1. Consider the complex valued function of the complex variable z

$$f(z) = e^{z^2}$$

a. Find the real and imaginary parts of this function.

Differentiating gives

$$f(z) = e^{x^2 - y^2 + 2ixy} = e^{x^2 - y^2} (\cos(2xy) + i \sin 2xy)$$

$$Re(f(z)) = e^{x^2 - y^2} \cos(2xy) \quad Im(f(z)) = e^{x^2 - y^2} \sin(2xy)$$

b. Show that the real and imaginary parts of this function satisfy the Cauchy-Riemann equations.

$$\frac{\partial u}{\partial x} = e^{x^2 - y^2} (2x \cos(2xy) - 2y \sin(2xy))$$

$$\frac{\partial u}{\partial y} = e^{x^2 - y^2} (-2y \cos(2xy) - 2x \sin(2xy))$$

$$\frac{\partial v}{\partial x} = e^{x^2 - y^2} (2x \sin(2xy) + 2y \cos(2xy))$$

$$\frac{\partial v}{\partial y} = e^{x^2 - y^2} (-2y \sin(2xy) + 2x \cos(2xy))$$

Comparing lines 1 and 4 and lines 2 and 3 gives

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y}$$

C. Show that the real part of this function satisfies Laplace's equation.

From part b

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \frac{\partial v}{\partial y} = \frac{\partial v}{\partial y} \frac{\partial}{\partial x} = -\frac{\partial}{\partial y} \frac{\partial u}{\partial y} = -\frac{\partial^2 u}{\partial y^2}$$

Putting everything on the same side of the equation gives

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
This can be done by brute force as well:

\[
\frac{\partial^2 u}{\partial x^2} = 2x e^{x^2 - y^2}(2x \cos(2xy) - 2y \sin(2xy)) + e^{x^2 - y^2}(2 \cos(2xy)) +
\]

\[
e^{x^2 - y^2}(-4xy \sin(2xy) - 4y^2 \cos(2xy)) =
\]

\[
e^{x^2 - y^2}(4x^2 + 2 - 4y^2) \cos(2xy) + (-8xy) \sin(2xy)
\]

\[
\frac{\partial^2 u}{\partial y^2} = -2ye^{x^2 - y^2}(-2y \cos(2xy) - 2x \sin(2xy)) +
\]

\[
e^{x^2 - y^2}(-2 \cos(2xy)) + e^{x^2 - y^2}(4yx \sin(2xy) - 4x^2 \cos(2xy)) =
\]

\[
e^{x^2 - y^2}(4y^2 - 2 - 4x^2) \cos(2xy) + (8xy) \sin(2xy) = \frac{\partial^2 u}{\partial y^2}
\]

adding these terms gives 0

d. Is \(f(z)\) an entire function?

Yes - since it is the composition of two entire functions.

2. Consider the function

\[f(z) = \frac{1}{z(z^2 + 4)} \]

a. Find the poles of \(f(z)\).

Factoring the denominator shows that \(f(z)\) has three poles at 0, \(2i\) and \(-2i\)

b. Find the residue of each pole of \(f(z)\).

\[f(z) = \frac{1}{z(z + 2i)(z - 2i)} \]

The residues are: \(r_0 = \frac{1}{4}, r_{2i} = (\frac{1}{2i})(\frac{1}{4i}) = -\frac{1}{8}, r_{-2i} = (\frac{-1}{2i})(\frac{-1}{4i}) = -\frac{1}{8}\)

c. Find the Laurent series for \(f(z)\) about \(z = 0\) that converges for 0 < \(|z|\) < 2.

\[f(z) = \frac{1}{4} \sum_{n=0}^{\infty} (-\frac{1}{z/2})^{2n} = \frac{1}{4} \sum_{n=0}^{\infty} (-\frac{z}{2})^{2n} = \frac{1}{4} \sum_{n=0}^{\infty} \frac{z^{2n-1}}{4^n} \]

d. What is the integral of \(f(z)\) over a counterclockwise circle of radius \(|z| = \frac{1}{2}\)?

Only the pole at \(z = 0\) is in the circle

\[I = 2\pi i (1/4) = i\pi /2 \]
e. What is the integral of \(f(z) \) over a counterclockwise circle of radius \(|z| = 1 \)?

Only the pole at \(z = 0 \) is in the circle

\[
I = 2\pi i (1/4) = i\pi/2
\]

f. What is the integral of \(f(z) \) over a counterclockwise circle of radius \(|z| = 4 \)?

All three poles are in the circle

\[
I = 2\pi i [(1/4 - 1/8 - 1/8) = 0].
\]

3. Let \(f(z) \) be an entire function.

a. Let \(\gamma(t) \) be a path in the complex plane between \(z_0 \) and \(z \); \(\gamma(0) = z_0 \), \(\gamma(1) = z \). Define

\[
g(z,z_0,\gamma) = \int_0^1 f(\gamma(t)) \frac{d\gamma}{dt} dt
\]

Does \(g(z,z_0,\gamma) \) depend on the path \(\gamma(t) \) between \(z \) and \(z_0 \)? Why?

No, by Cauchy’s theorem because \(f(z) \) is analytic.

b. Does \(g(z,z_0,\gamma) \) depend on \(z_0 \)?

Yes, different choices differ by a constant.

c. Is \(g(z,z_0,\gamma) \) an analytic function of \(z \)? Justify your answer.

Yes, since the value of the integral is independent of the curve, it in independent of how the curve approaches \(z \). Using the definition of derivative

\[
\frac{dg(z)}{dz} = \lim_{\Delta z \to 0} \frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z') dz' = f(z)
\]

Alternatively, the integral of the convergent Taylor series is

\[
\int \sum_{n=0}^{\infty} a_n z^n = z \sum_{n=0}^{\infty} \frac{a_n}{n+1} z^n
\]

which converges since \(|a_n/(n + 1)| \leq |a_n| \)

4. Residue theorem

a. Consider the integral

\[
\int_0^\infty \frac{\sin(x)}{x(x^2 + a^2)} dx
\]
where \(a\) is real. Express this integral in a form where it can be computed using the residue theorem.

Introduce an \(i\epsilon\) in the denominator
\[
\int_0^\infty \frac{\sin(x)}{x(x^2 + a^2)} \, dx
\]
\[
\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{-\infty}^{\infty} \frac{\sin(x)}{(x - i\epsilon)(x^2 + a^2)} \, dx
\]
\[
\frac{1}{4i} \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} \frac{e^{ix}}{(x - i\epsilon)(x - ia)(x + ia)} \, dx - \frac{1}{4i} \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} \frac{e^{-ix}}{(x - i\epsilon)(x - ia)(x + ia)} \, dx
\]

b. Show the contours that you would use to compute the integral in part a.
Close first integral in upper half plane counter clockwise, second integral in lower half place clockwise - notice the sign change in the second integral

c. Evaluate the integral in part a. using the contours in part b.
\[
(2\pi i) \left[\frac{1}{4i} \left(\frac{1}{a^2} + \frac{e^{-a}}{(-2a^2)} \right) + \frac{1}{4i} \left(\frac{e^{-a}}{(-2a^2)} \right) \right] = \pi / (2a^2)(1 - e^{-a})
\]
d. Use the residue theorem to evaluate the infinite sum
\[
\sum_{n=0}^{\infty} \frac{1}{n^2 + \pi^2}
\]
\[
0 = \int \frac{\pi \cot(z\pi)}{z^2 + \pi^2} =
\]
\[
2\pi i \left(\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + \pi^2} + \frac{\pi \cot(i\pi^2)}{2i\pi} + \frac{\pi \cot(-i\pi^2)}{2(-i\pi)} \right) =
\]
\[
2\pi i \left(\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + \pi^2} - \frac{\pi \coth(\pi^2)}{2\pi} - \frac{\pi \coth(\pi^2)}{2\pi} \right) = 0
\]
Recall \(\cot(iz) = \cos(iz) / \sin(iz) = \cosh(z) / (i \sinh(z))\); Dividing the full sum by 2 and adding \(\frac{1}{2\pi^2}\) gives the result
\[
\sum_{n=0}^{\infty} \frac{1}{n^2 + \pi^2} = \frac{1}{2\pi^2} + \frac{\coth(\pi^2)}{2}
\]