29:4761 - final exam

1. Let \(z = (a + ib)^{e+i\theta} \)
 a. Calculate the real and imaginary parts of \(z \).
 b. Calculate the modulus and argument of \(z \).
 c. Calculate \(\ln(z) \).

2. Let \(f(x, y) = u(x, y) + iv(x, y) \) be analytic.
 a. Show that \(u(x, y) \) and \(v(x, y) \) are solutions of Laplace's equation in 2 dimensions.
 b. Assume that \(r(x, y) \) and \(s(x, y) \) are both solutions of Laplace's equation. Is \(g(x, y) = r(x, y) + is(x, y) \) analytic.
 c. Assume that \(h(z) \) is analytic and constant for all \(z \) satisfying \(|z| = R \) = constant. What can you say about \(|h(z)| \)? Justify your answer.

3. Let \(a \) and \(b \) be real numbers. Evaluate the integrals

\[
I(a) = \int_0^\infty \frac{\sin(x)}{x(x^2 + a^2)}
\]

\[
I(a, b) = \int_0^\infty \frac{1}{(x^2 + b^2)(x^2 + a^2)}
\]

4. Let \(H \) be a hermitian matrix \((H = H^\dagger) \).
 a. Show that the eigenvalues of \(H \) are real.
 b. Show that the eigenvectors of \(H \) corresponding to distinct eigenvalues are orthogonal.
 c. Assume that in some basis \(H \) is also real. Show that the components of the eigenvectors in that basis can be chosen to be real.

5. Let \(H \) be a hermitian matrix, \(H = H^\dagger \) and let \(a \) be real.
 a. Show that \((H + ia)(H - ia) \) is a positive operator.
 b. Show \(e^{-H} \) is positive.
 c. Is \(e^{-H}(H + ia)(H - ia) \) positive?

6. Consider a matrix \(J \) with eigenvalues \(\lambda = 1, 0, -1 \).
 a. What is the characteristic polynomial of \(J \)?
 b. Find projections

\[
P_1 = |1\rangle\langle 1| \quad P_0 = |0\rangle\langle 0| \quad P_{-1} = |-1\rangle\langle -1|
\]

expressed as polynomials in \(J \).
 c. Calculate \(e^{i\theta J} \) as a finite degree polynomial in \(J \) (here \(\theta \) is real).
Final exam solutions

(a) \((a+ib)^{c+id} = e^{\ln(a+ib)^{c+id}} = e^{(c+id)\ln(a+ib)}\)

\[\text{let } a+ib = re^{i\phi} = r\cos\phi + i r\sin\phi.\]

\[(a+ib)^{c+id} = e^{(c+id)\ln re^{i\phi}} = e^{(c+id)(\ln r + i(\phi+2\pi n))}\]

\[e^{\ln r^c - d(\phi+2\pi n)} i(d\ln r + c\phi + 2\pi n c)\]

\[r^c e^{-d(\phi+2\pi n)} \cos(d\ln r + c\phi + 2\pi n c) + i r^c e^{-d(\phi+2\pi n)} \sin(d\ln r + c\phi + 2\pi n c)\]

real part:
\[r^c e^{-d(\phi+2\pi n)} \cos(d\ln r + c\phi + 2\pi n c)\]

imaginary part
\[r^c e^{-d(\phi+2\pi n)} \sin(d\ln r + c\phi + 2\pi n c)\]

(b) \[|Z| = r^c e^{-d(\phi+2\pi n)}\]

\[\Theta = d \ln r + c\phi + 2\pi n c\]

(c) \(\ln Z = (c+id)\ln(a+ib) =\]

\[= (c+id)\ln re^{i(\phi+2\pi n)}\]

\[= (c+id)(\ln r + i(\phi+2\pi n))\]

\[= c\ln r - d(\phi+2\pi n) + i(d\ln r + c(\phi+2\pi n))\]
2 analytic
\[\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \]
\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 v}{\partial y^2} = -\frac{\partial^2 u}{\partial y \partial x} = -\frac{\partial^2 v}{\partial y^2} = 0 \]
\[\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) u = 0 \]
\[\frac{\partial^2 v}{\partial x^2} = -\frac{\partial^2 u}{\partial x \partial y} = -\frac{\partial^2 u}{\partial y \partial x} = -\frac{\partial^2 v}{\partial y^2} = 0 \]
\[\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) v = 0 \]

2b not necessarily - we also need
\[\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} = 0 \]
which is a consequence of the Cauchy Riemann equation's

2c \(f(z) \) is constant - this is because (i) all derivatives can be computed along the circle - but they are all 0, so the taylor expansion has 1 term - which is a constant
\[\int_{0}^{\infty} \frac{\sin x}{x(a^2+x^2)} \, dx = \int_{-\infty}^{\infty} \frac{\sin x}{(x-i\varepsilon)(x-i\varepsilon)^{\frac{1}{2}}} \, dx = \frac{1}{2} \cdot \frac{1}{2i} \int_{-\infty}^{\infty} \left[\frac{e^{ix}}{(x-i\varepsilon)(x-i\varepsilon)(x+ia)} - \frac{e^{-ix}}{(x-i\varepsilon)(x-i\varepsilon)(x+ia)} \right] \, dx \]

\[= \frac{1}{4i} 2\pi i \left(\frac{1}{a^2} + \frac{e^{-a}}{ia(2ia)} + \frac{e^{-a}}{(-ia)(-2ia)} \right) \]

\[= \frac{\pi}{2a^2} \left(1 - \frac{1}{2} e^{-a} - \frac{1}{2} e^{-a} \right) = \frac{\pi}{2a^2} \left(1 - e^{-a} \right) \]

\[\int_{0}^{\infty} \frac{dx}{(x^2+b^2)(x^2+c^2)} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{(x^2+b^2)(x^2+c^2)} = \frac{2\pi i}{2} \left\{ \frac{1}{2ia} \frac{1}{b^2-a^2} + \frac{1}{2ib} \frac{1}{a^2-b^2} \right\} \]

\[= \frac{\pi}{2} \frac{1}{a^2-b^2} \frac{1}{ab} (a-b) = \frac{\pi}{2} \frac{1}{(a+b)ab} \]

\[\langle n_1|n_1 \rangle = \lambda_n \langle n_1 \rangle \]

\[\langle n_1|n_1 \rangle^* = \langle n_1^H|n_1 \rangle = \langle n_1|n_1 \rangle = \lambda_n^* \langle n_1 \rangle \]

\[\lambda_n - \lambda_n^* \langle n_1 \rangle = 0 \quad \text{since} \quad \langle n_1 \rangle \neq 0 \quad \lambda_n = \lambda_n^* \]
\(\langle n | H | m \rangle = \lambda_m \langle n | m \rangle \)
\(\langle n | H | m \rangle^* = \langle m | H | n \rangle = \lambda_n \langle m | n \rangle \)
\(\langle n | H | m \rangle = \langle n | H | m \rangle^* = \lambda_n^* \langle n | m \rangle = \lambda_n \langle n | m \rangle \)

\(\Rightarrow \langle n | m \rangle (\lambda_m - \lambda_n) = 0 \)
if \(\lambda_n \neq \lambda_m \)
\(\langle n | m \rangle = 0 \)

6. \(H_{mn} V_n = \lambda_n V_m \)
\(H_{mn} V_n^* = \lambda_n V_m^* \quad (H_{mn} \text{ real}) \)
\(\omega_n = \frac{1}{2} (V_n + V_n^*) \)
\(\tilde{\omega}_n = \frac{i}{2} (V_n^* - V_n) \)
are both real and both eigenvectors.

5b. \((H-i\alpha)(H+i\alpha) = (H+i\alpha)^+ (H+i\alpha) \)

\(\langle c | (H-i\alpha)(H+i\alpha) | c \rangle = \| (H+i\alpha) c \|^2 > 0 \)
\(\Rightarrow H \text{ is positive} \)

b. \(e^{-H} = e^{-H/2} e^{-H/2} = e^{-H/2} - H/2 \)
\(\langle c | e^{-H} | c \rangle = \| e^{-H/2} c \|^2 > 0 \)
Yes

\[e^{-\frac{H}{2}} (H+i\alpha) (H-i\alpha) = (H-i\alpha)^{\dagger} e^{-\frac{H}{2}} e^{H} (H-i\alpha) \]

\[\langle c| e^{-(H+i\alpha)(H-i\alpha)c} = \langle 1 \rangle e^{-H/2} (H-i\alpha)c \rangle \|^2 \geq 0 \]

\[(\lambda-1)\lambda (\lambda+1) = \rho (\lambda) \]

\[\langle 1 \rangle \langle 1| = \frac{J-0}{1-0} \frac{J-(-1)}{1-(-1)} = \frac{J^2+J}{2} \]

\[\langle 0 \rangle \langle 0| = \frac{J-1}{0-1} \frac{J+1}{0+1} = \frac{J^2-1}{-1} = 1-J^2 \]

\[\langle -1 \rangle \langle -1| = \frac{J-1}{-1-1} \frac{J-0}{-1-0} = \frac{J^2-J}{2} \]

\[e^{i\theta} = e^{i\theta} \frac{J^2+J}{2} + (1-J^2) + \frac{J^2-J}{2} e^{-i\theta} \]

\[= J^2 (\cos \theta - 1) + i J \sin \theta + 1 \]