1) Factor \(x^2 + 1 = 0 \)
 \(x^2 + 1 = (x - i)(x + i) \)

2) **Complex numbers:**
 \(z = a + bi \) \(a, b \) real

3) \(|z| = \sqrt{a^2 + b^2} \) modulus
 \(\phi \) argument
 \(\cos \phi = \frac{x}{|z|} \quad \sin \phi = \frac{y}{|z|} \quad z = |z|(\cos \phi + i \sin \phi) \)

4) **algebra**
 \(z_1, z_2, z_1 \cdot z_2, \frac{1}{z}, \frac{1}{z_1} - z_2 \)
 \(z = x + iy \quad z^* = x - iy \quad z = \sqrt{zz^*} \)
 \(|z_1 + z_2| < |z_1| + |z_2| \)

5) **complex functions of complex variables**
 \(P(z) = \sum_{n=0}^{\infty} c_n z^n \) polynomials

Sums defined by series:
 \(e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} = e^{x+iy} \)

convergence, Cauchy sequences:
 \(|f(z) - \sum_{i=1}^{N} f_n(z)| < \epsilon \)

related functions
 \(\sin z, \cos z, \sinh z, \cosh z \)
 \(\sin(i2z) = isinh z \)
 \(\cos(i2z) = cosh z \)
 etc
all trig function identities that hold for real values hold in complex \(z\).

\[
Z = 121e^{i\phi}
\]

\[
sin Z = \frac{1}{2i}(e^{iZ} - e^{-iZ}) \quad \sinh Z = \frac{e^Z - e^{-Z}}{2}
\]

\[
cos Z = \frac{1}{2}(e^{iZ} + e^{-iZ}) \quad \cosh Z = \frac{e^Z + e^{-Z}}{2}
\]

\[\text{6) } \ln Z \text{ def}\]

\[
Z = e^{\ln Z} \quad \ln Z = \ln|Z| + i(\phi + 2\pi n) \quad Z = 121e^{i\phi}
\]

multivalued function

\[
\ln Z_1^{z_1} = z_2 \ln Z_1
\]

\[
\ln (Z_1Z_2) = \ln Z_1 + \ln Z_2, \text{ etc.}
\]

\[\text{6) complex derivative}\]

\[
f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}
\]

* limit must exist
* limit must be unique

\[
\Delta z = 1 \Delta z e^{i\phi} \quad \text{limit must be independent of } \phi
\]

\[\text{7) consequences}\]

\[
f(z) = U(x, y) + iV(x, y)
\]

\[
\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y} \quad \frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x}
\]

\[
f(x, y) = f(z, \bar{z}) \rightarrow \frac{\partial f}{\partial z} = 0
\]
\[
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) u = 0 \quad \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) v = 0
\]

\[\nabla u \cdot \nabla v = 0\]

\[\frac{dz}{dz} = \frac{\partial x}{\partial x} + i \frac{\partial y}{\partial x} = 0\]

\[\frac{dz}{dz} = \frac{\partial x}{\partial y} + i \frac{\partial y}{\partial y} = 0\]

(6) \(f(z)\) analytic at \(z_0\).

1. \(f(z)\) exists

2. \(f(z)\) single valued in a neighborhood of \(z_0\).

(6) Complex integration

\[\oint_{C} f(z) \, dz = \int_{\lambda_1} f(z) \left(\frac{\partial x}{\partial \lambda} + i \frac{\partial y}{\partial \lambda} \right) \, d\lambda\]

Circle of radius \(r\)

\[X(\theta) = r \cos \theta + i r \sin \theta \quad 0 \leq \theta < 2\pi\]

defined as limit of Riemann sums

\[= \int_{\lambda_1} (f_x + f_y) \, d\lambda + i \int_{\lambda_1} (f_x + f_y) \, d\lambda\]

(6) Singular points - points in complex plane where \(f(z)\) is not analytic.
(i) Conformal mappings

\[x'(xy) + iy'(xy) = \varphi(z) \quad : \quad (x'y') \rightarrow (x'y') \]

if \(\frac{dz}{d^2}(z) \neq 0 \)

This can be inverted in a neighborhood of \(z \).

Conformal mappings preserve angles.

(ii) Homeomorphic transformations

\[z' = \frac{az+b}{cz+d} \quad ad - bc \neq 0 \]

Transformations form a group

Isomorphic to \(SL(2, \mathbb{R}) \)

Preserve angles

Map circles to circles

generated by

1. Inversion \(z \rightarrow \frac{1}{z} \)
2. Scale transformation \(z \rightarrow cz \)
3. Translation \(z \rightarrow z + c \)

(iii) Cauchy's Integral Theorem

If \(\varphi(z) \) analytic in \(\Omega \)

\[\text{closed curve in } \Omega \]

\[\oint \varphi(z) \, dz = 0 \]

(iv) Poincaré \(\oint \varphi(z) \, dz \leq L \cdot \max \| \varphi(z) \| \)
5 Cauchy integral representation

\[\frac{1}{2\pi i} \oint \frac{f(z')}{z - z'} dz' = (N_{\text{cw}} - N_{\text{ccw}}) f(z) \]

\(N_{\text{cw}} \) = # counterclockwise loops around \(z \),
\(N_{\text{ccw}} \) = # clockwise loops around \(z \)

6 Consequence

all derivatives of \(f(z) \) exist

\[\frac{d^n f}{dz^n} = \frac{n!}{2\pi i} \oint \frac{f(z')}{(z - z')^{n+1}} dz' \]

Taylor series about \(z \) converges in any disk in \(\text{region of analyticity} \)

\(f(z) \) can't have a local maximum in \(\mathbb{R} \)

zeros of \(f(z) \) must be isolated

\(|f(z)| < \epsilon f(z) \) entire \(\rightarrow \) \(f(z) = \text{constant} \)

\(|f(z)| < \epsilon |z|^n f(z) \) entire \(\rightarrow \) polynomial degree \(\leq N \)

7 Example of integral representation

\[f(z) = \oint K(z, z') g(z') dz' \text{ and in } z \text{ for } z' \in C \]

8 \[f(z) = \bar{z} \overline{f_n(z)} \text{ unit conv.} \]

analytic

\(\bar{z}' = 2 \bar{z} \)
Laurent series about a singular point in a simply connected region

\[f(z) = \sum_{n=-\infty}^{\infty} a_n z^n \]

Laurent series converges uniformly in any sub-disk

\[a_n = \frac{1}{2\pi i} \oint_{|z|=\epsilon} \frac{f(z)}{(z^n - a_n)} \, dz \]

\[b_n = \frac{1}{2\pi i} \oint_{|z|=\epsilon} \frac{f(z)}{(z^n - a_n)} \, dz \]

Singularities

1. Poles (order n)
2. Essential singularities
3. Weierstrass test: \(f(z) \) gets arbitrarily close to any complex number in any neighborhood of \(z_0 \)

Poles are isolated

Morera's Theorem

\[\oint_{C} f(z) \, dz = 0 \text{ for any closed curve } C \]

Converge to 0 or \(\infty \)

\[f(z) = \sum a_n z^n \quad \text{as} \quad \text{conv} = \text{analytic} \]

Poisson

\[U(r, \theta) = \frac{1}{2\pi} \int_{0}^{2\pi} U(r', \theta') \frac{R^2 - r^2}{R^2 - 2r R \cos(\theta - \theta')} \, d\theta' \]
Residue Theorem

\[\text{Res} \left(f(z) \right) = \frac{1}{2\pi i} \oint_C f(z') \, dz' \]

C curve around singular point counterclockwise

\[\text{Res} \left(f(z) \right) = b_1 \text{ in Laurent series counterclockwise} \]

Simple pole: \[f(z) = \frac{g(z)}{z-z_0}, \quad \text{Res} f(z) = g(z_0) \]

if \[g(z_0) \neq 0 \]

Order \(n \) pole: \[f(z) = \frac{g(z)}{(z-z_0)^n}, \quad g(z_0) \neq 0 \]

\[\text{Res} \left(f(z) \right) = \frac{1}{(n-1)!} \frac{d^{n-1} g}{dz^{n-1}} (z_0) \]

\[\oint_C f(z) \, dz = 2\pi i \sum \text{Res} (f(z)) \]

Joukowsky Lemma

\[I = \oint_C e^{iaz} f(z) \, dz \]

|f(z)| < E(R, \theta) \text{ independent of } z \text{ in } \Omega \]

\(\Omega \cup \text{unbounded in } a > 0 \)

\(\Omega \cup \text{unbounded in } \cup \Omega \text{ unbounded in } a < 0 \)
Examples of integrals

\[
\sum_{n=-\infty}^{\infty} f(n) = -\frac{1}{2\pi}\text{Res}(f(z)\cot(\pi z)) \quad (2f(z) \to 0 \text{ as } z \to \infty)
\]

Principal value

Branch points

Branch cuts

\[z - \frac{1}{2} = \infty \]

Multivalued function

\[z^m, \quad m \in \mathbb{Z} \]

Integrating multivalued functions

Analytic continuation

\[f_1, f_2 \text{ are on } \text{line, open set} \]

Analy - contin on common boundary

Schwarz - real on real line - contin

Dispersion relation

\[\text{Im } f(z) \text{ on cut } \Rightarrow f(z) \]

Boundary men.

\[f(z^2) = f_1(\omega) + \sum \frac{z \gamma_i}{z_i(z - 2)} \]

\[\int_{2\pi i} f = 2(n_+ - n_-) \]

\[\text{fund thm algebra} \]
\[\int_{c} e^{wf(z)} g(z) \, dz \]

An independent choice of \(c \) with \(c \) on \(z \) path.

Ramme function