Last time

Linear Functionals

These are continuous linear maps from a vector space V to the complex (real) numbers:

$L(\mid v \rangle) = \text{complex}$

$L(\mid v_1 \rangle + \alpha \mid v_2 \rangle) = L(\mid v_1 \rangle) + \alpha L(\mid v_2 \rangle)$

Continuous means that if $\mid v_n \rangle \to \mid v \rangle$
then
$L(\mid v_n \rangle) \to L(\mid v \rangle)$

Is complex numbers

The space of continuous linear functionals on a vector space is another vector space called the dual space to V.

Examples of continuous linear functionals

1. $V =$ space of degree 2 polynomials
$L(p) = p(\frac{1}{2})$

2. $V =$ space of 2×2 complex matrices
$L(A) = \text{Tr}(BA) = \sum_{i=1}^{2} B_{i3} A_{3i}$ for $B \in V$.

3. $V =$ Hilbert space
$L(\mid v \rangle) = \langle \omega \mid v \rangle$ for $\omega \in \text{V}$.
For Hilbert spaces there is a 1-1 correspondence between vectors and linear functions
\[|w\rangle \rightarrow \langle w | \]
\[L(|v\rangle) = \langle w | v \rangle \]

\(m \) defines a continuous linear functional
\[L(|v_1\rangle + \alpha |v_2\rangle) = \langle w | v_1 \rangle + \alpha \langle w | v_2 \rangle \]

\[|v_n\rangle \rightarrow |v \rangle \]
\[|L(|v_0\rangle) - L(|v\rangle)| = |\langle w | v_0 \rangle - \langle w | v \rangle| \]
\[= |\langle w | v_0 - v \rangle| \leq ||w|| ||v_0 - v|| \rightarrow 0 \]
as long as \(||v_0|| < \infty \).

In some case one is trying to find a solution to a system of equations - but the solution is not a vector in the space \(V \) however it might be a solution on a bigger vector space that has \(V \) as a subspace.

Example
Let \(|v_n\rangle \) be an infinite collection of orthonormal vectors on an inner product space \(V \)
\[\langle v_m | v_n \rangle = \begin{cases} 1 & m = n \\ 0 & m \neq n \end{cases} = \delta_{mn} \]
Let \(V \) be the set of vectors of the form
\[
\|v\rangle = \sum_{n=0}^{\infty} c_n |v_n\rangle
\]
\[
\langle v | v \rangle = \sum_{m,n=0}^{\infty} c_m^* c_n \langle v_m | v_n \rangle = \sum_{m,n}^{\infty} c_m^* c_n S_{mn}
\]
\[
= \sum_{n=0}^{\infty} |c_n|^2 < \infty
\]

(1)

Next we define 3 other vector spaces
\[
S = \sum_{n=0}^{\infty} d_n |v_n\rangle
\]
where
\[
\sum_{n=0}^{\infty} |d_n|^2 (n^2+1) < \infty
\]

(2)

and
\[
S^* = \sum_{n=0}^{\infty} e_n |v_n\rangle
\]
\[
\sum_{n=0}^{\infty} |e_n|^2 \frac{1}{(n^2+1)} < \infty
\]

(3)

Clearly (2) is more restrictive than (1), while (3) is less restrictive than (1).

We have
\[
S \subset V \subset S^*
\]
Note that if \(|V \rangle \in S \) and \(|W \rangle \in S \),

\[
\langle W | V \rangle = \left| \sum_{n=0}^{\infty} \frac{e_n}{\sqrt{n+1}} \langle n | V \rangle \right| =
\]

\[
\sum_{n=0}^{\infty} \frac{e_n}{\sqrt{n+1}} \sqrt{(n+1)^2} d^n =
\]

\[
|\tilde{\omega}\rangle = \sum_{n=0}^{\infty} e^n \frac{1}{\sqrt{n+1}} = \langle \tilde{\omega} | \tilde{\omega} \rangle < \infty
\]

\[
|\tilde{\nu}\rangle = \sum_{n=0}^{\infty} d^n \frac{1}{\sqrt{n+1}} = \langle \tilde{\nu} | \tilde{\nu} \rangle < \infty
\]

\[
\langle \tilde{\omega} | \tilde{\nu} \rangle = \sqrt{2} \sum_{n=0}^{\infty} \frac{1}{n+1} \sqrt{2} d^n (n+1)^2 < \infty
\]

so while \(\langle \omega \rangle \) is not defined on every vector in \(V \), it is defined on every vector in \(S \).

With this type of structure we can look for solutions of a system of equations in \(S \).

Example: quantum mechanics

\[
E = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2m}
\]

\[
e^{ikx/m} \rightarrow \frac{\hbar^2}{2m} \frac{d^2}{dx^2} e^{ikx/m} = \frac{\hbar^2}{2m} e^{ikx/m}
\]

The usual Hilbert space is square integrable functions on \([-\infty, \infty] \)

\[
\int_{-\infty}^{\infty} (e^{ikx/m}) \, (ikx/m) \, dx = \infty
\]
if we consider
\[\int_{-\infty}^{\infty} \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} - \frac{\hbar^2}{2m} \right) e^{-ikx/\hbar} f(x) \, dx = 0 \]

In a large class of function \(f(x) \), then we call \(e^{-ikx/\hbar} \) a weak solution of the equation
\[\left(-\frac{\hbar^2}{2m} \frac{d^2}{dy^2} - \frac{\hbar^2}{2m} \right) g(y) = 0 \]

This will be discussed more formally later, this method of enlarging the space of linear functions which lies in the space that they act on is important in physics - the relevant subject is distribution theory.

Linear operators

A linear operator \(A \) is a mapping from a subspace \(D_1 \) of a vector space \(V_1 \) to a subspace \(R_1 \) of a vector space \(V_2 \) satisfying
\[A(\lambda v_1 + \alpha v_2) = \lambda A(v_1) + \alpha A(v_2) \]

The sum on the left is in \(D_1 \subset V_1 \) while the sum on the right is in \(R_2 \subset V_2 \).
The space of linear operators from $\mathbb{R}^n \rightarrow \mathbb{R}^m$ is a vector space.

\[(A_1 + A_2)\langle v_1 \rangle = A_1\langle v_1 \rangle + A_2\langle v_1 \rangle\]

\[A_1(\alpha \langle v_1 \rangle) = \alpha A_1\langle v_1 \rangle\]

It is easy to check that addition of linear operators and multiplication of operators by scalars satisfy all of the axioms of a vector space.

For example

\[\lambda (A_1 + A_2)\langle v \rangle = \lambda (A_1\langle v \rangle + A_2\langle v \rangle) = \lambda A_1\langle v \rangle + \lambda A_2\langle v \rangle = (\lambda A_1)\langle v \rangle + (\lambda A_2)\langle v \rangle\]

etc.

If $A_1: \mathbb{R}^n \rightarrow \mathbb{R}^m$

and $A_2: \mathbb{R}^m \rightarrow \mathbb{R}^n$

then we can define $A_2 A_1: \mathbb{R}^n \rightarrow \mathbb{R}^n$ by

\[(A_2 A_1)\langle v \rangle = A_2(A_1\langle v \rangle)\]
If V_1 and V_2 are normed linear spaces then we define the operator norm

$$\|A\| = \sup_{\|v\|_1 \neq 0} \frac{\|Av\|_2}{\|v\|_1} = \sup_{\|v\|_2 = 1} \|Av\|_2$$

Here \sup means least upper bound.

Note that

$$\|Av\|_1 \leq \sup_{\|v\|_2} \frac{\|Av\|_1}{\|v\|_2} \cdot \|v\|_2 = \|A\| \cdot \|v\|_2,$$

this means that if $\|v_n\| - \|v\|_1 < \epsilon$

$$\|Av_n\| - \|Av\|_1 \leq \|A\| \cdot \|v_n\| - \|v\|_2 = \|A\| \cdot \epsilon$$

This means that $A: V_1 \to V_2$ is a continuous linear map if the operator norm of A is finite.

Continuous linear operators are called bounded linear operators.
A linear operator $A: V_1 \to V_2$ is
\underline{onto} if \underline{in} every vector $|v_2\rangle \in V_2$
\underline{there is at least one} $v_1 \rangle$ in V_1
\underline{with the property}

$|v_2\rangle = A |v_1\rangle$

A linear operator $A: V_1 \to V_2$ is
\underline{one-to-one} if $|v_1\rangle \neq |v_1\rangle'$ implies

$A |v_1\rangle \neq A |v_1\rangle'$

A linear operator $A: V_1 \to V_2$ that is \underline{1-1 and onto has an inverse}

$B = A^{-1}: V_2 \to V_1$

Let $|v_2\rangle$ be any vector in V_2. \underline{Since A is onto we can write}

$|v_2\rangle = A |v_1\rangle$

for some vector $|v_1\rangle$ in V_1. \underline{If there is another vector $|v_1\rangle' = |v_1\rangle$ such that}

$|v_2\rangle = A |v_1\rangle' = A |v_1\rangle$

then A will not be \underline{1-1}. \underline{Therefore}

$|v_1\rangle$ \underline{is unique}. Define

$B |v_2\rangle = |v_1\rangle$. \underline{.}
Since $\{v_i\}$ is arbitrary this defines B for all vectors in V_2

\[
ABv_2 = A\{v_i\} = Iv_2
\]

\[
B\{v_i\} = Bv_2 = Iv_1
\]

For linear operators from $\{V_1 \rightarrow V_1\}$, in addition to addition and scalar multiplication of operators, if $D_1 V_1$, we also have the product of operators

\[
\{v_i\}
\]

\[
A\{v_i\} = Iv_1
\]

\[
A^2\{v_i\} = A\{v_i\} = A^2 Iv_1
\]

This can be extended to polynomials in A

\[
P(A) v = \sum_{n=0}^{\infty} c_n A^n v
\]

If V is a normed linear vector space and A is a continuous map from $V \rightarrow V$ then
\[\| A^2 \| \leq \sup \frac{\| A^2 \|}{\| A \|} = \sup \left(\frac{\| A^2 \|}{\| A \|}, \frac{\| A \|}{\| A \|} \right) \leq \sup \left(\frac{\| A^2 \|}{\| A \|} \right), \sup \left(\frac{\| A \|}{\| A \|} \right) \leq \sup \frac{\| A^2 \|}{\| A \|}, \sup \frac{\| A \|}{\| A \|} = \| \| A \| \| \cdot \| A \| \|. \]

This can be continued by induction:

\[\| A^n \| \leq \| \| A \| \| \cdot \| A \| \|. \]

We can use this to construct more complicated functions of \(A \):

\[e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}, \]

\[\| e^A \| = \| \sum_{n=0}^{\infty} \frac{A^n}{n!} \| \leq \sum_{n=0}^{\infty} \frac{\| A^n \|}{n!} \leq \sum_{n=0}^{\infty} \frac{\| A \|^n}{n!} \| A \|^{\| A \| n} = e \]

This means that if \(\| A \| < 1 \) this series converges uniformly.
example:
matrices
\[e^M = \sum_{n=0}^{\infty} \frac{M^n}{n!} \]
we need to check
\[\| M \|_\infty < \infty \]
we will learn how to compute \(\| M \|_\infty \) later, but it is clear that if \(M \) acts on a unit vector, the length of the resulting vector can be more than \((\text{dim of matrix}) \times (\text{absolute value of largest matrix element}) \).

example
linear differential equation:
\[\frac{dx_1}{dt} = a_{11} x_1 + a_{12} x_2 \]
\[\frac{dx_2}{dt} = a_{21} x_1 + a_{22} x_2 \]
\[\frac{d^2 x}{dt^2} = A^n \tilde{x} \]
\[\tilde{x}(t) = \sum_{n=1}^{\infty} \frac{A^n \tilde{x}(0)}{n!} t^n = e^{At} \tilde{x}(0) \]
this series converges as long as
\[\| A \|_\infty < \infty \]
In addition to e^A, we can construct:

\[\sinh A = \sum_{n=0}^{\infty} \frac{A^{2n+1}}{(2n+1)!} \]
\[\cosh A = \sum_{n=0}^{\infty} \frac{A^{2n}}{(2n)!} \]
\[\sin A = \sum_{n=0}^{\infty} (-1)^n \frac{A^{2n+1}}{(2n+1)!} \]
\[\cos A = \sum_{n=0}^{\infty} (-1)^n \frac{A^{2n}}{(2n)!} \]

This can be done for any convergent series.

We can also consider e^{Az} where z is a complex number. The series

\[e^{Az} = \sum_{n=0}^{\infty} \frac{A^n z^n}{n!} \]

converges in norm since $||Az|| \leq ||z|| ||A|| < \infty$.

In this case,

\[\frac{d}{dz} e^{Az} = \lim_{\Delta z \to 0} \frac{e^{A(z+\Delta z)} - e^{Az}}{\Delta z} \]

has a complex derivative. It is an open map valued analytic function.
Next consider the operator

\[(Z I - A)\]

where \(A\) is a linear operator.

If this operator has an inverse \(Z_i\) and \(Z_j\) we have

\[(Z_i I - A) - (Z_j I - A) = (Z_i - Z_j) I\]

multiply on one side by \((Z_i I - A)^\dagger\)
and on the other side by \((Z_j I - A)^\dagger\)
to get

\[(Z_j I - A)^\dagger - (Z_i I - A)^\dagger = (Z_j I - A)^\dagger (Z_i - Z_j) (Z_i I - A)^\dagger\]

this is usually written

\[(Z_j I - A)^\dagger = (Z_i I - A)^\dagger + (Z_i I - A)^\dagger (Z_i - Z_j) (Z_i I - A)^\dagger\]

If we choose \(Z_j\) so \(\| (Z_i I - A)^\dagger (Z_i - Z_j) \| < 1\)
we can solve this by iteration

\[(Z_j I - A)^\dagger = (Z_i I - A)^\dagger + \sum_{n=1}^{\infty} ((Z_i I - A)^\dagger (Z_i - Z_j)) (Z_i I - A)^\dagger\]

by choice of \(Z_j\) is series converges
in particular

\[(Z_i I - A)^\dagger = (Z_i I - A)^\dagger + \sum_{n=1}^{\infty} (Z_i I - A)^\dagger (Z_i - Z_j) (Z_i I - A)^\dagger\]

is an analytic function of \(Z_\infty\)

\[\| (Z_i I - A)^\dagger (Z_i - Z_j) \| < 1\]
$R(z) = (zI-A)^{-1}$ is called the resolvent of A. The equation

$$R(z_2) = R(z_1) + R(z_1)(z_1-z_2)R(z_2)$$

is called the limit resolvent equation.

Other types of operators:

1. An operator A is antilinear if

$$A(\alpha|v_1\rangle + \alpha'|v_2\rangle) = A(\alpha|v_1\rangle) + \alpha^* A(|v_2\rangle)$$

Antilinear operators are not linear. The most important example of an antilinear operator is time reversal.

2. Let A_1, A_2 be linear operators on a vector space V

$$[A_1, A_2] = A_1 A_2 - A_2 A_1$$

is called the commutator of A_1 and A_2.

When the commutator is non-zero then $A_1 A_2 \neq A_2 A_1$.
The anticommutator of 2 linear operators on \(V \) is defined by

\[[A_1, A_2] = A_1 A_2 + A_2 A_1. \]

Inverses: If \(A_1 \) and \(A_2 \) act on \(V \) and both have inverses, then

\[(A_1 A_2)^{-1} = A_2^{-1} A_1^{-1}. \]

Check

\[(A_1 A_2)^{-1} A_1 A_2 = A_2^{-1} A_1^{-1} A_1 A_2 = A_2^{-1} A_2 = I. \]

Adjoint operator: If \(A \) is a linear operator on an inner product space, the adjoint \(A^* \) of \(A \) is defined by

\[\langle V_1 | A^* V_2 \rangle = \langle A V_1 | V_2 \rangle = \langle V_2 | A V_1 \rangle^*. \]
Hermitian Operator:

An operator A on an inner product space V is Hermitian if

$$A^* = A$$

This means

$$\langle Av, w \rangle = \langle v, Aw \rangle$$

Unitary Operator:

An operator A on an inner product space V is unitary if

$$A^* = A^{-1}$$

Projection Operator:

An operator P on an inner product space is a projection operator if

$$P = P^2$$

$$P^2 = P$$
An operator A on an inner product space is normal if

\[[A^*, A] = 0 \]

An operator on a vector space V is nilpotent if, for some finite n,

\[A^n = 0 \]

example $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

remark and properties

1. \((A_1, A_2)^* = A_2^* A_1^* \)

 \[\langle V | A_1 A_2 | V_2 \rangle = \]
 \[\langle A_2^* V | A_1 | V_2 \rangle = \]
 \[\langle A_2^* A_1 V | V_2 \rangle = \]
 \[\langle (A_1 A_2)^* V | V_2 \rangle \]

 since this holds for all $|V_1>, |V_2>$

\((A_1, A_2)^* = A_2^* A_1^* \)

2. If $A = A^*$, $B = B^*$ in general

 \[AB \neq (AB)^* = B^* A^* = BA \]

 then these to be equal

\[[A, B] = 0 \]
A linear operator on a vector space is antihermitean if
\[A^* = -A \]

Note: if \(A \) is Hermitian, \(iA \)
is antihermitean
\[(iA^*) = -iA \]

An operator \(A \) on an inner product space is positive if
\[\langle v|A|v \rangle \geq 0 \]
for all \(|v \rangle \) (this must be real and non-negative).

* If \(A \) is positive
\[\langle v|A|v \rangle = \langle v|A^*|v \rangle^* = \]
\[\langle Av|v \rangle = \langle A^*v|v \rangle \]

Next, let \(|v \rangle = |v_1\rangle + \alpha |v_2\rangle \)
\[\langle v_1 + \alpha v_2 | A (v_1 + \alpha v_2) \rangle = \]
\[\langle A (v_1 + \alpha v_2) | (v_1 + \alpha v_1) \rangle = \]
\[\langle v_1 | Av_1 \rangle + |\alpha|^2 \langle v_2 | Av_2 \rangle + \alpha^* \langle v_2 | Av_1 \rangle + \alpha \langle v_1 | Av_2 \rangle = \]
\[\langle Av_1 | v_1 \rangle + |\alpha|^2 \langle Av_2 | v_2 \rangle + \alpha^* \langle Av_2 | v_1 \rangle + \alpha \langle Av_1 | v_2 \rangle \]
terms 1, 5, and 2 and 6 cancel

letting d be 1 or i give

$\langle v_1 A v_1 \rangle = \langle A v_1 v_1 \rangle$
$\langle v_1 A v_1 \rangle = \langle A v_1 v_1 \rangle$

This means all positive operators are Hermitian.

If P is a projection operator

$\langle v_1 P v_1 \rangle = \langle v_1 P^2 v_1 \rangle = \langle P v_1 P v_1 \rangle$
$\langle P v_1 P v_1 \rangle \geq 0$

This shows that all projection operators are positive.

If A is a linear operator and

$A v_1 = \lambda v_1$

1. the vector v_1 is called an eigenvector of A
2. the number λ is an eigenvalue of A
1. If $A = A^\dagger$, the eigenvalues of A are real.

 $A |v\rangle = \lambda |v\rangle$

 $\langle v | A |v\rangle = \lambda \langle v | v\rangle$

 $\langle v | A |v\rangle^\dagger = \lambda^* \langle v | v\rangle$

 $\langle A | v \rangle = \lambda \langle v |v\rangle$

 $\langle A | v \rangle = \lambda^* \langle v |v\rangle$

 $\langle v | A - A^\dagger |v\rangle = (\lambda - \lambda^*) \langle v |v\rangle$

 This requires $\lambda = \lambda^*$ unless $|v\rangle = 0$

2. If $A = A^\dagger$ and $\lambda_1 \neq \lambda_2$ are eigenvalues of A, then $\langle v_1 | v_2 \rangle = 0$

 $\langle v_2 | A |v_1\rangle = \langle v_2 | \lambda_1 |v_1\rangle = \lambda_1 \langle v_2 |v_1\rangle$

 $\langle A | v_2 \rangle$

 $\langle v_1 | A |v_2\rangle^\dagger = (\lambda_2 \langle v_1 |v_2\rangle)^\dagger = \lambda_2^* \langle v_1 |v_2\rangle$

 $\lambda_2 \langle v_2 |v_1\rangle$

 Since $\lambda_2 = \lambda_2^*$, we have

 $(\lambda_1 - \lambda_2) \langle v_2 |v_1\rangle = 0$

 Since $\lambda_1 \neq \lambda_2$, $\langle v_1 |v_2\rangle = 0$
If A is \underline{normal}, then

$$A = \frac{1}{2} (A + A^t) + \frac{i}{2} (i (A^t - A))$$

$$B = \frac{1}{2} (A + A^t) = B^t$$

$$C = \frac{i}{2} (A^t - A) = C^t$$

$$A = B + iC$$

where since $[A, A^t] = 0$, $[B, C] = 0$.

So A is a linear combination of 2 commuting linear operators.

If U is unitary and

$$\langle U | U \rangle = \lambda |U\rangle$$

then

1. $|\lambda| = 1$
2. $\lambda_1 \neq \lambda_2$, $\langle U_1 | U_2 \rangle = 0$

$$\langle V_1 | V_2 \rangle = 1 = \langle V_1 | U_1 U_2 \rangle = \langle U_1 U_1 U_2 \rangle = \langle U_1 U_1 U_2 \rangle = |\lambda_1| \lambda_2 \langle V_1 | U_2 \rangle$$

So

$$(1 - \lambda_1 \lambda_2) \langle V_1 | V_2 \rangle = 0 \quad \Rightarrow \quad \langle V_1 | V_2 \rangle = 0$$

$$(\lambda_1 - \lambda_2) \langle V_1 | V_3 \rangle = 0 \quad \lambda_1 \neq \lambda_2 \quad \langle V_1 | V_3 \rangle = 0$$