0 (0)|S|Ψ−0 (0)〉|2 (119)

S = Ω†+Ω− (120)

[S,H0] = 0 (121)

Relation of S to dynamics

〈Ψ+
0 (0)|S|Ψ−0 (0)〉 = 〈Ψ+

0 (0)|(I − 2πiδ(E+ − E−)T (E− + iε)|Ψ−0 (0)〉 (122)

Transition operator

T (z) = V + V (z −H)−1V (123)

Lippmann Schwinger equation for the transition operator

T (z) = V + V (z −H0)−1T (z) (124)

Solved form of scattering wave functions
Lippmann Schwinger equation for the scattering wave function

|Ψ±(0)〉 = |k±〉dk〈k||Ψ±0 (0)〉 (125)

|k±〉 = |k〉+ (k2/2µ−H ∓ iε)−1V |k〉 =

|k〉+ (k2/2µ−H0 ∓ iε)−1V |k±〉 (126)

Relation between scattering wave functions and transition operators

〈k′|T (k2/2µ± iε)|k〉 = 〈k′|V |k∓〉 (127)

〈k′|T (k2′/2µ± iε)|k〉 = 〈k′±|V |k〉 (128)

Coordinate space representation of Lipppmann Schwinger equation

〈r|k±〉 = 〈r|k±〉 − µ

2π~2

∫
e∓ik|r−r

′|/~

|r− r′|
V (r′)dr′〈r′|k〉 (129)
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Large r limit of scattering wave functions
scattering amplitude

lim
r→∞
〈r|k±〉 → 1

(2π~)3/2
(eik·r/~ +

eikr

r
F (kr̂,k)) (130)

Relation of transition operator to scattering amplitude

F (k′,k) = −(2π)2~µ〈k|T (E + iε)|k〉 (131)

Differential cross section
removes dependence on free wave packets assuming that they are

narrow

dσ =
(2π)4~2

v
|〈p′1,p′2|T (E + iε)|p1,p2〉|2δ(E′ − E)δ(P′ −P)dp′1dp′2 (132)

Exact form for transition rates
exact form of golden rule

dP

dt
=

2π

~
|〈p′1,p′2|T (E + iε)|p1,p2〉|2δ(E′ − E)δ(P′ −P)dp′1dp′2 =

2π

~
|〈(p′1,p′2)+|Vd|p1,p2〉|2δ(E′ − E)δ(P′ −P)dp′1dp′2 (133)

Scattering phase shifts

S = e2ıδ (134)

Partial wave representation of phase shifts

〈k′|S|k〉 = 〈k′|e2iδ|k〉 =

∞∑
l=0

l∑
m=−l

Y lm(k̂′)e2iδl(k)Y l∗m (k̂) (135)

Two potential formulation of Gell Mann Low
used in strong + Coulomb

resonance calculations

H = H0 + V1 + V2 V1 >> V2 (136)

T (z) ≈ T1(z) + Ω†1+V2Ω1− (137)
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Impossibility of constructing V from S.

lim
t→±∞

‖(A− I)e−iH0t/~|Ψ〉‖ = 0 A†A = I (138)

H ′ = A†HA = H0 + V ′ ⇔ S′ = S (139)

Treatment of resonant decay

tl ≈ −
1

πµk

Γ/2

E − Eb −∆E + iΓ/2
(140)

τ = ~/Γ (141)

Γ = 2π

∫
〈B|V2|k′〉dk′δ(k′2/2µ− k2/2µ)〈k′|V1|B1〉 (142)

Optical theorem
construct total cross section from forward scattering amplitude

S†S = I (143)

Im(F (k,k)) =
k

4π~
σt (144)

〈r|k±〉 =

∞∑
l=0

l∑
m=−l

Y lm(r̂)〈r|k±, l〉Y l∗m (k̂) (145)

Partial wave Lippmann Schwinger equation

〈r|k−, l〉 =

4π(−i)l

(2π~)3/2
(jl(kr/~)− i2µk

~3

∫ ∞
0

jl(kr < /~)h1
l (kr > /~)r′2dr′V (r′)〈r|k−, l〉

(146)

Relation to partial wave transition operator

tl(k, k,k
2/2µ+ iε) =

4π(−i)l

(2π~)3/2

∫ ∞
0

jl(kr/~)r′2dr′V (r′)〈r|k±, l〉 (147)

Relation to phase shifts
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fl(k) = −(2π)2µ~tl(k, k,k2/2µ+ iε) =
4π~
k
eiδl sin(δl) (148)

tl(k, k,k
2/2µ+ iε) = − 1

πµk
eiδl sin(δl) (149)

〈r|k±, l〉 → 4π(−i)l

(2π~)3/2

~
kr
eiδl sin(δl) (150)

Identical particles

F (k′,k)→ (F (k′,k)± F (−k′,k)) (151)

F (k, θ)→ (F (k, θ)± F (k, π − θ)) (152)
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