Review of mathematics from calculus, linear algebra and differential equations

Complex numbers - complex arithmetic:

\[i := \sqrt{-1} \]

Complex numbers:
\[z = z + iy \]

Multiplication of complex numbers:
\[z_1z_2 = z_2z_1 = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1) \]

Complex conjugation:
\[z^* = x - iy \]

\[e^{i\phi} = 1 + \sum_{n=1}^{\infty} \frac{(i\phi)^n}{n!} = \cos(\phi) + i\sin(\phi) \]

Real part of a complex number:
\[Re(z) = \frac{1}{2}(z + z^*) \]

Imaginary part of a complex number:
\[Im(z) = -\frac{i}{2}(z - z^*) \]

Exponential representation of a complex number:
\[re^{i\phi} = r\cos(\phi) + ir\sin(\phi) = x + iy = z \]

Modulus of a complex number:
\[z^*z = x^2 + y^2 = r^2 \quad |z| = r \]

Argument of a complex number:
\[\phi; \quad z = re^{i\phi} \]

Inverse of a complex number:
\[1/z = z^*/|z|^2 = \frac{x - iy}{x^2 + y^2} = \frac{1}{r}e^{-i\phi} \quad z \neq 0 \]

Natural log of a complex number:
\[\ln(z) = \ln(r) + i\phi \]
\[z = e^{\ln(z)} = e^{\ln(r) + i\phi} = re^{i\phi} \]

Complex powers of a complex number:

\[z_1^{z_2} = e^{\ln(z_1)^{z_2}} = e^{z_2 \ln(z_1)} = e^{z_2 (\ln(r_1) + i\phi_1)} = e^{(x_2 + iy_2)(\ln(r_1) + i\phi_1)} \]

Complex derivatives:

\[\frac{df}{dz}(z) = \lim_{|z| \to 0} \frac{f(z + re^{i\phi}) - f(z)}{re^{i\phi}} \]

When the complex derivative is defined, it does not depend on \(\phi \! \! \! \! \! \! \). If \(f(z) \) has a complex derivative at \(z \) then \(f(z) \) is called an analytic function at \(z \).

Taylor’s Theorem:

\[\lim_{x \to y} \frac{|f(x) - f(y) - \sum_{n=1}^{N} \frac{1}{n!} \frac{d^n f(y)}{d y^n} (x - y)^n|}{(x - y)^N} = 0 \]

The Taylor expansion of \(f(x) \) about \(y \) is:

\[f(x) = f(y) + \sum_{n=1}^{\infty} \frac{1}{n!} \frac{d^n f(y)}{d x^n} (x - y)^n \]

This series does not always converge; when it does converge it does not always converge to \(f(x) \).

Exponential Taylor series:

\[e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \]

converges to \(e^z \) for all complex \(z \). Note that \(0! := 1 \).

Geometric Taylor series:

\[\frac{1}{1 - z} = 1 + \sum_{n=1}^{\infty} z^n \]
converges to \(\frac{1}{1-z} \) for \(|z| < 1 \)

Sin and Cosine Taylor series:

\[
\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \quad \cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}
\]

converges to \(\sin(z) \) and \(\cos(z) \) for all complex \(z \).

Ratio test for convergence of series:

\[
\left| \frac{a_{n+1}z}{a_n} \right| < 1
\]

for sufficiently large \(n \)

\[
\sum a_n z^n
\]

converges.

Fundamental theorem of algebra:

Any polynomial of degree \(N \) has \(N \) complex roots:

\[
P(z) = c(z - z_1) \cdots (z - z_N)
\]

where \(c \) is the coefficient of \(z^N \) in \(P(z) \). If \(P(z) \) has real coefficients the roots can still be complex, but they must come in complex conjugate pairs.

Matrix algebra:

Matrix components:

\[
A_{ij}
\]

Matrix multiplication:

\[
(AB)_{ij} = \sum_{k=1}^{N} A_{ik} B_{kj} \quad AB \neq BA
\]

Matrix transpose:

\[
A^t_{ij} = A_{ji}
\]

Complex conjugation:

\[
A^*_{ij}
\]

Matrix-adjoint:

\[
A^\dagger_{ij} = A^*_{ji}
\]
Exponential of matrix:

\[e^A = I + \sum_{n=1}^{\infty} \frac{1}{n!} A^n \]

converges for any \(A \) with \(|A_{ij}| < \infty \)

Determinant of a matrix:

\[\det(A) = \sum_{\mu_1 \cdots \mu_N} \epsilon_{\mu_1 \cdots \mu_N} \prod_{k=1}^{N} A_{\mu_k k} \]

where \(\epsilon_{\mu_1 \cdots \mu_N} \) is completely anti-symmetric and normalized by

\[\epsilon_{1,2 \cdots N} = 1 \]

It can also be defined by

\[\det(A) = (-)^{i+1} A_{i1} \det(\hat{A}_{i1}) + (-)^{i+2} A_{i2} \det(\hat{A}_{i2}) + \cdots + (-)^{i+N} A_{iN} \det(\hat{A}_{iN}) \]

where \(\hat{A}_{ij} \) is the submatrix obtained from \(A \) by removing the \(i \)-th row and \(j \)-th column from \(A \).

Product of determinants:

\[\det(AB) = \det(A)\det(B) = \det(BA) \]

Matrix inverse:

\[A^{-1}_{ij} = (-)^{i+j} \frac{\det(\hat{A}_{ij})}{\det(A)} \]

Existence requires \(\det(A) \neq 0 \).

Solution of linear equations:

\[\sum_{j=1}^{N} A_{ij} x_j = b_i \quad x_i = \sum_{j=1}^{N} A^{-1}_{ij} b_j \]

can be solved if and only if \(\det(A) \neq 0 \)

Eigenvalues and eigenvectors:

\[\sum_{j=1}^{N} (A_{ij} - \lambda \delta_{ij}) v_j = 0 \]

\(\lambda \) satisfying the above is called an eigenvalue. \(\mathbf{v} = (v_1, v_2, \cdots, v_N) \) is the eigenvector associated with \(\lambda \).

A non-zero \(\mathbf{v} \) requires

\[\det((A_{ij} - \lambda \delta_{ij}) = P(\lambda) = 0 \]

otherwise the matrix has an inverse - leading to \(\mathbf{v} = 0 \).
This equation is a polynomial of degree \(N \) in \(\lambda \). It has \(N \) roots by the fundamental theorem of algebra. This means that there are \(N \) eigenvalues. If the roots are all different there are \(N \) eigenvectors:

\[
A v_m = \lambda_m v_m
\]

A general vector can be written as

\[
v = \sum_{n=1}^{N} c_n v_n
\]

Cayley-Hamilton theorem:

\[
P(A) = c \prod_{m=1}^{N} (A - \lambda_m) = 0.
\]

If the eigenvalues are all different

\[
\Pi_k = \prod_{j \neq k} \frac{(A - \lambda_j)}{(\lambda_k - \lambda_j)}
\]

is a projection on the \(j \)-th eigenvector

\[
\Pi_j \Pi_i = \delta_{ij} \Pi_i
\]

\[
\Pi_j v_k = \delta_{ik} v_k
\]

\[
\Pi_j v = \Pi_j (\sum_{n=1}^{N} c_n v_n) = c_j v_j
\]

If \(v = 0 \) then \(c_j v_j = 0 \) which means that \(c_j = 0 \). This implies that the \(N \) eigenvectors are independent. This leads to

\[
I = \sum_{j=1}^{N} \Pi_j
\]

and

\[
A = \sum_{j=1}^{N} \lambda_j P_j
\]

When the eigenvectors are not all different these results have to be modified.

Functions of matrices

\[
f(A) = \sum_{j=1}^{N} f(\lambda_j) \Pi_j
\]

Hermitian matrices: \(A = A^\dagger \).

Unitary matrices: \(AA^\dagger = A^\dagger A = I \).
Normal matrices: \([A, A^\dagger] = 0\).
Hermitian and unitary matrices are normal. The eigenvectors of normal matrices can always be chosen to be orthogonal.

Binomial series:

\[(x + y)^n = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} x^k y^{n-k}\]

Multinomial series:

\[(x_1 + x_2 + \cdots + x_m)^n = \sum_{k_1, \ldots, k_m | \sum_k=k} \frac{n!}{k_1! \cdots k_m!} x_1^{k_1} \cdots x_m^{k_m}\]

Trigonometry identities

\[
\begin{align*}
\sin(a \pm b) &= \sin(a) \cos(b) \pm \cos(a) \sin(b) \\
\cos(a \pm b) &= \cos(a) \cos(b) \mp \sin(a) \sin(b) \\
\sin(2a) &= 2 \sin(a) \cos(a) \\
\cos(2a) &= \cos^2(a) - \sin^2(a) = 2 \cos^2(a) - 1 \\
\sin\left(\frac{a}{2}\right) &= \pm \sqrt{\frac{1 - \cos(a)}{2}} \\
\cos\left(\frac{a}{2}\right) &= \pm \sqrt{\frac{1 + \cos(a)}{2}} \\
\sin(a) &= \frac{e^{ia} - e^{-ia}}{2i} \\
\cos(a) &= \frac{e^{ia} + e^{-ia}}{2}
\end{align*}
\]

Differential equations:

n-th order differential equation:

\[
\frac{d^n f}{dx^n} + \sum_{k=0}^{n-1} a_k(x) \frac{d^k f}{dx^k} = 0
\]

This simplest way to understand how differential equations work is to note \(\frac{d^{n+k} f}{dx^{n+k}}\) can be generated by differentiating the differential equation \(k\) times. The
Taylor expansion of the solution can be constructed by evaluating all of these derivatives at the initial point:

\[f(x) = f(x_0) + \sum_{n=1}^{\infty} \frac{1}{n!} \frac{d^n f(x_0)}{dx^n} (x - x_0)^n \]

This may or may not converge. The following integral method due to Picard converges for sufficiently small \((x - x_0)\) provided the coefficients \(a_k(x)\) are continuously differentiable.

Picard’s method:
To apply this method the first step is to reduce the n-th order differential equation to an equivalent system of n first order equations:

\[
\begin{align*}
\frac{df}{dx} &= y_1(x) \\
\frac{dy_1}{dx} &= y_2(x) \\
&\vdots \\
\frac{dy_k}{dx} &= y_{k+1}(x) \\
\frac{dy_{n-1}}{dx} &= -\sum_{k=0}^{n-1} a_k(x)y_k(x)
\end{align*}
\]

This has the form

\[
\frac{dy}{dx} = g(y(x), x)
\]

where \(y_0(x) = f(x)\). This can be approximately solved by taking sufficiently small steps

\[
x_n = x_0 + n\Delta x \\
y(x_{n+1}) \approx y(x_n) + g(y(x_n), x_n)\Delta x.
\]

Alternatively the differential equation can be converted to an integral equation

\[y(x) = y(x_0) + \int_{x_0}^{x} g(y(x'), x')dx' \]

which can be solved by iteration

\[
\begin{align*}
y(x) &= \lim_{n \to \infty} y_n(x) \\
y_1(x) &= y(x_0) \\
y_{n+1}(x) &= y(x_0) + \int_{x_0}^{x} g(y_n(x'), x')dx'
\end{align*}
\]
This converges for sufficiently small \(x - x_0 \) provided \(g \) has continuous derivatives. The equation

\[
\frac{dy}{dx} = g(y(x), x)
\]

can be used to generate a graphical picture of the solution starting from some initial point.

\(N \)th order linear differential equations with constant coefficients can be reduced to a system of \(N \) first order equations of the form

\[
\frac{dy}{dx} = Ay
\]

where \(A \) is a constant matrix. Differentiating \(n \)-times gives

\[
\frac{d^n y}{dx^n} = A^n y
\]

where \(A^n \) is the matrix product of \(A \) \(n \) times. This can be used to construct the Taylor series for the solution

\[
y(x) = y(x_0) + \sum_{n=1}^{\infty} \frac{1}{n!} A^n(x - x_0)^n.
\]

This series converges for any matrix \(A \). This is written as

\[
y(x) = e^{A(x-x_0)}y(x_0)
\]

Vector Calculus:

Partial derivatives depend on which variable is held constant. Consider \(f(x, y, z) \). Change variables \((x, y, z) \rightarrow (x, a, b) \) where \(a \) and \(b \) are functions of \((x, y, z) \). Then in general

\[
\frac{\partial f(x, y, z)}{\partial x} \bigg|_{y, z} \neq \frac{\partial f(x, a, b)}{\partial x} \bigg|_{a, b}
\]

\(f(x_1 \cdots x_n) \) has a stationary point at \(x = (x_1, \cdots, x_n) \) if

\[
\frac{\partial f(x)}{\partial x_i} \bigg|_{x_1, \cdots, x_i} = 0 \quad \text{for all } i.
\]

\(f(x_1, \cdots, x_n) \) has a local minimum at \(x = (x_1, \cdots, x_n) \) if \(x \) is a stationary point of \(f(x) \) and

\[
\frac{\partial^2 f(x)}{\partial x_i \partial x_j}
\]

is a matrix with \(n \) positive eigenvalues.

\(f(x_1, \cdots, x_n) \) has a local maximum at \(x = (x_1, \cdots, x_n) \) if \(x \) is a stationary point of \(f(x) \) and

\[
\frac{\partial^2 f(x)}{\partial x_i \partial x_j}
\]

is a matrix with \(n \) negative eigenvalues.