Lecture 21

Summary

- Magnetic dipoles = current loops
 \(\vec{\mu} = IA\hat{n} \)

 \(U = - \vec{\mu} \cdot \vec{B} \) potential energy

 \(\vec{\tau} = \vec{\mu} \times \vec{B} \) torque

- Currents are sources for magnetic fields
 \[
 \frac{d\vec{B}(\vec{r})}{d\vec{r}} = \frac{\mu_0}{4\pi} \frac{\vec{I} d\vec{L} \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} \\
 \text{Biot-Savart}
 \]

- Long straight wire along \(z \)-axis

 \(\vec{B} = \frac{\mu_0 I}{2\pi} \frac{\vec{r}}{r} = \frac{\mu_0 I}{2\pi} \frac{x\hat{x} - y\hat{y}}{r^2} \quad r = \sqrt{x^2 + y^2} \)

 Field at origin of circle of radius \(r \)

 \(\vec{B} = \frac{\mu_0 I}{2\pi} \hat{z} \) (current ccw in \(xy \) plane)

 \(\vec{F} = \vec{I} d\vec{L} \times \vec{B} \), \(q\vec{\nabla} \times \vec{B} \)

Next we compute the magnetic field due to a magnetic dipole

For simplicity we take as the dipole a circular current loop of radius \(R \) in the \(xy \) plane with
counterclockwise current. As in the case of electric dipoles, we are interested in the magnetic field far away from the dipole if \(|\mathbf{r}| \gg R \).

The exact expression for the magnetic field is

\[
\mathbf{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\mathbf{r}' \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3}
\]

where

\[
\mathbf{r}' = (R \cos \theta \hat{x} + R \sin \theta \hat{y})
\]
\[
d\mathbf{r}' = d\mathbf{r}' = \frac{d\mathbf{r}'}{d\theta} d\theta = (-R \sin \theta \hat{x} + R \cos \theta \hat{y}) d\theta
\]
\[
\mathbf{r} = (x \hat{x} + y \hat{y} + z \hat{z})
\]
\[
|\mathbf{r} - \mathbf{r}'|^2 = r^2 + R^2 - 2 \mathbf{r} \cdot \mathbf{r}' = r^2 + R^2 - 2R (x \cos \theta + y \sin \theta)
\]
\[
\mathbf{r} - \mathbf{r}' = (x - R \cos \theta) \hat{x} + (y - R \sin \theta) \hat{y} + z \hat{z}
\]

We want to look at the leading non-zero power of \(\frac{R}{r} \) (small).
before we put everything in the integral

\[1 = r'^2 (1 - \frac{2R}{r'} (\frac{x}{r'} \cos \theta + \frac{y}{r'} \sin \theta) + \frac{R^2}{r'^2}) \]

note \(x', y' \) are

\[
\begin{align*}
\sin \theta' &= \frac{y'}{r'} \\
\cos \theta' &= \frac{x'}{r'} \\
\theta' &\neq 0 \\
\end{align*}
\]

we discard the \(\frac{R^2}{r'^2} \) term, which is much smaller than the \(\frac{R}{r'} \) term

let \(\Delta = -\frac{2R}{r'} (\frac{x}{r'} \cos \theta + \frac{y}{r'} \sin \theta) \)

with this approximation

\[\frac{1}{1 - r'^2} \frac{1}{r^3} = \frac{1}{r^3 (1 + \Delta)^3/2} \]

let \(f(\Delta) = (1 + \Delta)^{-3/2} \), for small \(\Delta \)

\[f(\Delta) = f(0) + \frac{df}{d\Delta}(0) \Delta + \frac{1}{2} \frac{d^2f}{d\Delta^2}(0) \Delta^2 + \ldots \]

\[f(0) = 1 \]

\[\frac{df}{d\Delta}(\Delta) = -\frac{3}{2} (1 + \Delta)^{-5/2} \]

\[\frac{d^2f}{d\Delta^2}(0) = -\frac{3}{2} (1 + \Delta)^{-5/2} = -\frac{3}{2} \]

ignore these corrections

\(\sim \frac{R}{r'^2} \)
putting these together

\[s(\Delta) = s(0) + \frac{ds}{d\Delta} (0) \Delta = 1 - \frac{3}{2} \Delta \]

this means

\[\frac{1}{|r-r'|^3} = \frac{1}{r^3} \left(1 - \frac{3}{2} \Delta \right) = \]

\[\frac{1}{r^3} \left(1 - \frac{3}{2} \left(-\frac{2\rho}{r} \right) \left(\frac{x \cos \theta + y \sin \theta}{r} \right) \right) \]

\[\frac{1}{r^3} \left(1 + \frac{3\rho}{r} \left(\frac{x \cos \theta + y \sin \theta}{r} \right) \right) \]

we also need the cross product

\[d\hat{r} \times (\hat{r} - \hat{r}') = \]

\[(-R \sin \theta \hat{x} + R \cos \theta \hat{y}) \, d\theta \times \left[(x - R \cos \theta) \hat{x} + (y - R \sin \theta) \hat{y} + z \hat{z} \right] = \]

\[-R \sin \theta (y - R \sin \theta) \hat{z} - R \sin \theta z \hat{y} \]

\[R \cos \theta (x - R \cos \theta) \hat{z} + R \cos \theta z \hat{x} \] \, d\theta =

\[(-R \sin \theta + R^2 \sin^2 \theta - R x \cos \theta + R^2 \cos^2 \theta) \hat{z} \, d\theta \]

\[+ (R^2 \sin \theta \hat{y} + R \cos \theta \hat{x}) \, d\theta \]

the next step is to put all of this together and integrate from \(\theta = 0 \) to \(2\pi \).
\[\overline{B} = \frac{m \sigma}{4\pi} \int_0^{2\pi} d\theta \times \left(\left(-Ry\sin\theta + R^3\sin^2\theta - Rx\cos\theta + R^3\cos^2\theta \right) \frac{1}{2} + \left(Rz\sin\gamma + Rz\cos\theta \gamma \right)^2 \right) \times \frac{1}{r^3} \left(1 + \frac{3r^2}{R} \left(\frac{x}{r} \cos\theta + \frac{y}{r} \sin\theta \right) \right) \]

This looks messy - but all of the integrals are over products of \(\sin \theta \) and \(\cos \theta \) terms. The types of integrals are:

\[\int_0^{2\pi} \sin \theta \, d\theta = 0 \]
\[\int_0^{2\pi} \cos \theta \, d\theta = 0 \]
\[\int_0^{2\pi} \sin^2 \theta \, d\theta = \pi \]
\[\int_0^{2\pi} \cos^2 \theta \, d\theta = \pi \]
\[\int_0^{2\pi} \sin \theta \cos \theta \, d\theta = \int_0^{2\pi} \frac{1}{2} \sin(2\theta) = 0 \]
\[\int_0^{2\pi} \sin^3 \theta \, d\theta = 0 \]
\[\int_0^{2\pi} \cos^3 \theta \, d\theta = 0 \]
\[\int_0^{2\pi} \sin \theta \cos^2 \theta = 0 \]
\[\int_0^{2\pi} \cos \theta \sin^2 \theta = 0 \]
me first second and fifth integrals are obviously 0.

by changing the integration from 0 to 2π to $-\pi$ to π the 6 and 8 th integrals are odd functions to the integrals vanish

\[\int_{-\pi}^{0} \sin^3 \theta = \int_{0}^{\pi} \sin^3 \theta \quad \theta = -\theta \text{ in first} \]

\[\int_{\pi}^{0} (-\sin^3 \theta) (-d\theta) + \int_{0}^{\pi} \sin^3 \theta d\theta = -\int_{0}^{\pi} \sin^3 \theta + \int_{0}^{\pi} \sin^3 \theta d\theta = 0 \]

since \(\cos \theta = \sin \left(\theta + \frac{\pi}{2}\right) = \sin \theta' \)

\[\int_{0}^{2\pi} \cos^3 \theta = \int_{0}^{2\pi} \sin^3 \left(\frac{\pi}{2} - \theta\right) d\theta = G' = \frac{\pi}{2} - \theta \]

\[-\int_{\frac{\pi}{2}}^{2\pi} \sin^3 \theta' d\theta' = \int_{0}^{\pi} \sin^3 \theta d\theta = 0 \]

this means we only have to inspect the integral and locate the term multiplied by \(\sin^3 \theta \cos^3 \theta \) and replace them by \(\pi \).
\[B = \frac{\mu_0}{4\pi} \left\{ \left(\frac{R^2 \pi + R^2 \pi}{r^3} + \frac{3R}{r^4} \left(- \frac{Ry^2 \pi - RX\pi}{r} \right) \right) \hat{z} \right. \\
\left. + \frac{3R}{r^4} \left(\frac{RZ\pi}{r \hat{x} \pi + \frac{RZ \pi}{r} \hat{y} \pi} \right) \right\} \\

\text{Factoring out } \pi R^2 \\
= \frac{\mu_0}{4\pi} (\pi R^2) \frac{1}{r^3} \left\{ \left(2 - \frac{3R}{r^2} \hat{y}^2 - \frac{3R}{r^2} \hat{x}^2 \right) \hat{z} \\
+ \frac{3R}{r^2} \hat{y} \hat{z} \hat{x} + \frac{3R}{r^2} \hat{y} \hat{y} \right\} \\

\text{We express } 2 = 2 \frac{x^2 + y^2 + z^2}{r^2} \\
= \frac{\mu_0}{4\pi} \frac{1}{r^5} \left((-x^2 - y^2 - z^2) \hat{z} + 3(z^2 \hat{z} + xz \hat{x} + yz \hat{y}) \right) \\
= \frac{\mu_0}{4\pi} \frac{1}{r^5} \left(-r^2 \hat{u} + 3 \hat{u} \cdot \hat{r} \hat{r} \right) \\

\bar{B} = \frac{\mu_0}{4\pi} \frac{1}{r^5} \left(3(\vec{u} \cdot \vec{r}) \hat{r} - r^2 \hat{u} \right) \\

If we compare this to the field for an electric dipole we get \\
\[\vec{E} = \frac{1}{4\pi \varepsilon_0} \frac{1}{r^5} \left(3 (\vec{p} \cdot \vec{r}) \hat{r} - r^3 \hat{p} \right) \]
which shows that in spite of the difference between the Biot-Savart and Coulomb's law, both lead to the same type of expression for

1. The field due to a dipole
2. The potential energy of a dipole
3. The torque on a dipole

This explains the reason why unlike magnetic poles attract

\[\mathbf{F}_1 \rightarrow \mathbf{F}_2 \]

\[U_{12} = -\mathbf{d}_1 \cdot \mathbf{B}_2 \]

\[= -r_1 A_1 \frac{\mu_0}{4\pi} \left(3 \left(\mathbf{d}_2 \cdot \mathbf{r}_2 \right) - Z^2 \mathbf{d}_2 \right) \frac{1}{25} \]

\[= -r_1 \mathbf{d}_1 \frac{\mu_0}{4\pi} 2 \frac{1}{23} \]

which shows that the potential energy decreases as \(Z \rightarrow 0 \), which means the poles will attract.

If the dipoles are aligned in the opposite direction then the sign of one magnetic moment changes.
and the potential will increase as \(z \to 0 \) the poles will repel.

This also shows that if we have a bunch of dipoles, the lowest energy configuration is when they all line up. In general this will be disrupted by thermal effects.

We can also understand what is happening with electric dipole

\[
\begin{array}{cccc}
\theta & \theta & \theta & \\
1 & 2 & 3 & 4
\end{array}
\]

1-3 repel, 2-4 repel, 2-3 attract.

Because 2-3 are closer their attraction dominate the repulsion of the other 2 pairs. (Recall the denominator \(\to 0 \) as the distance \(\to 0 \))

\textit{Amperes' law}

Consider the field due to the long straight wire
\[
\bar{B} = \frac{\mu_0 I}{2\pi r} \hat{r} = \frac{\mu_0 I}{2\pi} \frac{\hat{y} - \hat{x}}{r^2}
\]

If we integrate this around a loop of radius \(r \)

\[\int \bar{B} \cdot d\bar{l}\]

\[
\bar{r} = r \cos \theta \hat{x} + r \sin \theta \hat{y}
\]

\[
d\bar{r} = (-r \sin \theta \hat{x} + r \cos \theta \hat{y}) d\theta = -\left(\frac{\hat{y}}{r^2}\right) d\theta
\]

\[
\int_0^{2\pi} \frac{\mu_0 I}{2\pi} \frac{\hat{y} - \hat{x}}{r^2} \left(-\frac{\hat{y}}{r^2} \right) d\theta
\]

\[
\int_0^{2\pi} \frac{\mu_0 I}{2\pi} \frac{x^2 + y^2}{r^2} d\theta = \mu_0 I
\]

This gives the result that the integral around the closed loop

\[
\int \bar{B} \cdot d\bar{l} = \mu_0 I
\]

This result was in the special case of a circular loop around an infinite wire.
This result is actually general. It is called *Ampère's* law. It applies to any closed loop and it is exactly equivalent to the *Biot–Savart* law.

We can also write this as

\[\oint_{C} B \cdot dl = \mu I = \mu \int_{S} \vec{J} \cdot \hat{n} dA \]

where the integral on the left is a line integral over a closed loop and term on the right is an integral over the surface area enclosed by the loop.

Application

0) rail gun
In this case the right hand rule has the magnetic field pointing out of the plane of the page.

This leads to a downward force that accelerates the conductor.

In the book the current is assumed to be so large that it vaporizes the metal and makes a conducting gas that accelerates a projectile.

Ampere's Law, superposition

$$
\oint B \cdot dl = M_0 (I_2 - I_3 - I_1)
$$

Note that the current in the
Same direction as the normal are added, the ones opposite the normal direction are subtracted.

Consider multiple loops.

By the Biot-Savart law:

\[
\mathbf{B} = \frac{\mu_0 \mathbf{l} \times \widehat{r}}{2\pi r}
\]

\[
\oint \mathbf{B} \cdot d\mathbf{l} = \oint \mathbf{B}_1 \cdot d\mathbf{l} + \oint \mathbf{B}_2 \cdot d\mathbf{l} = 2\mu_0 I
\]

For N loops:

\[
\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I N
\]

Applications:

1. Long straight wire

Symmetry implies \(|\mathbf{B}| \) only depends on distance from wire.
The direction is given by the right hand rule. The magnitude is

$$\oint \mathbf{B} \cdot d\mathbf{l} = 2\pi r B = u I$$

$$\mathbf{B} = \frac{u I \mathbf{r}}{2\pi r}$$

which is the same result we got from the Biot-Savart law.

Infinite solenoid

Consider 2 loops

$$B_u - B_l = u_0 \times \text{net current} = 0$$

These loops show that the field outside is independent of the distance from the solenoid.

If we think of the upper and lower parts as sheets of current, the field outside of the solenoid should cancel.
If we consider

\[\int B \cdot dl = BL = u \cdot IN \]
\[B = \frac{u \cdot I}{L} \]

This gives the strength of the field inside of an infinite long solenoid.

\[\frac{N}{L} = n = \frac{\text{# turns}}{\text{length}} \]

Then

\[2\pi r B = u \cdot IN \]
\[B = \frac{u \cdot IN}{2\pi r} \]