1. Let H be a Hermitian operator. Let $|m\rangle$ and $|n\rangle$ be eigenvectors of H with eigenvalues λ_m and λ_n.

 a. Show that λ_m is real.
 b. Show that $\langle m|n \rangle = 0$ if $\lambda_m \neq \lambda_n$.
 c. Assume that $\lambda_m = \lambda_n$ and $\langle m|n \rangle = \alpha \neq 0$. Find a set of orthonormal eigenvectors with the same eigenvalue.

2. Let A and B be positive operators. Assume that $[A, B] = 0$.

 a. Prove that AB is positive.
 b. Show that e^{-A} is positive.

3. Let $|a\rangle$ and $|b\rangle$ be vectors in an inner product space. Let P be an orthogonal projection operator ($P^2 = P$, $P^\dagger = P$).

 a. Prove that P is a positive operator.
 b. Prove
 \[|\langle a|P|b \rangle|^2 \leq |\langle a|P|a \rangle||\langle b|P|b \rangle| \]
 c. Is $I - P$ positive?

4. Let $\{|n\rangle\}_{n=1}^{N}$ and $\{|\bar{n}\rangle\}_{n=1}^{N}$ be orthonormal bases in N-dimensional inner product space.

 a. Let $W := \sum_{n=1}^{N} |n\rangle\langle \bar{n}|$. Calculate W^\dagger
 b. Show that W is unitary.
 c. Assume that $N > 5$. Show that $P = \sum_{n=1}^{4} |n\rangle\langle n|$ is an orthogonal projection operator.
 d. Show that $M = \sum_{n=1}^{N-1} |n+1\rangle\langle n|$ is a nilpotent operator operator.