1. The Green’s function for a harmonic oscillator Hamiltonian has the form

\[G(x, y) = \sum_{n=0}^{\infty} \frac{\phi_n(x)\phi_n^*(y)}{n + \frac{1}{2}} \]

where the \(\{\phi_n(x)\} \) is a complete set of orthonormal functions on \([-\infty, \infty]\\):

\[\int_{-\infty}^{\infty} \phi_n^*(x)\phi_m(x)dx = \delta_{mn}. \]

a. Is \(G(x, y) \) compact?

b. Is \(G(x, y) \) a Hilbert Schmidt operator?

c. The operator \(L_x \) satisfies

\[L_x G(x, y) = \delta(x - y). \]

What are the eigenvalues of \(L_x \) and eigenfunctions of \(L_x \).

d. Are there any solutions of the homogeneous equation

\[L_x \psi(x) = 0 \]

satisfying the boundary conditions at \(x = \pm \infty \).

2. Let

\[L_x u(x) = \frac{d^2 u(x)}{dx^2} + \eta^2 u(x) \]

on the interval \([a, b]\\).

a. Find independent solutions to the homogeneous equation \(L_x u(x) = 0 \)

b. Calculate the Wronskian of these solutions, verify that it does not vanish.

c. Find the Green’s function for \(L_x \) satisfying \(u(a) = u(b) = 0 \)

d. Solve

\[L_x u(x) = e^x \]

with the boundary conditions \(u(a) = u(b) = 0 \).

3. Let

\[L_x = \frac{d^2}{dx^2} + \frac{cx - 2}{x} \frac{d}{dx} + \frac{2}{x^2} \]

a. Find the indicial equation for this operator.

b. Find the roots of the indicial equation.
c. For the larger of the two roots find the equation relating the \(n + 1 \)-st term in the series solution to the \(n \)-th term.

3. An integral representation for the Hypergeometric function is

\[
F(a, b, c; z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c - b)} \int_1^\infty dt (z - t)^{-a} t^{a-c} (t - 1)^{c-b-1}
\]

a. Make the variable change \(t' = 1/t \) and construct another integral representation.

b. For what values of \(a, b, c \) is the representation in part a. defined?

c. For the case that \(a \) is an integer \(n \) use the integral representation above to find the power series representation of \(F(n, b, c; z) \)

Useful formulas

\[
\sin(a) \cos(b) \pm \sin(b) \cos(a) = \sin(a \pm b)
\]

\[
\cos(a) \cos(b) \pm \sin(b) \sin(a) = \cos(a \mp b)
\]